• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vickers hardness change of the Chinese low-activation ferritic/martensitic steel CLF-1 irradiated with high-energy heavy ions

    2020-06-14 08:45:50ZhaonanDING丁兆楠ChonghongZHANG張崇宏YitaoYANG楊義濤YuguangCHEN陳宇光XianlongZHANG張憲龍YinSONG宋銀TongdaMA馬通達(dá)YupingXU徐玉平andGuangnanLUO羅廣南
    Plasma Science and Technology 2020年5期
    關(guān)鍵詞:廣南通達(dá)

    Zhaonan DING (丁兆楠),Chonghong ZHANG (張崇宏),Yitao YANG (楊義濤),Yuguang CHEN (陳宇光),Xianlong ZHANG (張憲龍),Yin SONG (宋銀),Tongda MA (馬通達(dá)),Yuping XU (徐玉平) and Guangnan LUO (羅廣南)

    1 Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,People’s Republic of China

    2 School of Nuclear Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,People’s Republic of China

    3 General Research Institute for Nonferrous Metals,Beijing 100088,People’s Republic of China

    4 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract

    Keywords:CLF-1,RAFM steel,heavy ions,irradiation,hardening

    1.Introduction

    Irradiation by the high-energy neutrons from the D–T reaction in fusion reactors will produce defects and gaseous impurities including helium in structural components such as the first wall/blankets,resulting in embrittlement and swelling of materials,thereby seriously restricting integrity and safety in long-life operation of fusion reactors.Due to excellent thermophysical and mechanical properties,good resistance to void swelling as well as low-activation,reduced-activation ferritic/martensitic (RAFM) steels have been considered as prime candidates for structural materials for fusion reactorblankets [1,2].The Chinese RAFM steel CLF-1 is one such candidate material for the design and manufacture of the helium-cooled ceramic breeder test blanket module (HCCB TBM) [3].Previous studies have shown that the ductile–brittle transition temperature and high-temperature tensile properties,especially the tensile strength of CLF-1,are close to the international level for the same type of RAFM steel,but there is still a lack of research on its response to irradiation.In view of the fact that hardening /embrittlement under irradiation is a crucial issue for the use of RAFM steels in the low-temperature regime (below 400°C),more studies are needed to clarify the performance of CLF-1 under irradiation.

    Table 1.Specific chemical composition of CLF-1 steel in wt%.

    The Vickers micro-hardness is known to have a direct correlation with the yield strength of steels.Busby et al [4]found that there is a simple interrelation between yield stress and Vickers hardness for austenite and ferrite steel after neutron irradiation.The Vickers hardness test does not require a large volume of material[5].The hardness and depth profile information obtained from the irradiated surface can be further analyzed to establish the correlation between the Vickers hardness and the macroscopic mechanical properties of the material [6].For a reliable evaluation of the irradiation hardening of steels by the Vickers micro-hardness test,the region damaged by irradiation needs to be thick enough so as to readily minimize the contribution of the unaffected substrate of the specimens.Besides various neutron sources,ion beams generated by high-energy accelerators are also applicable as surrogates [7]due to some attractive attributes such as higher damage rates,easier control of irradiation parameters and lower radioactivity of samples,enabling easy handling for the post-irradiation examination.Moreover,cascade damage induced by energetic heavy ions in materials is similar to that by fast neutrons [7].Therefore,heavy ions can be used to simulate neutron irradiation of structural components [8–10].

    In the present work,specimens of CLF-1 steel were irradiated with high-energy heavy ions to successively increasing damage levels at a low temperature where irradiation-induced hardening is significant.Vickers hardness together with nano-hardness were tested.Correlation between the Vickers micro-hardness and the nano-hardness and the dependence of the observed hardening on the irradiation dose were investigated.Finally,irradiation hardening data from other RAFM steels were compiled and compared.

    2.Experimental

    The material used in the present study was a Chinese RAFM steel CLF-1.The chemical composition of CLF-1 is listed in table 1.Details about the manufacturing process for CLF-1 have been described in previous papers [3,11–13].Before irradiation,a block of CLF-1 was sliced into specimens of 1 cm × 1 cm with a thickness of about 1 mm and mechanically ground with SiC abrasive paper (from grades 800 to 2400) then carefully polished with diamond suspensions(~1 μm)to obtain smooth surfaces.The final thickness of the sample was about 200 μm.

    The irradiation experiment was carried out at a terminal chamber of the Sector-focused Cyclotron at the Heavy Ion Research Facility in Lanzhou located in the Institute of Modern Physics of the Chinese Academy of Sciences.The chamber was equipped with a beam intensity monitoring assembly,an energy degrader and a liquid nitrogen-cooled specimen stage.The beam current was monitored with a Au foil assembly placed in the beam line before the energy degrader,consisting of a 1 μm thick Au foil to collect electric charge,a circular aperture of diameter 15 mm to limit the irradiation area and a circular aperture of diameter 18 mm with a bias voltage of-300 V to suppress secondary electron emission.At the beginning and the end of the irradiation,the beam current monitoring assembly was calibrated using a Faraday cup mounted at the end of the chamber.The incident mono-energetic heavy ions were dispersed into 11 different energies by an energy degrader in front of the specimen stage,which includes a rotatable wheel consisting of several aluminum foils of different thicknesses.During irradiation the thickness of the aluminum foil varies as the wheel rotates at a speed of 12 rpm,dispersing the incident ions with different energies and thus producing a nearly uniform distribution of displacement damage in the specimens.Further details about irradiation terminals are given in our previous paper [14].

    In the present study,14N and56Fe ions with kinetic energies of 63 MeV and 336 MeV,respectively,and a beam flux of around 5 × 1010ions cm–2s–1were used.Three successively increasing damage levels [0.05,0.1 and 0.2 displacements per atom (dpa)]were applied.The lowest and intermediate damage levels were due to N ion irradiation at a damage rate of about 0.01 dpa h-1.While the highest dose(0.2 dpa)was from Fe ion irradiation at a damage rate of about 0.02 dpa h-1.Depth profiles of atomic displacement damage (in dpa) in the CLF-1 specimens,irradiated with N ions to the lowest dose and Fe ions to the highest dose,are shown in figure 1,according to an estimation using the SRIM-2013 code (quick calculation,displacement threshold energy Ed=40 eV) [15].The dpa is obtained as the average displacement damage of the superposed value located at damage peak of multi-energy irradiation.The specimens were mounted on a stage cooled with liquid nitrogen so that the effects of beam heating are efficiently suppressed.A thermocouple was mounted on the sample stage to monitor the temperature during irradiation.The position of the specimen stage is adjustable,enabling a switch from one specimen to another.During irradiation,the temperature of the specimen stage was stabilized at about -50°C.Numerical analysis shows that beam heating causes the specimen temperature to be about 20°C higher than that of the specimen stage during irradiation.The vacuum of the sample chamber is around 2.5 × 10-5Pa.

    Figure 1.Depth profiles of the displacement damage in CLF-1 specimens according to SRIM-2013 simulation,corresponding to a dose level of(a)0.05 dpa by N ions and(b)0.2 dpa by Fe ions.The dashed red line shows the superposed effect.A series of different Al foil thicknesses(in micrometers) of the energy degrader is shown in the right column.

    After irradiation,the samples were preserved in the chamber in a rough vacuum at room temperature for 172 and 105 days corresponding to N and Fe irradiation,respectively,so as to take the radioactivity down to the background level.Then they were used for the nano-indentation test and Vickers hardness test.

    Testing the nano-hardness with the nano-indentation technique was described in our previous paper [16].The soft substrate effect,which is usually observed in low-energy ion irradiation experiments,was not seen in the present work.The broad quasi-uniform damage plateau from near the surface to about 25 μm (figure 1) facilitates direct measurement of the Vickers hardness.In the present study,a Vickers hardness tester (Wilson T2500,Buehler Ltd.,USA) was used.A standard sample was used for calibration before the test.Eight different loads (98 mN,196 mN,490 mN,980 mN,1.96 N,4.9 N,9.8 N and 19.6 N)were applied to the sample surface for 10 s each to measure the Vickers hardness of each specimen.The corresponding indentation depth varied in the range from 1.2 to 18.6 μm.For each load three indentation points were randomly selected on the specimen surface with a minimum distance of 200 μm,and the average value was taken.The Vickers hardness tests were conducted at room temperature.

    3.Results and discussion

    3.1.Irradiation hardening

    Figure 2.Average Vickers hardness versus indentation depth of CLF-1 specimens under different conditions.

    Figure 2 shows typical indentation depth profiles of the average Vickers hardness of three indents under each load for CLF-1 before and after irradiation.It can be seen that the measured hardness of all the specimens decreases with increasing indentation depth,known as the indentation size effect (ISE) [17].Moreover,hardening is observable in the irradiated specimens and increases with increase in the damage level.In figure 3,the extent of irradiation hardening at different doses is depicted by the hardness ratio of irradiated and unirradiated specimens.It can be seen that the ratio has a peak value at an indentation depth of about 3.8 μm.At this indentation depth,the hardening percentage is about 14%,23% and 28% for damage levels of 0.05,0.1 and 0.2 dpa,respectively.The ratio decreases monotonically at deeper indentation depths.

    Nix and Gao[18]developed a model based on geometrically necessary dislocation to explain the ISE,in which the hardness as a function of depth is given by the following equation:

    Figure 3.Ratio of/ versus indentation depth corresp-onding to different doses.

    Figure 4.Plots of HV2 versus 1/h for the average Vickers hardness of unirradiated and irradiated CLF-1 specimens.

    where HV is the measured hardness of the material,HV0is the hardness at infinite depth(i.e.bulk equivalent hardness),h is the indentation depth and h*is a characteristic length that depends on the material and shape of the indenter.It can be found from the equation that the square of the hardness varies inversely with the indentation depth.

    For further analysis,the hardness data versus indentation depth in figure 2 were replotted accordingly as HV2against 1/h,as shown in figure 4.Plots for the unirradiated specimen show a good linearity in the overall indentation depth range.However,plots for the specimens irradiated with heavy ions exhibit a distinct bilinearity,with an inflection point at a depth of around 3.6 μm,which coincides with the depth of the maximum ratio in figure 3.In the test,eight different loads(i.e.98 mN,196 mN,490 mN,980 mN,1.96 N,4.9 N,9.8 N and 19.6 N) were used,corresponding to indentation depths ranging from 1.2 μm to 18.6 μm.Since the zone affected by elastic deformation is generally a few times broader than the indentation depth,the undamaged substrate starts to contribute to the hardness test when the indentation depth exceeds the inflection point [19,20].From figure 2,the indentation depth of the initial five loads (i.e.98 mN,196 mN,490 mN,980 mN,1.96 N) was about 1.2 μm,1.7 μm,2.8 μm,3.6 μm and 5.8 μm,respectively.The corresponding elastic deformation zones below the indenter are generally about four to seven times deeper than the indentation depth.The elastic deformation zones of the initial four loads should be within the damaged layer (which is 25 μm thick) of the irradiated specimens,while that of the fifth load(1.96 N) should exceed the boundary of the damaged layer.Under larger loads the unirradiated soft substrates make a greater contribution to the hardness test,causing a different depth dependence of the hardness data [21].

    Table 2.HV0 and h* for CLF-1 steel calculated by the Nix–Gao model.Data are averages from three indents under each load.

    Figure 5.Bulk equivalent hardness HV0 as a function of damage level for CLF-1 steel.

    The bulk equivalent hardness HV0can therefore be obtained by extrapolating from the least-squares fitting of hardness data in the range of 1.2 μm < h < 3.6 μm for the irradiated specimens,according to equation (1).Values of HV0and h*are given in table 2.

    The dependence of HV0on the irradiation damage level(dpa) is plotted in figure 5.Fitting of the data suggests a power-law relationship:

    where the unit of HV0in the equation is GPa.The hardness initially increases quickly with dose (<0.05 dpa) and then slows down further with doses up to 0.2 dpa,showing a hardening saturation trend.

    The Vickers micro-hardness data are further compared with the nano-hardness obtained previously by nano-indentation tests from the same CLF-1 specimens [16].As shown in figure 6,the Vickers micro-hardness data reveal a linear relationship with nano-hardness,which can be described by the following equation:

    Figure 6.The Vickers hardness(HV0)as a function of nano-hardness(H0) for unirradiated and irradiated CLF-1 specimens.

    A similar linear relationship was found for various steels in our previous work[22,23]and also by Yabuuchi et al[10].The projection contact area is used in the analysis of nanoindentation data,while the residual projection area is used in Vickers hardness analysis [9].Therefore,the coefficient is only related to the geometric size of the indenter and hardness unit when Vickers hardness and nano-hardness are defined in the same way.

    In order to compare the irradiation hardening with other RAFM steels,data on the increase in yield strength were compiled from previous neutron and ion irradiation experiments.Based on the relationship between Vickers hardness and yield stress [4],data on the increase in Vickers hardness of CLF-1 in the present work and those of CLAM in[24]are converted to increase in yield stress by the following equations [8]:

    where Δσyis the increase in the yield stress in units of MPa,ΔHv is the increase in Vickers hardness in units of kgf mm-2and ΔHV is the the increase in Vickers hardness in units of GPa.Equation (5) shows the relationship between ΔHv and ΔHV.

    The results are shown in figure 7,together with data from the tensile tests of other RAFM steels irradiated with fast neutrons or protons reported in[25–27].Despite the variety of irradiation sources and the minor difference in the compositions/manufacturing routes of the RAFM steels,the increase in yield strength versus the level of irradiation damage generally follows a similar power-law function.The dose dependence of the increase in yield strength of CLF-1 steel in the present work shows a similar power exponent to the data for RAFM steels,including neutron- or proton-irradiated modified JLF-1,F82H and Optimax A.The temperature and dose rate have a minor effect on the irradiation hardening of RAFM steels,possibly because at temperatures below 300°C the mobility of the major defect species (interstitial-type clusters,vacancies) is limited and does not significantly alter the microstructures caused by primitive cascade damage.

    The power exponent in the case of the neutron-irradiated Eurofer97 is significantly higher than for other RAFM steels.The difference in the power exponents of the dose dependence is mainly due to the microstructures of the RAFM steels before irradiation.A further comparison of the microstructures prior to irradiation,including the density of dislocations and precipitates and grain-boundary structures,should be helpful for understanding the differences in dose dependence of irradiation hardening between the RAFM steels.

    4.Conclusions

    The irradiation hardening behavior of CLF-1 steel irradiated by high-energy heavy ions to successively increasing damage levels (i.e.0.05,0.1 and 0.2 dpa) was studied.The broad thickness of the damaged layer (about 25 μm) facilitates the direct measurement of Vickers hardness.The depth distribution of Vickers hardness was obtained by applying eight different loads on the specimens with a hardness tester.The Vickers hardness data were analyzed by the Nix–Gao model and the bulk equivalent hardness values corresponding to different conditions were obtained.The bulk equivalent hardness HV0is linearly related to the previous nano-indentation test results by HV0=0.83H0.Hardening is observable at the lowest damage level,and increases with increasing irradiation dose.A power-law dependence of the irradiation damage level,HV0=1.49 + 0.76 dpa0.31,was observed.A comparison with other RAFM steels under neutron or charged particle irradiation conditions shows that most RAFM steels show similar power-law exponents in the dose dependence of irradiation hardening.The differences in irradiation hardening may be attributed to difference in microstructure prior to irradiation,which requires further investigations.

    Acknowledgments

    This work was sponsored by the National Magnetic Confinement Fusion Program(No.2011GB108003)and National Natural Science Foundation of China (No.U1532262).We are grateful for the experimental conditions provided by the Heavy Ion Research Facility in Lanzhou (HIRFL).

    ORCID iDs

    猜你喜歡
    廣南通達(dá)
    廣南壩美 一個(gè)藏在青山綠水間的世外桃源
    大廣南高速視頻云聯(lián)網(wǎng)技術(shù)探討
    “神子”如何通達(dá)藏地——論格絨追美的長(zhǎng)篇小說(shuō)《隱蔽的臉》
    On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field
    廣南、廣巴高速公路連接線項(xiàng)目通過(guò)竣工驗(yàn)收
    石油瀝青(2019年1期)2019-03-05 08:25:46
    通達(dá)青島
    商周刊(2017年23期)2017-11-24 03:23:33
    博物洽聞,通達(dá)古今——記奉節(jié)縣博物館群
    LED燈在湖北大廣南高速公路隧道照明中的應(yīng)用
    兩年出欄的廣南高峰牛身價(jià)過(guò)萬(wàn)元
    達(dá)業(yè)速度為則通達(dá)
    日韩一本色道免费dvd| 亚洲天堂av无毛| 熟女电影av网| 啦啦啦在线观看免费高清www| 在线看a的网站| 色5月婷婷丁香| 日韩欧美一区视频在线观看 | 成人漫画全彩无遮挡| 毛片一级片免费看久久久久| 乱系列少妇在线播放| 中文字幕制服av| 中文字幕久久专区| 97热精品久久久久久| 毛片女人毛片| 国产 一区 欧美 日韩| 日韩在线高清观看一区二区三区| av天堂中文字幕网| 少妇人妻一区二区三区视频| 久久人人爽人人爽人人片va| 最后的刺客免费高清国语| 一区二区三区免费毛片| 综合色丁香网| 成年人午夜在线观看视频| 日本黄色片子视频| 建设人人有责人人尽责人人享有的 | 日日撸夜夜添| 天美传媒精品一区二区| 精品人妻熟女av久视频| 国产高清三级在线| 看免费成人av毛片| 久久久午夜欧美精品| 亚洲伊人久久精品综合| 一级毛片久久久久久久久女| 亚洲人与动物交配视频| 国产在线一区二区三区精| 熟女av电影| 夫妻性生交免费视频一级片| 国产精品福利在线免费观看| 免费久久久久久久精品成人欧美视频 | 在线 av 中文字幕| 亚洲精品456在线播放app| 中文在线观看免费www的网站| 在线播放无遮挡| 成年美女黄网站色视频大全免费 | 午夜视频国产福利| 免费观看av网站的网址| 黄片wwwwww| 有码 亚洲区| 国产成人a∨麻豆精品| 久久久久久久大尺度免费视频| 国产精品99久久久久久久久| 亚洲熟女精品中文字幕| 国产成人免费无遮挡视频| 一级av片app| 日韩成人伦理影院| 观看av在线不卡| 人人妻人人添人人爽欧美一区卜 | 人妻夜夜爽99麻豆av| 日日撸夜夜添| 国语对白做爰xxxⅹ性视频网站| 久久久久久久精品精品| 久久精品夜色国产| 亚洲人与动物交配视频| 91久久精品国产一区二区成人| 日韩三级伦理在线观看| 汤姆久久久久久久影院中文字幕| 黄片无遮挡物在线观看| 国产 一区精品| 精华霜和精华液先用哪个| 日韩精品有码人妻一区| 国产黄片视频在线免费观看| 韩国高清视频一区二区三区| 精品一品国产午夜福利视频| 国产免费一级a男人的天堂| 少妇被粗大猛烈的视频| 国产精品一区二区在线不卡| 亚洲欧美日韩另类电影网站 | 亚洲最大成人中文| 制服丝袜香蕉在线| av免费在线看不卡| 久久韩国三级中文字幕| 欧美极品一区二区三区四区| 欧美激情国产日韩精品一区| 深夜a级毛片| 草草在线视频免费看| 噜噜噜噜噜久久久久久91| 综合色丁香网| 美女视频免费永久观看网站| 秋霞伦理黄片| 日韩一本色道免费dvd| 亚洲一级一片aⅴ在线观看| 久久久久久久精品精品| 男人狂女人下面高潮的视频| 久久亚洲国产成人精品v| 身体一侧抽搐| 在线观看三级黄色| videossex国产| 亚洲av综合色区一区| 成人午夜精彩视频在线观看| 男的添女的下面高潮视频| 中国三级夫妇交换| 最后的刺客免费高清国语| 国产黄色视频一区二区在线观看| 中文字幕人妻熟人妻熟丝袜美| 三级经典国产精品| 大话2 男鬼变身卡| 国产男人的电影天堂91| 亚洲国产最新在线播放| 国产爽快片一区二区三区| 尾随美女入室| 午夜日本视频在线| 一级毛片 在线播放| 日韩成人av中文字幕在线观看| 精品人妻熟女av久视频| 国产淫语在线视频| 欧美xxⅹ黑人| 国产欧美另类精品又又久久亚洲欧美| 中文字幕精品免费在线观看视频 | 麻豆成人av视频| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩无卡精品| 深夜a级毛片| 91精品伊人久久大香线蕉| 秋霞在线观看毛片| 在线亚洲精品国产二区图片欧美 | www.av在线官网国产| 人人妻人人看人人澡| 久久久久国产网址| 亚洲国产日韩一区二区| 久久久久久久久久人人人人人人| 久久国产精品大桥未久av | 丝袜喷水一区| 欧美xxxx性猛交bbbb| 国产精品嫩草影院av在线观看| 91在线精品国自产拍蜜月| 少妇猛男粗大的猛烈进出视频| 99九九线精品视频在线观看视频| 久久久久视频综合| 婷婷色综合大香蕉| 亚洲伊人久久精品综合| 一边亲一边摸免费视频| 有码 亚洲区| 久久国产亚洲av麻豆专区| 国产黄片视频在线免费观看| 亚洲美女搞黄在线观看| 久久久久网色| 大香蕉97超碰在线| 国产免费一区二区三区四区乱码| 精品久久久久久久末码| av女优亚洲男人天堂| 国产亚洲一区二区精品| 观看免费一级毛片| 伊人久久精品亚洲午夜| 黄片wwwwww| 久久97久久精品| 干丝袜人妻中文字幕| 18+在线观看网站| 在线观看av片永久免费下载| 美女国产视频在线观看| 国产在视频线精品| 欧美97在线视频| 久久人妻熟女aⅴ| 国产成人91sexporn| 18禁在线播放成人免费| 久久久久久久国产电影| 熟女电影av网| 18禁裸乳无遮挡动漫免费视频| av国产久精品久网站免费入址| 一级黄片播放器| 99久久精品一区二区三区| 成人高潮视频无遮挡免费网站| av在线老鸭窝| 99热网站在线观看| 日韩av不卡免费在线播放| 亚洲激情五月婷婷啪啪| 观看av在线不卡| 国产精品人妻久久久影院| 少妇的逼好多水| 亚洲精品久久午夜乱码| 少妇熟女欧美另类| 伦精品一区二区三区| 2022亚洲国产成人精品| 91精品伊人久久大香线蕉| 久久精品国产亚洲av天美| 亚洲欧美日韩东京热| 久久国产乱子免费精品| 一区二区三区四区激情视频| 纯流量卡能插随身wifi吗| 久久毛片免费看一区二区三区| 日日啪夜夜撸| 欧美一区二区亚洲| 免费黄网站久久成人精品| 黑人高潮一二区| 我要看黄色一级片免费的| 赤兔流量卡办理| 日韩伦理黄色片| 亚洲av免费高清在线观看| 亚洲国产精品999| 亚洲国产av新网站| 黄色视频在线播放观看不卡| 成人亚洲欧美一区二区av| xxx大片免费视频| 美女内射精品一级片tv| 免费在线观看成人毛片| 一级毛片我不卡| 看十八女毛片水多多多| 看免费成人av毛片| 2022亚洲国产成人精品| 一本—道久久a久久精品蜜桃钙片| av在线播放精品| 在线免费观看不下载黄p国产| 午夜视频国产福利| 欧美精品一区二区大全| xxx大片免费视频| 99久国产av精品国产电影| 一级毛片aaaaaa免费看小| 亚洲欧美精品自产自拍| 日日摸夜夜添夜夜爱| 黄色欧美视频在线观看| 亚洲国产精品专区欧美| 久久99热6这里只有精品| 久久久久久久久久人人人人人人| 舔av片在线| 精品亚洲乱码少妇综合久久| 五月伊人婷婷丁香| 三级国产精品片| 成人亚洲欧美一区二区av| 舔av片在线| 国产 一区 欧美 日韩| av播播在线观看一区| 毛片女人毛片| .国产精品久久| 激情 狠狠 欧美| 高清在线视频一区二区三区| 久久精品国产自在天天线| 久久久久精品性色| 黄色一级大片看看| 成人18禁高潮啪啪吃奶动态图 | 亚洲av中文av极速乱| 男男h啪啪无遮挡| 人妻 亚洲 视频| 亚洲伊人久久精品综合| 热re99久久精品国产66热6| 男女免费视频国产| 久久午夜福利片| 亚洲无线观看免费| 成人特级av手机在线观看| 精品亚洲成a人片在线观看 | 伊人久久国产一区二区| 国产一区二区三区av在线| 国产精品嫩草影院av在线观看| 国产精品一区二区三区四区免费观看| 一级毛片电影观看| 国产淫语在线视频| 十分钟在线观看高清视频www | 伊人久久国产一区二区| 在线观看一区二区三区| 久久99热6这里只有精品| 寂寞人妻少妇视频99o| 少妇裸体淫交视频免费看高清| videos熟女内射| 国产真实伦视频高清在线观看| 成年人午夜在线观看视频| 人人妻人人澡人人爽人人夜夜| 伦理电影免费视频| 成人综合一区亚洲| 亚洲av.av天堂| 91精品国产九色| 在线观看av片永久免费下载| 在线 av 中文字幕| 日本-黄色视频高清免费观看| 日本av手机在线免费观看| 亚洲精品色激情综合| 国产91av在线免费观看| 国产精品偷伦视频观看了| 成年人午夜在线观看视频| 亚洲经典国产精华液单| 国产精品女同一区二区软件| 18+在线观看网站| 在线观看三级黄色| 丝袜喷水一区| 日韩不卡一区二区三区视频在线| 国产精品蜜桃在线观看| 国产真实伦视频高清在线观看| 人妻少妇偷人精品九色| 成人毛片60女人毛片免费| 在线观看免费高清a一片| 蜜桃在线观看..| 亚洲av福利一区| 99热这里只有精品一区| av国产免费在线观看| 国产美女午夜福利| 欧美精品人与动牲交sv欧美| 色婷婷久久久亚洲欧美| 插逼视频在线观看| 日韩欧美精品免费久久| 国产黄片美女视频| 毛片一级片免费看久久久久| 性高湖久久久久久久久免费观看| 噜噜噜噜噜久久久久久91| 精品一区二区三卡| 自拍欧美九色日韩亚洲蝌蚪91 | 精品国产露脸久久av麻豆| 亚洲欧美日韩卡通动漫| 国产一区二区三区综合在线观看 | 少妇高潮的动态图| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| 成人特级av手机在线观看| 黄色欧美视频在线观看| 欧美精品国产亚洲| 联通29元200g的流量卡| 国产亚洲91精品色在线| 国产精品麻豆人妻色哟哟久久| 国产伦精品一区二区三区视频9| 女性被躁到高潮视频| 免费看不卡的av| 久久精品国产a三级三级三级| 成人一区二区视频在线观看| 久久精品人妻少妇| 成人影院久久| 国产精品蜜桃在线观看| 插逼视频在线观看| a级毛片免费高清观看在线播放| 婷婷色av中文字幕| 九九在线视频观看精品| 男女国产视频网站| 伊人久久国产一区二区| 这个男人来自地球电影免费观看 | 在线亚洲精品国产二区图片欧美 | 欧美精品亚洲一区二区| 亚洲国产日韩一区二区| 亚洲自偷自拍三级| 久久久久国产精品人妻一区二区| 国产在线视频一区二区| 亚洲av.av天堂| 日韩 亚洲 欧美在线| 成人综合一区亚洲| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 99热国产这里只有精品6| av女优亚洲男人天堂| 性高湖久久久久久久久免费观看| 国产亚洲欧美精品永久| 纯流量卡能插随身wifi吗| 黄色欧美视频在线观看| 色网站视频免费| 我要看日韩黄色一级片| 亚洲第一av免费看| 久久久久久久久久久免费av| 国产亚洲欧美精品永久| 麻豆成人午夜福利视频| av在线老鸭窝| 欧美精品一区二区免费开放| 欧美日韩视频高清一区二区三区二| 亚洲av综合色区一区| 精品熟女少妇av免费看| 在线观看国产h片| 极品少妇高潮喷水抽搐| 国产高潮美女av| 国精品久久久久久国模美| 日韩电影二区| 国产一区二区在线观看日韩| 亚洲国产色片| 黄色日韩在线| 大片电影免费在线观看免费| 美女中出高潮动态图| 欧美精品国产亚洲| 99久久精品一区二区三区| 亚洲欧洲日产国产| 亚洲人成网站在线观看播放| 成人18禁高潮啪啪吃奶动态图 | 日韩欧美精品免费久久| 免费观看av网站的网址| 亚洲精品日本国产第一区| 国产精品一区二区性色av| 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 国产人妻一区二区三区在| 欧美精品人与动牲交sv欧美| 99热全是精品| 日本av免费视频播放| 久久99热6这里只有精品| 国产精品福利在线免费观看| 特大巨黑吊av在线直播| 亚洲国产av新网站| 久久久久久久亚洲中文字幕| 少妇的逼好多水| 午夜免费观看性视频| 久久久久久九九精品二区国产| 日本欧美国产在线视频| 国产永久视频网站| 成年免费大片在线观看| 免费人妻精品一区二区三区视频| 超碰97精品在线观看| 精华霜和精华液先用哪个| 亚洲国产成人一精品久久久| 九九久久精品国产亚洲av麻豆| 国产乱人偷精品视频| 亚洲怡红院男人天堂| 亚洲不卡免费看| 亚洲国产av新网站| 成人美女网站在线观看视频| 欧美精品国产亚洲| 欧美高清成人免费视频www| 亚洲精品国产色婷婷电影| 国产精品不卡视频一区二区| 综合色丁香网| 人人妻人人澡人人爽人人夜夜| 国模一区二区三区四区视频| 三级国产精品欧美在线观看| 午夜激情福利司机影院| 黄片无遮挡物在线观看| 内地一区二区视频在线| 爱豆传媒免费全集在线观看| 亚洲av中文字字幕乱码综合| 欧美日韩视频高清一区二区三区二| 国产一区二区三区综合在线观看 | 大话2 男鬼变身卡| 亚洲精品第二区| 男的添女的下面高潮视频| 熟女人妻精品中文字幕| 亚洲美女黄色视频免费看| 欧美 日韩 精品 国产| 26uuu在线亚洲综合色| 久久久久久久久久久丰满| av免费在线看不卡| 日韩一区二区视频免费看| 成人特级av手机在线观看| 国产毛片在线视频| 午夜福利视频精品| 午夜福利在线观看免费完整高清在| 久久久久精品性色| av播播在线观看一区| 国产欧美日韩一区二区三区在线 | 欧美日韩视频精品一区| 直男gayav资源| 十分钟在线观看高清视频www | 99re6热这里在线精品视频| 日日摸夜夜添夜夜爱| 色网站视频免费| 五月天丁香电影| freevideosex欧美| 99热这里只有精品一区| 五月玫瑰六月丁香| 久久亚洲国产成人精品v| 国产av国产精品国产| 人人妻人人澡人人爽人人夜夜| 中文字幕精品免费在线观看视频 | 蜜桃亚洲精品一区二区三区| 99热网站在线观看| 欧美97在线视频| 日韩三级伦理在线观看| 丝袜喷水一区| 国产成人a∨麻豆精品| 一级a做视频免费观看| 极品少妇高潮喷水抽搐| 五月伊人婷婷丁香| 久久人人爽人人片av| 国产精品一区二区性色av| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 国产精品三级大全| 中文字幕久久专区| 大码成人一级视频| 新久久久久国产一级毛片| 少妇被粗大猛烈的视频| 蜜桃亚洲精品一区二区三区| 日日啪夜夜撸| 下体分泌物呈黄色| 99国产精品免费福利视频| 九草在线视频观看| 国产亚洲最大av| 精品人妻一区二区三区麻豆| 成人黄色视频免费在线看| 青春草国产在线视频| 日韩av不卡免费在线播放| 亚洲av免费高清在线观看| 国产av码专区亚洲av| 天天躁日日操中文字幕| 国产成人freesex在线| 久久综合国产亚洲精品| 熟女av电影| 我要看日韩黄色一级片| 18+在线观看网站| 精品一区在线观看国产| 国产av一区二区精品久久 | 国产成人a∨麻豆精品| 人妻制服诱惑在线中文字幕| 天美传媒精品一区二区| 亚洲久久久国产精品| 青青草视频在线视频观看| 一个人看视频在线观看www免费| 97热精品久久久久久| 国产永久视频网站| 久久久久久久国产电影| 国产亚洲欧美精品永久| 日本黄色日本黄色录像| 久久6这里有精品| 99re6热这里在线精品视频| 国产黄片视频在线免费观看| 久久久色成人| 尾随美女入室| 亚洲av电影在线观看一区二区三区| 成人一区二区视频在线观看| 黑人高潮一二区| 精品人妻一区二区三区麻豆| 久久99热这里只有精品18| 久久精品国产亚洲av天美| 国产精品秋霞免费鲁丝片| 国产久久久一区二区三区| 最新中文字幕久久久久| 亚洲人成网站在线播| 精品国产三级普通话版| 一级毛片aaaaaa免费看小| xxx大片免费视频| 国产免费又黄又爽又色| 国产男人的电影天堂91| 夜夜爽夜夜爽视频| 亚洲av福利一区| 大又大粗又爽又黄少妇毛片口| 欧美精品国产亚洲| 精品一品国产午夜福利视频| 麻豆国产97在线/欧美| 国产成人freesex在线| av不卡在线播放| 汤姆久久久久久久影院中文字幕| 直男gayav资源| av一本久久久久| 亚洲成色77777| 狂野欧美激情性bbbbbb| 一区二区av电影网| 人人妻人人看人人澡| 99久久综合免费| 国内少妇人妻偷人精品xxx网站| 在线亚洲精品国产二区图片欧美 | 日韩av不卡免费在线播放| 99热这里只有精品一区| 国产精品欧美亚洲77777| 久久精品国产亚洲av涩爱| 国语对白做爰xxxⅹ性视频网站| 午夜福利在线在线| 中文字幕人妻熟人妻熟丝袜美| 欧美少妇被猛烈插入视频| h日本视频在线播放| 欧美xxxx性猛交bbbb| 男女下面进入的视频免费午夜| 国产色婷婷99| 亚洲aⅴ乱码一区二区在线播放| av网站免费在线观看视频| 精品99又大又爽又粗少妇毛片| 免费久久久久久久精品成人欧美视频 | 国产免费福利视频在线观看| 久热久热在线精品观看| 亚洲在久久综合| 99久久精品国产国产毛片| 国产一区二区三区av在线| 国产日韩欧美在线精品| av在线播放精品| 欧美精品人与动牲交sv欧美| 国产久久久一区二区三区| 国产亚洲最大av| 国产av码专区亚洲av| 欧美3d第一页| 又粗又硬又长又爽又黄的视频| 久久久久国产网址| 国产 精品1| 久久99热这里只有精品18| 欧美老熟妇乱子伦牲交| 毛片女人毛片| 少妇被粗大猛烈的视频| 人妻 亚洲 视频| 97热精品久久久久久| 亚洲欧美精品专区久久| 夜夜爽夜夜爽视频| 久久韩国三级中文字幕| 汤姆久久久久久久影院中文字幕| tube8黄色片| 国产高清有码在线观看视频| 国产永久视频网站| 97在线人人人人妻| 观看美女的网站| 日韩欧美 国产精品| 国产深夜福利视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久亚洲中文字幕| av国产精品久久久久影院| 欧美精品人与动牲交sv欧美| 精品亚洲乱码少妇综合久久| 超碰av人人做人人爽久久| 天堂中文最新版在线下载| 中文字幕制服av| 日韩强制内射视频| 亚洲第一区二区三区不卡| 国产欧美日韩一区二区三区在线 | 亚洲精品乱久久久久久| 亚洲欧美日韩东京热| 97精品久久久久久久久久精品| 国产成人91sexporn| 亚洲在久久综合| 国产黄色视频一区二区在线观看| 国产精品一及| 人妻制服诱惑在线中文字幕| 狂野欧美白嫩少妇大欣赏| 丰满人妻一区二区三区视频av| 亚洲最大成人中文| 免费黄色在线免费观看| 97超视频在线观看视频| 精品酒店卫生间| 青春草国产在线视频| 大片电影免费在线观看免费| 欧美最新免费一区二区三区| 国产精品久久久久久精品古装| 一边亲一边摸免费视频|