• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii

    2018-06-06 09:12:53WANGZhenzhongXIEJingzhongGUOLiZHANGDeyunLIGenqiaoFANGTilinCHENYongxingLIJunWUQiuhongLUPingLIMiaomiaoWUHaibinZHANGHuaizhiZHANGYanYANGWuyunLUOMingchengFahimaTzionLIUZhiyong
    Journal of Integrative Agriculture 2018年6期

    WANG Zhen-zhong , XIE Jing-zhong, GUO Li, ZHANG De-yun, LI Gen-qiao, FANG Ti-lin, CHEN Yong-xing, LI Jun, WU Qiu-hong, LU Ping, LI Miao-miao, WU Hai-bin, , ZHANG Huai-zhi, ZHANG Yan, YANG Wu-yun, LUO Ming-cheng, Fahima Tzion, LIU Zhi-yong

    1 China Rural Technology Development Center, Beijing 100045, P.R.China

    2 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R.China

    3 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R.China

    4 Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA

    5 Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu 610066, P.R.China

    6 China National Seed Group Co., Ltd., Beijing 100045, P.R.China

    7 Department of Plant Sciences, University of California, Davis, CA 95616, USA

    8 Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel

    1. Introduction

    Bread wheat (Triticum aestivumL.) is one of the top three most important food crops which affects worldwide food security. Stripe rust, caused byPuccinia striiformisf. sp.tritici(Pst), is one of the severest wheat diseases worldwide.Growing resistant cultivars is the most cost-effective and environmentally friendly method to control this disease.Up to date, more than 70 formally named and many other provisionally designated stripe rust resistance genes or quantitative trait loci (QTLs) have been reported (McIntoshet al. 2013, 2014, 2016). Out of these, two stripe rust resistance genes,Yr36andYr18, have been isolated through map-based cloning (Fuet al. 2009; Krattingeret al. 2009). However, stripe rust resistance genes tend to become ineffective due to the continuous evolution ofPstraces and monoculture of cultivars carrying same resistance gene in wide area (Wanet al. 2004, 2007; de Vallavieille-Popeet al. 2012). So there is a continued need for identification and utilization of diversified resistance genes from various wheat germplasm resources.

    Wild emmer (T.turgidumssp.dicoccoides, 2n=4x=28,AABB) is allotetraploid with A and B genomes, which was derived from a spontaneous hybridization of two diploid wild grassesT.urartu(2n=14, AA) and an as yet unidentifiedAegilopsspecies related toAe.speltoides(2n=14, SS)(Dvorak and Zhang 1990; Dvoraket al. 1993). Wild emmer is the progenitor of cultivated tetraploid durum wheat(T.turgidumssp.durum, AABB) and hexaploid bread wheat (T.aestivum, AABBDD) (Feldman 2001), harboring abundant genetic resources for wheat improvement,including tolerance to abiotic stresses (salt, drought and heat), resistance to biotic stresses (powdery mildew, rusts and Fusarium head blight), grain protein quality and quantity,and micronutrient concentrations (Zn, Fe, and Mn) (Xie and Nevo 2008). Artificial selection during wheat domestication resulted in an inadvertent loss of genes and QTL beneficial for improving wheat agronomic and economic traits.Although they could be introgressed into modern wheat cultivars through traditional breeding methods, molecular breeding provides an improved strategy which can greatly shorten the breeding period.

    Previously, molecular markers used for genetic linkage maps are mainly comprised of restriction fragment length polymorphisms (RFLPs) (Blancoet al. 1998), amplified fragment length polymorphisms (AFLPs) (Nachitet al.2001), simple sequence repeats (SSRs) (Somerset al.2004; Songet al. 2005), and diversity arrays technology(DArT) (Akbariet al. 2006; Peleget al. 2008). Recently,single nucleotide polymorphisms (SNPs) are increasingly applied for high-density genetic mapping, physical map construction, comparative genomics analysis, genome-wide association studies (GWAS), and genomic selection in rice(Oryza sativa) (Zhaoet al. 2011), maize (Zea mays) (Ganalet al. 2011; Riedelsheimeret al. 2012), and wheat (Akhunovet al. 2009; Luoet al. 2009; Cavanaghet al. 2013; Wanget al. 2014).

    Fine mapping and map-based cloning of resistance genes in wheat is a tedious process because of the allopolyploid (AABBDD), large genome size (17 gigabase),and numerous repeat DNA (90%). The availability of draft genome sequences and International Wheat Genome Sequencing Consortium (IWGSC) survey sequences ofT.aestivum cv. Chinese Spring,T.urartuaccession G1812,andAe.tauschiiaccession AL8/78 (Brenchleyet al. 2012;Jiaet al. 2013; Linget al. 2013; IWGSC 2014) facilitates gene mapping. In particular, the released high-resolution SNP genetic linkage map and physical map ofAe.tauschiiaccession AL8/78 provide closely wheat-related target for comparative genomics analyses (Luoet al. 2013).

    In present study, we report: (1) the identification and genetic mapping a near-immunity stripe rust resistance geneYrTZ2derived from wild emmer with microsatellite markers and 90K iSelect SNP genotyping assay, and (2) comparative genomics analysis of the genomic regions ofYrTZ2with the genetic linkage map and physical map ofAe.tauschii.

    2. Materials and methods

    2.1. Plant materials

    The wild emmer accession TZ-2 resistant to stripe rust was crossed with a highly susceptible durum wheat cultivar Langdon. A set of 200 F6:7recombinant inbred lines (RILs)advanced by single-seed descent approach and the parents Langdon and TZ-2 were evaluated for stripe rust resistance with the prevailingPstrace CYR34. A highly susceptible wheat variety Mingxian 169 was used as control.

    2.2. Stripe rust evaluations

    The parental lines Langdon and TZ-2, Langdon/TZ-2 F1,200 F6:7RILs, and the susceptible control Mingxian 169 were sowed in two-meter rows (each row with 30 seeds),which inoculated withPstrace CYR34 at the jointing stage in Chengdu of Sichuan Province, China. At 18–20 days post inoculation when the susceptible control Mingxian 169 had become severely infected, the infection type (IT) was recorded with a scale of 0–4, with 0 (immune reaction), 0;(hypersensitive reaction), 1 (highly resistant), 2 (moderately resistant), 3 (moderately susceptible), and 4 (highly susceptible), the values of 0–2 were rated as resistant, and those of 3–4 were rated as susceptible (Zhanget al. 2001).ITs were recorded after 10 days.

    2.3. Genomic DNA isolation and SSR marker analysis

    Genomic DNAs of the parental lines and the F6:7RILs population were extracted from seedings using the Plant Genomic DNA Kit (Tiangen Biotech, Co., Ltd., Beijing, China). DNA concentration was quantified using NanoPhotometer?P360(Implem GmbH, Munich, Germany) and normalized to 100 ng μL–1. Resistant and susceptible DNA bulks were prepared by mixing equal amounts of DNA from 10 homozygous resistant and 10 homozygous susceptible F6:7families, respectively, for bulked segregant analysis (Michelmoreet al. 1991). SSR markers (Xgwm,Xwmc,Xbarc,Xcfa, andXcfdseries, https://wheat.pw.usda.gov) were tested for polymorphism and the polymorphic SSR markers were subsequently genotyped in the RIL mapping populations.

    PCR reactions were carried out in a 10-μL reaction volume with the following conditions: one denaturation cycle at 94°C for 5 min, followed by 35 cycles at 94°C for 45 s,55–65°C (depending on specific primers) for 45 s, and 72°C for 1 min, followed by an extension step of 72°C for 10 min.Fragment analysis of PCR products were carried out on 8% non-denaturing polyacrylamide gels (39 acrylamide:1 bisacrylamide). After electrophoresis, the gels were silver stained and photographed.

    2.4. lnfinium 90K iSelect SNP genotyping

    To saturate the genomic region harboring the stripe rust resistance gene, the 200 F6:7RILs were genotyped using wheat 90K iSelect SNP genotyping assay platform at the Genome Center of University of California, Davis according to the manufacturer’s protocol. SNP allele clustering was conducted with two population-based detection algorithms:Density Based Spatial Clustering of Applications with Noise (DBSCAN) and Ordering Points to Identify the Clustering Structure (OPTICS) using the polyploid version of GenomeStudio software as described in Wanget al.(2014). Subsequently, the cluster matrix of polymorphic SNP markers was output from the polyploid version of GenomeStudio, and the genotypes of samples assigned in TZ-2 cluster were marked ‘1’, the genotypes of sample located in Langdon cluster were marked ‘2’, and the others were marked ‘0’.

    2.5. Genetic mapping of the stripe rust resistance gene

    The polymorphic SNP markers, SSR markers, and stripe rust resistance data were used for linkage analysis with the MultiPoint mapping software as described in Peleget al.(2008) and Luoet al. (2013). Co-segregating SNP markers were regarded as a polymorphic locus. The linkage map was constructed with the software Mapdraw V2.1 (Liu and Meng 2003).

    3. Results

    3.1. Inheritance of the stripe rust resistance gene in TZ-2

    The wild emmer accession TZ-2 and durum wheat cultivar Langdon showed nearly immune and highly susceptible reaction to stripe rust, respectively. The F1plants are highly resistant to CYR34, indicating the dominant nature of the stripe rust resistance in TZ-2. Of the 200 F6:7RILs, 103 were resistant (IT 0–2) and 97 were susceptible (3–4), which fits the expected 1:1 ratio (χ21:1=0.18,P<0.05), indicating that a single locus, provisionally designatedYrTZ2, in TZ-2 is responsible for the stripe rust resistance.

    3.2. ldentification of microsatellite markers linked to YrTZ2

    Initially, 194 SSR primers distributed randomly throughout the whole genome were screened for polymorphisms between the parents as well as the resistant and susceptible DNA bulks. SSR markers,Xwmc406,Xwmc230,Xgwm413,Xwmc128, andXcfd65revealed polymorphisms between the parents and linkage with the bulks. These markers were tested on the F6:7population and a linkage map for stripe rust disease resistance geneYrTZ2was constructed. The geneYrTZ2was located into a 1.1-cM genetic interval between SSR markersXwmc230andXgwm413(Fig. 1).

    3.3. Chromosome arm assignment and physical bin mapping

    Fig. 1 Genetic linkage map of the stripe rust resistance gene YrTZ2. Ae. tauschii, Aegilops tauschii.

    In order to locate theYrTZ2in the deletion bins on chromosome 1BS, Chinese Spring homoeologous group 1 nullisomic-tetrasomics, ditelosomics and deletion lines were used to assign the chromosome and physical bin location of theYrTZ2-linked SSR markers. Both SSR markersXgwm413andXwmc230were present in N1A-T1B, N1DT1A, Dt1BS, and 1BS-9, but absent in N1B-T1A, Dt1BL,and 1BS-10 (Fig. 2), indicating thatYrTZ2is located on chromosome 1BS bin 0.50–0.84 (Fig. 1).

    3.4. ldentification of SNP markers linked to YrTZ2

    Fig. 2 Amplification patterns of markers Xwmc230 (2A)and Xgwm413 (2B) in the parental lines TZ-2 and Langdon,Chinese Spring (CS) and its homoeologous group 1 nullisomictetrasomics, ditelosomics, and deletion lines.

    The 200 F6:7RILs were genotyped with 90K iSelect SNP genotyping assay. Based on the maximum likelihood estimation with LOD threshold of 3.0, linkage groups were constructed with cluster threshold (recombination rate) value of 0.1. After ordering, the matrix data of each linkage group were output and the markers with low confidence order were rechecked with clustering graph in polyploid version of GenomeStudio, especially makers with double crossover.Linkage analysis and recheck between the matrix data and GenomeStudio clustering graph were performed alternately to adjust or delete the markers with low confidence order.The jackknife resampling procedure was used to evaluate the reliability of the ordered linkage groups with the parameter setting: Jackknife value 90, number of iteration 10, time to Es 0.3, and control of monotony threshold of 1.0, which can remove the markers causing unstable neighborhoods in each linkage group. Then the cluster threshold (recombination rate) value was increased to merge different pairs of linkage groups that maybe belong to one chromosome. Finally, 15 625 polymorphic SNP markers were clustered into 14 linkage groups. Polymorphic SNP and SSR markers linked toYrTZ2were used to construct a high-resolution linkage map ofYrTZ2. Due to the limitation of population size, multiple co-segregating SNP markers were mapped at one locus and used as skeleton marker.All together, 11 polymorphic loci (consisting of 250 SNP markers),IWB33689,IWB10487,IWB54031,IWB21709,IWB19368,IWB28744,IWB31649,IWB56173,IWB57972,IWB46473, andIWB40316, were integrated into the genetic linkage map ofYrTZ2(Fig. 1).YrTZ2was finally delimited into a 0.8-cM interval between SNP locusIWB19368and SSR markerXgwm413, and co-segregated with SNP locusIWB28744(co-segregated with 28 SNP markers)(Fig. 1).

    3.5. ldentification of collinearity genomic region of YrTZ2 in Ae. tauschii and comparative genomics analysis

    The sequences of the 250 SNP markers clustered into 11 polymorphic loci were used as queries to search theAe.tauschiiSNP marker extended sequence database to identify the orthologous gene pairs betweenT.dicoccoides1BS andAe.tauschii1DS. Out of the 11 polymorphic loci, 7 loci,IWB54031,IWB19368, IWB28744,IWB31649,IWB56173,IWB57972,andIWB40316, identified 31 orthologous SNP marker extended sequence inAe.tauschii. Compararive genomics analysis revealed high levels collinearity betweenYrTZ2genomic region and its orthologous genomic regions inAe.tauschii1DS (Fig. 1;Appendix A).

    YrTZ2was mapped between SNP markersIWB19368andIWB31649, and co-segregated withIWB28744.IWB19368andIWB31649correspond to the extended sequences of markers AT1D0112 (distal) and AT1D0150(proximal), respectively, on chromosome 1DS that were anchored to the assembled BAC contigs ctg220 and ctg2295 in the physical map ofAe.tauschii. Therefore, the genomic region betweenIWB19368andIWB31649was orthologous to a 24.5-Mb containing 15 BAC contigs, ctg220, ctg4623,ctg1063, ctg5929, ctg3163, ctg699, ctg1065, ctg6879,ctg554, ctg2446, ctg393, ctg2286, ctg4912, ctg798, and ctg2295 on chromosome 1DS (Fig. 1).

    4. Discussion

    4.1. Comparison of YrTZ2 with other stripe rust resistance genes on chromosome 1BS

    Bread wheat is serving as an important global food crop all the time. The maximizing wheat production is becoming a big challenge for researchers, breeders, and growers.

    Wild relatives of wheat harbor rich genetic resource for wheat improvement (Schneideret al. 2008; Xie and Nevo 2008). Wild emmer is the ancestor of modern cultivated wheat and mainly distributed in central-eastern (Turkey,Iran and Iraq) and western areas (Syria, Lebanon, Jordan and Israel) of the Fertile Crescent (Avniet al. 2014). Wild emmer harbors abundant beneficial traits that can be introgressed into tetraploid and hexaploid wheat in modern wheat breeding programs. However, wild emmer has not been explored thoroughly and its potential in wheat breeding programs remains to be further characterized (Xie and Nevo 2008).

    Wild emmer accession TZ-2 was collected from Mount Hermon, Israel, and showed highly stripe rust resistance to manyPstraces (CYR29, CYR30, CYR31, CYR32, CYR33,and CYR34) in the greenhouse at the seedling stage and in field at the adult plant stage. In this study, genetic analysis showed that the stripe rust resistance to CYR34 in TZ-2 is controlled by a single dominant geneYrTZ2that was flanked byIWB19368andXgwm413in a 0.8-cM genetic interval on chromosome 1BS in deletion Bin 1BS10-0.50-0.84. Two stripe rust resistance genes,Yr15andYrH52, were derived from Israeli wild emmer wheat and located on chromosome 1BS.Yr15was identified from wild emmer accession G25 and mapped on chromosome 1BS using cytogenetic analysis (McIntoshet al. 1996) and molecular markers (Sunet al. 1997; Chaguéet al. 1999; Ramirez-Gonzalezet al.2015). Stripe rust resistance geneYrH52inT.dicoccoidesaccession Hermon 52 (Penget al. 1999, 2000) was linked to SSR markerXgwm413with a genetic distance of 1.3 cM(proximal).YrH52-linked polymorphic microsatellite markers analysis revealed thatYr15(Xgwm413/UBC212a-Yr15-Nor1) is different fromYrH52(Xgwm413/UBC212a/Nor1-YrH52-Xgwm273) on 1BS (Penget al. 2000). In the current study,YrTZ2(Xgwm413-YrTZ2-IWB19368) was located at similar portion of chromosome 1BS as that ofYr15andYrH52. Allelism tests need to be conducted in the future to clarify ifYrTZ2is allelic or closely linked toYr15orYrH52.

    In addition toYr15,YrH52, andYrTZ2, several other stripe rust resistance genes have been identified on chromosome 1BS.Yr10was identified from Turkish hexaploid wheat accession PI 178383 and mapped at the telomeric region of chromosome 1BS (Wanget al. 2002).Yr24was derived fromT.turgidumsubsp.durumaccession K733 (McIntosh and Lagudah 2000).Yr26was assumed to be from durum line γ80-1, a γ-radiated mutant (Maet al.2001).YrCH42was identified from Chinese wheat cultivar Chuanmai 42 (Liet al. 2006). Evidences showed thatYr24,Yr26, andYrCH42were the same gene (Maet al. 2001; Liet al. 2006; McIntoshet al. 2013) and are ineffective against the new virulentPstrace CYR34 in China (Hanet al. 2012).YrAlpwas derived from spring wheat cultivar Alpowa with race-specific all-stage resistance (Lin and Chen 2007).Chenget al. (2014) identified broad-spectrum all-stage stripe rust resistance genesYr64andYr65in different bins of chromosome 1BS from durum wheat accessions PI 331260 and PI 480016, respectively. Converting these co-segregating SNPs into KASP assay and validate in the Chinese breeding materials would benefit the pyramiding of these genes on chromosome 1BS and development of durable and broad-spectrum stripe rust resistance varieties in wheat breeding program.

    4.2. A SNP-based genetic linkage map of stripe rust resistance gene YrTZ2

    The characteristics of large genome size, hexaploid nature and numerous repetitive DNA sequences presented a formidable challenge to fine mapping and map-based cloning of wheat genes. The nature of biallelic, costeffective, and high-throughput genotyping makes SNPs more suitable for genetic studies. The advent of wheat 90K iSelect SNP genotyping assay increased the number of gene-based markers which was applied for wheat genetic linkage map construction, genome-wide association studies,and comparative genomics analysis (Cavanaghet al. 2013;Wanget al. 2014; Wuet al. 2015). In this study,YrTZ2was initially mapped into a 1.1-cM genetic interval between SSR markersXwmc230andXgwm413. SNP genotyping assay was applied to saturate the genomic region ofYrTZ2.Finally,YrTZ2was delimited within a 0.8-cM genetic interval between locusIWB19368and markerXgwm413, and cosegregated with locusIWB28744(consisting of 28 attaching SNP markers) that could be served as a starting point for chromosome landing and map-based cloning as well as marker-assisted selection (MAS) of theYrTZ2gene.

    4.3. Comparative genomics analyses of YrTZ2 with Aegilops tauschiii

    Comparative genomics analyses provided an effective way for wheat gene mapping. By applying comparative genomics analysis using genome sequences ofBrachypodium,rice or sorghum, high-density genetic linkage maps of vernalization (VRN) genes (Yanet al. 2003, 2004, 2006),pairing homologous 1 (Ph1) (Griffithset al. 2006), grain protein content-B1 (Gpc-B1) (Uauyet al. 2006), yellow rust resistance geneYr36(Fuet al. 2009), wax production geneW1(Luet al. 2015), and powdery mildew resistance genePm6(Qinet al. 2011),Pm41 (Wanget al. 2014),Ml3D232(Zhanget al. 2010),MlIW170(Liuet al. 2012; Lianget al.2015), andMlIW172(Ouyanget al. 2014) were constructed.The draft genome sequences ofT.aestivum cv. Chinese Spring,T.urartuaccession G1812, andAe.tauschiiaccession AL8/78 enriched the available sequence resource and accelerated the wheat genomics research(Brenchleyet al. 2012; Jiaet al. 2013; Linget al. 2013).The physical map ofAe.tauschii, anchored with 7185 SNP marker-extended sequences, provided an efficient tool for comparative genomics analyses among grass families,and marker development for fine mapping and map-based cloning of genes in wheat (Luoet al. 2013). Comparative genomics analysis indicated highly collinearity betweenYrTZ2genomic region (IWB19368–IWB31649) of 1BS and a 24.5-Mb orthologous genomic region spanning 15 BAC-contigs ofAe.tauschii1DS. The recently finished BAC-contig sequence ofAe.tauschiiand Chinese Spring IWGSC whole genome assembly ver. 1.0 would further contribute to fine mapping, map-based cloning, and MAS ofYrTZ2.

    5. Conclusion

    Stripe rust resistance geneYrTZ2, originated from wild emmer, was mapped in a 0.8-cM genetic interval between SNP markerIWB19368and SSR markerXgwm413, and co-segregated with 28 SNP markers on chromosome 1BS.

    Acknowledgements

    This work was financially supported by the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-ZDTP-024).

    Appendixassociated with this paper can be available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G,Mohler V, Lehmensiek A, Kuchel H, Hayden M J, Howes N,Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A. 2006.Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome.Theoretical and Applied Genetics,113, 1409–1420.

    Akhunov E, Nicolet C, Dvorak J. 2009. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay.Theoretical and Applied Genetics,119, 507–517.

    Avni R, Nave M, Eilam T, Sela H, Alekperov C, Peleg Z, Dvorak J, Korol A, Distelfeld A. 2014. Ultra-dense genetic map of durum wheat×wild emmer wheat developed using the 90K iSelect SNP genotyping assay.Molecular Breeding,34,1549–1562.

    Blanco A, Bellomo M P, Cenci A, De Giovanni C, D’ovidio R, Iacono E, Laddomada B, Pagnotta M A, Porceddu E, Sciancalepore A, Simeone R, Tanzarella O A. 1998.A genetic linkage map of durum wheat.Theoretical and Applied Genetics,97, 721–728.

    Brenchley R, Spannagl M, Pfeifer M, Barker G L, D’Amore R,Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S,et al. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing.Nature,491, 705–710.

    Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L,et al. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars.Proceedings of the National Academy of Sciences of the United States of America,110,8057–8062.

    Chagué V, Fahima T, Dahan A, Sun G L, Korol A B, Ronin Y I, Grama A, R?der M S, Nevo E. 1999. Isolation of microsatellite and RAPD markers flanking theYr15gene of wheat using NILs bulked segregant analysis.Genome,42, 1050–1056.

    Cheng P, Xu L S, Wang M N, See D R, Chen X M. 2014.Molecular mapping of genesYr64andYr65for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016.Theoretical and Applied Genetics,127, 2267–2277.

    Dvorak J, Terlizzi P, Zhang H B, Resta P. 1993. The evolution of polyploid wheats: Identification of the a genome donor species.Genome,36, 21–31.

    Dvorak J, Zhang H B. 1990. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes.Proceedings of the National Academy of Sciences of the United States of America,87, 9640–9644.

    Feldman M. 2001. The origin of cultivated wheat. In: Benjean A P, Angus J, eds.,The Wheat Book:A History of Wheat Breeding. Lavoisier Publishing, Paris. pp. 3–56.

    Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust.Science,323, 1357–1360.

    Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S,Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Le Paslier M C, McMullen M D, Montalent P, Rose M, Sch?n C C, Sun Q, Walter H, Martin O C, Falque M.2011. A large maize (Zea maysL.) SNP genotyping array:Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome.PLoS ONE,6, e28334.

    Griffiths S, Sharp R, Foote T N, Bertin I, Wanous M, Reader S,Colas I, Moore G. 2006. Molecular characterization ofPh1as a major chromosome pairing locus in polyploid wheat.Nature,439, 749–752.

    Han D J, Wang N, Jiang Z, Wang Q L, Wang X J, Kang Z S.2012. Characterization and inheritance of resistance to stripe rust in the wheat line Guinong 775.Hereditas,34,1607–1613.

    IWGSC (The International Wheat Genome Sequencing Consortium). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome.Science,345, 1251788.

    Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F,et al.2013.Aegilops tauschiidraft genome sequence reveals a gene repertoire for wheat adaptation.Nature,496, 91–95.

    Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P,Huerta-Espino J, McFadden H, Bossolini E, Selter L L,Keller B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat.Science,323, 1360–1363.

    Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. 2006. Molecular mapping of stripe rust resistance geneYrCH42in Chinese wheat cultivar Chuanmai 42 and its allelism withYr24andYr26.Theoretical and Applied Genetics,112, 1434–1440.

    Liang Y, Zhang D Y, Ouyang S, Xie J, Wu Q, Wang Z, Cui Y,Lu P, Zhang D, Liu Z J, Zhu J, Chen Y X, Zhang Y, Luo M C, Dvorak J, Huo N, Sun Q, Gu Y Q, Liu Z. 2015. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance geneMlIW170inTriticum dicoccoidesandAegilops tauschii.Theoretical and Applied Genetics,128, 1617–1629.

    Lin F, Chen X M. 2007. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-racespecific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa.Theoretical and Applied Genetics,114, 1277–1287.

    Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D,Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S,Wang B, Yu K, Liang Q, Yang W,et al. 2013. Draft genome of the wheat A-genome progenitorTriticum urartu.Nature,496, 87–90.

    Liu R H, Meng J L. 2003. MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data.Hereditas(Beijing),25, 317–321.

    Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang T, Sun Q, Liu Z. 2012. Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer(Triticum turgidumvar.dicoccoides) on chromosome 2BS.Theoretical and Applied Genetics,124, 1041–1049.

    Lu P, Qin J, Wang G, Wang L, Wang Z, Wu Q, Xie J, Liang Y, Wang Y, Zhang D, Sun Q, Liu Z. 2015. Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat.Theoretical and Applied Genetics,128, 1595–1603.

    Luo M C, Deal K R, Akhunov E D, Akhunova A R, Anderson O D, Anderson J A, Blake N, Clegg M T, Coleman-Derr D,Conley E J, Crossman C C, Dubcovsky J, Gill B S, Gu Y Q, Hadam J, Heo H Y, Huo N, Lazo G, Ma Y, Matthews D E,et al. 2009. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.Proceedings of the National Academy of Sciences of the United States of America,106, 15780–15785.

    Luo M C, Gu Y Q, You F M, Deal K R, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen C M, Zhang Y, McGuire P E, Pasternak S, Stein J C, Ware D, Kramer M, McCombie W R, Kianian S F, Martis M M,et al. 2013. A 4-gigabase physical map unlocks the structure and evolution of the complex genome ofAegilops tauschii, the wheat D-genome progenitor.Proceedings of the National Academy of Sciences of the United States of America,110, 7940–7945.

    Ma J X, Zhou R H, Dong Y S, Wang L F, Wang X M, Jia J Z.2001. Molecular mapping and detection of the yellow rust resistance geneYr26in wheat transferred fromTriticum turgidumL. using microsatellite markers.Euphytica,120,219–226.

    McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. 2014. Catalogue of gene symbols for wheat:2013–2014 supplement. [2016-06-07]. http://shigennigacjp/wheat/komugi/genes/symbolClassListjsp

    McIntosh R A, Dubcovksy J, Rogers W J, Morris C, Appels R, Xia X C. 2016. Catalogue of gene symbols for wheat:2015–2016 supplement. [2017-06-07]. http://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

    McIntosh R A, Lagudah E S. 2000. Cytogenetical studies in wheat. XVIII. GeneYr24for resistance to stripe rust.Plant Breeding,119, 81–83.

    McIntosh R A, Silk J, The T T. 1996. Cytogenetic studies in wheat. XVII. Monosomic analysis and linkage relationships of geneYr15for resistance to stripe rust.Euphytica,89,395–399.

    McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C,Appels R, Xia X C. 2013. Catalogue of gene symbols for wheat. In:12th International Wheat Genetics Symposium Yokohama. [2017-06-07]. http://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

    Michelmore R W, Paran I, Kesseli R V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations.Proceedings of the National Academy of Sciences of the United States of America,88, 9828–9832.

    Nachit M M, Elouafi I, Pagnotta M A, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut J M, Tanzarella O A, Porceddu E, Sorrells M E. 2001. Molecular linkage map for an intraspecific recombinant inbred population of durum wheat(Triticum turgidumL. var. durum).Theoretical and Applied Genetics,102, 177–186.

    Ouyang S, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo N,Liang Y, Xie J, Wang Z, Wu Q, Chen Y X, Lu P, Zhang D Y, Wang L, Sun H, Yang T, Keeble-Gagnere G, Appels R,Dole?el J,et al. 2014. Fine physical and genetic mapping of powdery mildew resistance geneMlIW172originating from wild emmer (Triticum dicoccoides).PLoS ONE,9, e100160.

    Peleg Z, Saranga Y, Suprunova T, Ronin Y, R?der M S, Kilian A, Korol A B, Fahima T. 2008. High-density genetic map of durum wheat×wild emmer wheat based on SSR and DArT markers.Theoretical and Applied Genetics,117, 103–115.

    Peng J H, Fahima T, R?der M S, Huang Q Y, Dahan A, Li Y C, Grama A, Nevo E. 2000. High-density molecular map of chromosome region harboring stripe-rust resistance genesYrH52andYr15derived from wild emmer wheat,Triticum dicoccoides.Genetica,109, 199–210.

    Peng J H, Fahima T, R?der M S, Li Y C, Dahan A, Grama A,Ronin Y I, Korol A B, Nevo E. 1999. Microsatellite tagging of stripe-rust resistance geneYrH52derived from wild emmer wheat,Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B.Theoretical and Applied Genetics,98, 862–872.

    Qin B, Cao A, Wang H, Chen T, You F M, Liu Y, Ji J, Liu D, Chen P, Wang X E. 2011. Collinearity-based marker mining for the fine mapping ofPm6, a powdery mildew resistance gene in wheat.Theoretical and Applied Genetics,123, 207–218.

    Ramirez-Gonzalez R H, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C. 2015. RNA-Seq bulked segregant analysis enables the identification of highresolution genetic markers for breeding in hexaploid wheat.Plant Biotechnology Journal,13, 613–624.

    Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger A E. 2012. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize.Proceedings of the National Academy of Sciences of the United States of America,109, 8872–8877.

    Schneider A, Molnár I, Molnár-Láng M. 2008. Utilisation ofAegilops(goatgrass) species to widen the genetic diversity of cultivated wheat.Euphytica,163, 1–19.

    Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivumL.).Theoretical and Applied Genetics,109,1105–1114.

    Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. 2005. Development and mapping of microsatellite (SSR) markers in wheat.Theoretical and Applied Genetics,110, 550–560.

    Sun G L, Fahima T, Korol A B, Turpeinen T, Grama A, Ronin Y I, Nevo E. 1997. Identification of molecular markers linked to theYr15stripe rust resistance gene of wheat originated in wild emmer wheatTriticum dicoccoides.Theoretical and Applied Genetics,95, 622–628.

    Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. 2006.A NAC gene regulating senescence improves grain protein,zinc, and iron content in wheat.Science,314, 1298–1301.

    de Vallavieille-Pope C, Ali S, Leconte M, Enjalbert J, Delos M,Rouzet J. 2012. Virulence dynamics and regional structuring ofPuccinia striiformisf. sp.triticiin France between 1984 and 2009.Plant Disease,96, 131–140.

    Wan A M, Chen X M, He Z H. 2007. Wheat stripe rust in China.Australian Journal of Agricultural Research,58, 605–619.

    Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G,Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. 2004. Wheat stripe rust epidemic and virulence ofPuccinia striiformisf. sp.triticiin China in 2002.Plant Disease,88, 896–904.

    Wang L F, Ma J X, Zhou R H, Wang X M, Jia J Z. 2002.Molecular tagging of the yellow rust resistance geneYr10in common wheat, P.I.178383 (Triticum aestivumL.).Euphytica,124, 71–73.

    Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E,Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, IWGSC (International Wheat Genome Sequencing Consortium), Lillemo M, Mather D, Appels R,et al. 2014.Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array.Plant Biotechnology Journal,12, 787–796.

    Wang Z, Cui Y, Chen Y, Zhang D, Liang Y, Zhang D, Wu Q, Xie J, Ouyang S, Li D, Huang Y, Lu P, Wang G, Yu M, Zhou S, Sun Q, Liu Z. 2014. Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance genePm41.Theoretical and Applied Genetics,127, 1741–1751.

    Wu Q H, Chen Y X, Zhou S H, Fu L, Chen J J, Xiao Y, Zhang D,Ouyang S H, Zhao X J, Cui Y, Zhang D Y, Liang Y, Wang Z Z, Xie J Z, Qin J X, Wang G X, Li D L, Huang Y L, Yu M H, Lu P,et al. 2015. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817×Beinong 6.PLoS ONE,10, e0118144.

    Xie W L, Nevo E. 2008. Wild emmer: Genetic resources, gene mapping and potential for wheat improvement.Euphytica,164, 603–614.

    Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. 2006. The wheat and barley vernalization geneVRN3is an orthologue ofFT.Proceedings of the National Academy of Sciences of the United States of America,103, 19581–19586.

    Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W,SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. 2004. The wheatVRN2gene is a flowering repressor down-regulated by vernalization.Science,303, 1640–1644.

    Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. 2003. Positional cloning of the wheat vernalization geneVRN1.Proceedings of the National Academy of Sciences of the United States of America,100, 6263–6268.

    Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z. 2010. Genetic and comparative genomics mapping reveals that a powdery mildew resistance geneMl3D232originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivumL.).Theoretical and Applied Genetics,121, 1613–1621.

    Zhang J Y, Xu S C, Zhang S S, Zhao W S, Zhang J X. 2001.Monosomic analysis of resistance to stripe rust for source wheat line Jinghe 8811.Acta Agronomica Sinica,27,273–277. (in Chinese)

    Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits inOryza sativa.Nature Communications,2, 467.

    美女福利国产在线| 高清视频免费观看一区二区| 寂寞人妻少妇视频99o| 亚洲欧洲国产日韩| 国产成人免费无遮挡视频| 99热6这里只有精品| 男人添女人高潮全过程视频| 国产免费福利视频在线观看| 久久久久视频综合| 午夜福利视频精品| 国产深夜福利视频在线观看| 免费大片黄手机在线观看| 男女免费视频国产| 又粗又硬又长又爽又黄的视频| 最后的刺客免费高清国语| 中文字幕免费在线视频6| 欧美老熟妇乱子伦牲交| 国产精品偷伦视频观看了| 亚洲av福利一区| 人妻人人澡人人爽人人| 精品亚洲成a人片在线观看| 黄色配什么色好看| 亚洲精品美女久久久久99蜜臀 | 久久精品久久久久久噜噜老黄| 69精品国产乱码久久久| 免费播放大片免费观看视频在线观看| 亚洲国产精品专区欧美| 少妇的丰满在线观看| 国产精品欧美亚洲77777| 观看美女的网站| 王馨瑶露胸无遮挡在线观看| 国产老妇伦熟女老妇高清| 一级黄片播放器| 欧美亚洲日本最大视频资源| 伦精品一区二区三区| 只有这里有精品99| 色视频在线一区二区三区| 三级国产精品片| 亚洲精华国产精华液的使用体验| 国产黄频视频在线观看| 日本爱情动作片www.在线观看| 韩国av在线不卡| 国产精品国产av在线观看| 久久久久久久久久久久大奶| 精品一区在线观看国产| 亚洲精品第二区| 18+在线观看网站| 天天躁夜夜躁狠狠久久av| 国产国拍精品亚洲av在线观看| 欧美 亚洲 国产 日韩一| 国产精品久久久av美女十八| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 高清欧美精品videossex| 国产色爽女视频免费观看| 国产有黄有色有爽视频| 又粗又硬又长又爽又黄的视频| 亚洲欧美精品自产自拍| 观看av在线不卡| 国产视频首页在线观看| 免费看av在线观看网站| 女性生殖器流出的白浆| 99久久中文字幕三级久久日本| 一区二区三区乱码不卡18| 黑人巨大精品欧美一区二区蜜桃 | 一区二区三区乱码不卡18| 新久久久久国产一级毛片| 波野结衣二区三区在线| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| tube8黄色片| 日本免费在线观看一区| 2022亚洲国产成人精品| 欧美精品国产亚洲| 午夜久久久在线观看| 天天操日日干夜夜撸| 女人久久www免费人成看片| 男的添女的下面高潮视频| 精品一区二区三区四区五区乱码 | 久热这里只有精品99| 在线天堂最新版资源| 97超碰精品成人国产| 人人妻人人澡人人爽人人夜夜| 免费黄频网站在线观看国产| 最近中文字幕2019免费版| 日本wwww免费看| 免费观看性生交大片5| 一边摸一边做爽爽视频免费| 80岁老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 日本午夜av视频| 欧美精品av麻豆av| 国产成人a∨麻豆精品| 丰满饥渴人妻一区二区三| 丁香六月天网| 欧美激情极品国产一区二区三区 | 亚洲精品国产色婷婷电影| 最近中文字幕高清免费大全6| 69精品国产乱码久久久| 97在线视频观看| 曰老女人黄片| 高清毛片免费看| 久久人人97超碰香蕉20202| 亚洲在久久综合| 日韩一本色道免费dvd| 国产精品人妻久久久影院| 日日摸夜夜添夜夜爱| 狂野欧美激情性bbbbbb| 久久久a久久爽久久v久久| 午夜视频国产福利| 香蕉丝袜av| 国产熟女午夜一区二区三区| 免费大片18禁| 亚洲欧美日韩另类电影网站| 日韩电影二区| 免费观看av网站的网址| 亚洲伊人久久精品综合| 国产av国产精品国产| 久久久精品区二区三区| 久久久欧美国产精品| 日本-黄色视频高清免费观看| 国产极品粉嫩免费观看在线| 大片电影免费在线观看免费| 热re99久久国产66热| 大香蕉97超碰在线| 国产精品久久久久久精品古装| 夜夜爽夜夜爽视频| 九草在线视频观看| 国产永久视频网站| 中文精品一卡2卡3卡4更新| 王馨瑶露胸无遮挡在线观看| 亚洲五月色婷婷综合| 99久久人妻综合| 亚洲精品美女久久av网站| 日本与韩国留学比较| 久久热在线av| 久久久久精品性色| 熟女人妻精品中文字幕| 亚洲av在线观看美女高潮| 久久这里有精品视频免费| 久久久久久久久久成人| 永久网站在线| 蜜臀久久99精品久久宅男| 久久精品久久久久久噜噜老黄| 少妇人妻久久综合中文| 爱豆传媒免费全集在线观看| 日本猛色少妇xxxxx猛交久久| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 亚洲少妇的诱惑av| 久久鲁丝午夜福利片| 免费高清在线观看日韩| 亚洲精品久久久久久婷婷小说| 爱豆传媒免费全集在线观看| 美女xxoo啪啪120秒动态图| 男人爽女人下面视频在线观看| 欧美成人精品欧美一级黄| 国产精品不卡视频一区二区| 男女边摸边吃奶| 亚洲欧洲精品一区二区精品久久久 | 精品一区二区免费观看| 国产极品天堂在线| av播播在线观看一区| 免费观看a级毛片全部| 日本午夜av视频| 美女主播在线视频| 国产麻豆69| 国产精品三级大全| av天堂久久9| 欧美日韩av久久| 久久久a久久爽久久v久久| 精品亚洲成a人片在线观看| 国产色爽女视频免费观看| 日韩电影二区| 国产精品人妻久久久久久| 亚洲成av片中文字幕在线观看 | 欧美亚洲日本最大视频资源| 伊人久久国产一区二区| 国产免费又黄又爽又色| 成人亚洲欧美一区二区av| 少妇被粗大猛烈的视频| 97在线视频观看| 下体分泌物呈黄色| 韩国精品一区二区三区 | 日韩大片免费观看网站| 国精品久久久久久国模美| 人妻系列 视频| 午夜视频国产福利| av网站免费在线观看视频| 99热网站在线观看| 黄色毛片三级朝国网站| 久久精品久久久久久久性| 伦精品一区二区三区| 制服丝袜香蕉在线| 日本午夜av视频| 国产激情久久老熟女| 亚洲综合精品二区| 久热久热在线精品观看| 欧美激情国产日韩精品一区| 精品国产露脸久久av麻豆| 久久99蜜桃精品久久| 国产麻豆69| 91精品国产国语对白视频| 亚洲成人一二三区av| 亚洲少妇的诱惑av| 日韩熟女老妇一区二区性免费视频| 日本免费在线观看一区| 国产 一区精品| 免费av中文字幕在线| 国产1区2区3区精品| 久久人人爽人人片av| 精品一品国产午夜福利视频| 久久久久国产网址| av.在线天堂| 成人国产麻豆网| 黑人猛操日本美女一级片| 性色avwww在线观看| 国产69精品久久久久777片| 国产成人精品一,二区| 80岁老熟妇乱子伦牲交| 伊人亚洲综合成人网| 日本色播在线视频| 久久ye,这里只有精品| 亚洲综合精品二区| 国产深夜福利视频在线观看| 伦理电影大哥的女人| 国产一区二区在线观看日韩| 搡老乐熟女国产| 国产成人aa在线观看| 极品少妇高潮喷水抽搐| 久久久久久久久久人人人人人人| 中文字幕人妻熟女乱码| 男女边吃奶边做爰视频| 女性被躁到高潮视频| av在线app专区| 成年人免费黄色播放视频| 国产精品成人在线| 亚洲国产精品一区三区| 欧美人与性动交α欧美软件 | 在线天堂最新版资源| 精品久久久久久电影网| av在线播放精品| 久久久精品区二区三区| av视频免费观看在线观看| 天天操日日干夜夜撸| 黑人高潮一二区| 免费日韩欧美在线观看| 乱码一卡2卡4卡精品| 亚洲图色成人| 亚洲国产精品999| 国产不卡av网站在线观看| 日本黄大片高清| 午夜福利网站1000一区二区三区| 制服丝袜香蕉在线| 亚洲伊人久久精品综合| 亚洲成人手机| 国产无遮挡羞羞视频在线观看| 国产xxxxx性猛交| 日韩熟女老妇一区二区性免费视频| 亚洲熟女精品中文字幕| 黄片播放在线免费| 99热6这里只有精品| 男女无遮挡免费网站观看| 一级毛片黄色毛片免费观看视频| 久久这里只有精品19| 一二三四中文在线观看免费高清| 国产69精品久久久久777片| 18+在线观看网站| 满18在线观看网站| 欧美bdsm另类| 黑人猛操日本美女一级片| 成人无遮挡网站| 久久久a久久爽久久v久久| 婷婷色麻豆天堂久久| 男女国产视频网站| 狂野欧美激情性bbbbbb| 99re6热这里在线精品视频| 国产极品粉嫩免费观看在线| 欧美另类一区| 春色校园在线视频观看| 国产成人欧美| 日韩电影二区| 插逼视频在线观看| 欧美日韩视频精品一区| 欧美少妇被猛烈插入视频| 婷婷色综合www| 午夜91福利影院| 少妇熟女欧美另类| 亚洲三级黄色毛片| 深夜精品福利| 国产欧美亚洲国产| 国产一区二区在线观看日韩| 黄色毛片三级朝国网站| 亚洲美女搞黄在线观看| 老司机影院毛片| 777米奇影视久久| 好男人视频免费观看在线| 丰满饥渴人妻一区二区三| 久久精品熟女亚洲av麻豆精品| 99国产综合亚洲精品| 国产一区二区三区av在线| 免费大片18禁| 欧美 日韩 精品 国产| 女人久久www免费人成看片| 成人手机av| 少妇的丰满在线观看| av国产精品久久久久影院| 最近2019中文字幕mv第一页| 久久这里有精品视频免费| 亚洲精品自拍成人| 制服人妻中文乱码| 性色av一级| 内地一区二区视频在线| 尾随美女入室| 22中文网久久字幕| 国产一区二区在线观看av| 丰满少妇做爰视频| 亚洲国产毛片av蜜桃av| 国产av精品麻豆| 男人操女人黄网站| 日本猛色少妇xxxxx猛交久久| 春色校园在线视频观看| 亚洲精品中文字幕在线视频| 国产伦理片在线播放av一区| 国产黄频视频在线观看| 国产成人精品婷婷| 日本欧美国产在线视频| 999精品在线视频| 久久鲁丝午夜福利片| 国产黄频视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 久久精品久久久久久噜噜老黄| 国产精品女同一区二区软件| 人妻系列 视频| 午夜视频国产福利| 男女免费视频国产| 国产精品国产三级国产av玫瑰| 久久午夜福利片| 熟妇人妻不卡中文字幕| 亚洲久久久国产精品| 免费人妻精品一区二区三区视频| 黑人猛操日本美女一级片| 最近2019中文字幕mv第一页| 美女中出高潮动态图| 国产白丝娇喘喷水9色精品| 久久99一区二区三区| 女性生殖器流出的白浆| 亚洲精品久久久久久婷婷小说| 高清av免费在线| 日韩一区二区三区影片| 国产一区二区激情短视频 | 99久久人妻综合| 精品国产露脸久久av麻豆| 啦啦啦在线观看免费高清www| 国产精品久久久久久精品电影小说| 免费少妇av软件| 99国产综合亚洲精品| 国产一区二区三区av在线| 又粗又硬又长又爽又黄的视频| 亚洲欧美中文字幕日韩二区| 日本91视频免费播放| 男女免费视频国产| 夫妻午夜视频| 国产黄色视频一区二区在线观看| 久久精品国产鲁丝片午夜精品| 亚洲久久久国产精品| 国产国语露脸激情在线看| av不卡在线播放| 赤兔流量卡办理| 国产熟女午夜一区二区三区| 亚洲 欧美一区二区三区| 亚洲国产精品国产精品| 人成视频在线观看免费观看| 黑人高潮一二区| 少妇熟女欧美另类| 亚洲精品美女久久久久99蜜臀 | 欧美精品一区二区免费开放| av国产久精品久网站免费入址| 成年av动漫网址| 免费人成在线观看视频色| 亚洲av中文av极速乱| 国产男人的电影天堂91| 最近2019中文字幕mv第一页| 在线观看人妻少妇| 国产精品久久久久久久电影| 欧美日韩精品成人综合77777| 久久国产亚洲av麻豆专区| 超碰97精品在线观看| 精品酒店卫生间| 一本色道久久久久久精品综合| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 少妇的逼好多水| 亚洲国产成人一精品久久久| 亚洲国产精品一区二区三区在线| 欧美日韩视频高清一区二区三区二| 在线亚洲精品国产二区图片欧美| 免费观看在线日韩| 黑人欧美特级aaaaaa片| 国产日韩欧美在线精品| freevideosex欧美| 精品少妇内射三级| 亚洲av综合色区一区| 免费看光身美女| 国产欧美日韩综合在线一区二区| 欧美日韩视频高清一区二区三区二| 久久女婷五月综合色啪小说| av免费在线看不卡| 五月天丁香电影| 精品视频人人做人人爽| 大香蕉久久成人网| 亚洲,一卡二卡三卡| 亚洲精品一区蜜桃| 午夜福利在线观看免费完整高清在| xxx大片免费视频| 少妇人妻精品综合一区二区| 不卡视频在线观看欧美| 99热网站在线观看| 国产精品一区www在线观看| 深夜精品福利| 亚洲综合色惰| 九色亚洲精品在线播放| 欧美激情国产日韩精品一区| 少妇人妻久久综合中文| 亚洲国产精品成人久久小说| 午夜免费男女啪啪视频观看| 欧美日韩视频精品一区| 在线 av 中文字幕| 伦理电影大哥的女人| 国产精品三级大全| 婷婷成人精品国产| 狠狠婷婷综合久久久久久88av| 高清av免费在线| 国产日韩欧美视频二区| 亚洲久久久国产精品| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| a级片在线免费高清观看视频| 精品国产乱码久久久久久小说| 黄色视频在线播放观看不卡| 少妇高潮的动态图| 搡女人真爽免费视频火全软件| 大香蕉97超碰在线| 宅男免费午夜| 亚洲国产av新网站| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 国产精品国产三级专区第一集| 高清不卡的av网站| 亚洲第一av免费看| 免费大片黄手机在线观看| 精品一区二区三区四区五区乱码 | 欧美日韩精品成人综合77777| 精品福利永久在线观看| 精品一区在线观看国产| 国产在线一区二区三区精| av网站免费在线观看视频| 亚洲,一卡二卡三卡| 免费少妇av软件| 欧美精品一区二区免费开放| 99久久精品国产国产毛片| 18禁国产床啪视频网站| 精品一区二区免费观看| 少妇 在线观看| 国产精品一区二区在线观看99| 一级a做视频免费观看| 国产欧美日韩一区二区三区在线| 午夜福利在线观看免费完整高清在| 亚洲国产精品一区三区| 男女午夜视频在线观看 | 亚洲综合精品二区| 国产精品人妻久久久久久| 少妇人妻久久综合中文| 欧美成人精品欧美一级黄| 国产免费福利视频在线观看| 亚洲色图综合在线观看| 久久国产精品男人的天堂亚洲 | 久久久久精品性色| 免费看光身美女| 久久久久视频综合| 青春草国产在线视频| 国产福利在线免费观看视频| 免费观看无遮挡的男女| 亚洲国产精品999| 久久久精品94久久精品| 免费黄频网站在线观看国产| 精品国产乱码久久久久久小说| 久久人人爽人人片av| 午夜福利网站1000一区二区三区| 亚洲国产最新在线播放| 女性生殖器流出的白浆| 国产精品女同一区二区软件| 日韩精品免费视频一区二区三区 | 欧美日韩视频高清一区二区三区二| 亚洲国产看品久久| 99香蕉大伊视频| 久久久久国产精品人妻一区二区| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性xxxx在线观看| 久久狼人影院| av免费在线看不卡| 男人舔女人的私密视频| 日本与韩国留学比较| 国产 精品1| 香蕉丝袜av| 免费观看无遮挡的男女| 久久亚洲国产成人精品v| 有码 亚洲区| 新久久久久国产一级毛片| 久久这里只有精品19| 晚上一个人看的免费电影| 如日韩欧美国产精品一区二区三区| 97精品久久久久久久久久精品| 高清黄色对白视频在线免费看| 免费观看无遮挡的男女| 欧美人与善性xxx| av一本久久久久| 日韩视频在线欧美| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产鲁丝片午夜精品| 99热国产这里只有精品6| 欧美丝袜亚洲另类| 只有这里有精品99| 韩国av在线不卡| 一级,二级,三级黄色视频| 97人妻天天添夜夜摸| 九九在线视频观看精品| 精品第一国产精品| 一级爰片在线观看| 搡女人真爽免费视频火全软件| 狂野欧美激情性bbbbbb| 99精国产麻豆久久婷婷| 美女xxoo啪啪120秒动态图| 一级爰片在线观看| 国产精品一国产av| 亚洲国产色片| 久久人妻熟女aⅴ| 国产1区2区3区精品| 91精品三级在线观看| 人人澡人人妻人| 赤兔流量卡办理| 精品久久国产蜜桃| 亚洲三级黄色毛片| 中文精品一卡2卡3卡4更新| 久久久国产欧美日韩av| 国产成人91sexporn| 久久人人97超碰香蕉20202| 欧美bdsm另类| 亚洲av综合色区一区| 国产精品无大码| 韩国高清视频一区二区三区| 最新的欧美精品一区二区| 亚洲人与动物交配视频| 日韩av不卡免费在线播放| 亚洲欧美一区二区三区国产| 最近最新中文字幕大全免费视频 | 国产片特级美女逼逼视频| 久久99一区二区三区| 中文字幕精品免费在线观看视频 | 91在线精品国自产拍蜜月| 99re6热这里在线精品视频| 久久热在线av| 午夜视频国产福利| 国产精品免费大片| 精品视频人人做人人爽| 国产国拍精品亚洲av在线观看| 午夜影院在线不卡| 久久久久视频综合| 国产精品麻豆人妻色哟哟久久| 一级毛片 在线播放| 日日啪夜夜爽| 少妇人妻久久综合中文| 极品少妇高潮喷水抽搐| 亚洲av成人精品一二三区| 国产精品蜜桃在线观看| av播播在线观看一区| 少妇熟女欧美另类| 久久99精品国语久久久| 另类精品久久| 免费在线观看黄色视频的| 久久精品国产亚洲av天美| 国产精品秋霞免费鲁丝片| 久久精品国产鲁丝片午夜精品| 亚洲av男天堂| 亚洲第一av免费看| 一边亲一边摸免费视频| 亚洲国产看品久久| 日韩av免费高清视频| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久亚洲中文字幕| 亚洲成国产人片在线观看| 男女无遮挡免费网站观看| 欧美精品av麻豆av| 欧美+日韩+精品| 亚洲精品av麻豆狂野| 久久女婷五月综合色啪小说| 国语对白做爰xxxⅹ性视频网站| 国产av码专区亚洲av| 高清欧美精品videossex| 日本-黄色视频高清免费观看| 亚洲av免费高清在线观看| 高清黄色对白视频在线免费看| 少妇人妻精品综合一区二区| 这个男人来自地球电影免费观看 | 国产欧美日韩综合在线一区二区| 精品99又大又爽又粗少妇毛片| 精品国产一区二区久久| 极品少妇高潮喷水抽搐| 又粗又硬又长又爽又黄的视频| 精品一品国产午夜福利视频| 国产精品一区二区在线不卡| 日韩,欧美,国产一区二区三区| 91精品国产国语对白视频| 亚洲av电影在线进入|