• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii

    2018-06-06 09:12:53WANGZhenzhongXIEJingzhongGUOLiZHANGDeyunLIGenqiaoFANGTilinCHENYongxingLIJunWUQiuhongLUPingLIMiaomiaoWUHaibinZHANGHuaizhiZHANGYanYANGWuyunLUOMingchengFahimaTzionLIUZhiyong
    Journal of Integrative Agriculture 2018年6期

    WANG Zhen-zhong , XIE Jing-zhong, GUO Li, ZHANG De-yun, LI Gen-qiao, FANG Ti-lin, CHEN Yong-xing, LI Jun, WU Qiu-hong, LU Ping, LI Miao-miao, WU Hai-bin, , ZHANG Huai-zhi, ZHANG Yan, YANG Wu-yun, LUO Ming-cheng, Fahima Tzion, LIU Zhi-yong

    1 China Rural Technology Development Center, Beijing 100045, P.R.China

    2 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R.China

    3 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R.China

    4 Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA

    5 Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu 610066, P.R.China

    6 China National Seed Group Co., Ltd., Beijing 100045, P.R.China

    7 Department of Plant Sciences, University of California, Davis, CA 95616, USA

    8 Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel

    1. Introduction

    Bread wheat (Triticum aestivumL.) is one of the top three most important food crops which affects worldwide food security. Stripe rust, caused byPuccinia striiformisf. sp.tritici(Pst), is one of the severest wheat diseases worldwide.Growing resistant cultivars is the most cost-effective and environmentally friendly method to control this disease.Up to date, more than 70 formally named and many other provisionally designated stripe rust resistance genes or quantitative trait loci (QTLs) have been reported (McIntoshet al. 2013, 2014, 2016). Out of these, two stripe rust resistance genes,Yr36andYr18, have been isolated through map-based cloning (Fuet al. 2009; Krattingeret al. 2009). However, stripe rust resistance genes tend to become ineffective due to the continuous evolution ofPstraces and monoculture of cultivars carrying same resistance gene in wide area (Wanet al. 2004, 2007; de Vallavieille-Popeet al. 2012). So there is a continued need for identification and utilization of diversified resistance genes from various wheat germplasm resources.

    Wild emmer (T.turgidumssp.dicoccoides, 2n=4x=28,AABB) is allotetraploid with A and B genomes, which was derived from a spontaneous hybridization of two diploid wild grassesT.urartu(2n=14, AA) and an as yet unidentifiedAegilopsspecies related toAe.speltoides(2n=14, SS)(Dvorak and Zhang 1990; Dvoraket al. 1993). Wild emmer is the progenitor of cultivated tetraploid durum wheat(T.turgidumssp.durum, AABB) and hexaploid bread wheat (T.aestivum, AABBDD) (Feldman 2001), harboring abundant genetic resources for wheat improvement,including tolerance to abiotic stresses (salt, drought and heat), resistance to biotic stresses (powdery mildew, rusts and Fusarium head blight), grain protein quality and quantity,and micronutrient concentrations (Zn, Fe, and Mn) (Xie and Nevo 2008). Artificial selection during wheat domestication resulted in an inadvertent loss of genes and QTL beneficial for improving wheat agronomic and economic traits.Although they could be introgressed into modern wheat cultivars through traditional breeding methods, molecular breeding provides an improved strategy which can greatly shorten the breeding period.

    Previously, molecular markers used for genetic linkage maps are mainly comprised of restriction fragment length polymorphisms (RFLPs) (Blancoet al. 1998), amplified fragment length polymorphisms (AFLPs) (Nachitet al.2001), simple sequence repeats (SSRs) (Somerset al.2004; Songet al. 2005), and diversity arrays technology(DArT) (Akbariet al. 2006; Peleget al. 2008). Recently,single nucleotide polymorphisms (SNPs) are increasingly applied for high-density genetic mapping, physical map construction, comparative genomics analysis, genome-wide association studies (GWAS), and genomic selection in rice(Oryza sativa) (Zhaoet al. 2011), maize (Zea mays) (Ganalet al. 2011; Riedelsheimeret al. 2012), and wheat (Akhunovet al. 2009; Luoet al. 2009; Cavanaghet al. 2013; Wanget al. 2014).

    Fine mapping and map-based cloning of resistance genes in wheat is a tedious process because of the allopolyploid (AABBDD), large genome size (17 gigabase),and numerous repeat DNA (90%). The availability of draft genome sequences and International Wheat Genome Sequencing Consortium (IWGSC) survey sequences ofT.aestivum cv. Chinese Spring,T.urartuaccession G1812,andAe.tauschiiaccession AL8/78 (Brenchleyet al. 2012;Jiaet al. 2013; Linget al. 2013; IWGSC 2014) facilitates gene mapping. In particular, the released high-resolution SNP genetic linkage map and physical map ofAe.tauschiiaccession AL8/78 provide closely wheat-related target for comparative genomics analyses (Luoet al. 2013).

    In present study, we report: (1) the identification and genetic mapping a near-immunity stripe rust resistance geneYrTZ2derived from wild emmer with microsatellite markers and 90K iSelect SNP genotyping assay, and (2) comparative genomics analysis of the genomic regions ofYrTZ2with the genetic linkage map and physical map ofAe.tauschii.

    2. Materials and methods

    2.1. Plant materials

    The wild emmer accession TZ-2 resistant to stripe rust was crossed with a highly susceptible durum wheat cultivar Langdon. A set of 200 F6:7recombinant inbred lines (RILs)advanced by single-seed descent approach and the parents Langdon and TZ-2 were evaluated for stripe rust resistance with the prevailingPstrace CYR34. A highly susceptible wheat variety Mingxian 169 was used as control.

    2.2. Stripe rust evaluations

    The parental lines Langdon and TZ-2, Langdon/TZ-2 F1,200 F6:7RILs, and the susceptible control Mingxian 169 were sowed in two-meter rows (each row with 30 seeds),which inoculated withPstrace CYR34 at the jointing stage in Chengdu of Sichuan Province, China. At 18–20 days post inoculation when the susceptible control Mingxian 169 had become severely infected, the infection type (IT) was recorded with a scale of 0–4, with 0 (immune reaction), 0;(hypersensitive reaction), 1 (highly resistant), 2 (moderately resistant), 3 (moderately susceptible), and 4 (highly susceptible), the values of 0–2 were rated as resistant, and those of 3–4 were rated as susceptible (Zhanget al. 2001).ITs were recorded after 10 days.

    2.3. Genomic DNA isolation and SSR marker analysis

    Genomic DNAs of the parental lines and the F6:7RILs population were extracted from seedings using the Plant Genomic DNA Kit (Tiangen Biotech, Co., Ltd., Beijing, China). DNA concentration was quantified using NanoPhotometer?P360(Implem GmbH, Munich, Germany) and normalized to 100 ng μL–1. Resistant and susceptible DNA bulks were prepared by mixing equal amounts of DNA from 10 homozygous resistant and 10 homozygous susceptible F6:7families, respectively, for bulked segregant analysis (Michelmoreet al. 1991). SSR markers (Xgwm,Xwmc,Xbarc,Xcfa, andXcfdseries, https://wheat.pw.usda.gov) were tested for polymorphism and the polymorphic SSR markers were subsequently genotyped in the RIL mapping populations.

    PCR reactions were carried out in a 10-μL reaction volume with the following conditions: one denaturation cycle at 94°C for 5 min, followed by 35 cycles at 94°C for 45 s,55–65°C (depending on specific primers) for 45 s, and 72°C for 1 min, followed by an extension step of 72°C for 10 min.Fragment analysis of PCR products were carried out on 8% non-denaturing polyacrylamide gels (39 acrylamide:1 bisacrylamide). After electrophoresis, the gels were silver stained and photographed.

    2.4. lnfinium 90K iSelect SNP genotyping

    To saturate the genomic region harboring the stripe rust resistance gene, the 200 F6:7RILs were genotyped using wheat 90K iSelect SNP genotyping assay platform at the Genome Center of University of California, Davis according to the manufacturer’s protocol. SNP allele clustering was conducted with two population-based detection algorithms:Density Based Spatial Clustering of Applications with Noise (DBSCAN) and Ordering Points to Identify the Clustering Structure (OPTICS) using the polyploid version of GenomeStudio software as described in Wanget al.(2014). Subsequently, the cluster matrix of polymorphic SNP markers was output from the polyploid version of GenomeStudio, and the genotypes of samples assigned in TZ-2 cluster were marked ‘1’, the genotypes of sample located in Langdon cluster were marked ‘2’, and the others were marked ‘0’.

    2.5. Genetic mapping of the stripe rust resistance gene

    The polymorphic SNP markers, SSR markers, and stripe rust resistance data were used for linkage analysis with the MultiPoint mapping software as described in Peleget al.(2008) and Luoet al. (2013). Co-segregating SNP markers were regarded as a polymorphic locus. The linkage map was constructed with the software Mapdraw V2.1 (Liu and Meng 2003).

    3. Results

    3.1. Inheritance of the stripe rust resistance gene in TZ-2

    The wild emmer accession TZ-2 and durum wheat cultivar Langdon showed nearly immune and highly susceptible reaction to stripe rust, respectively. The F1plants are highly resistant to CYR34, indicating the dominant nature of the stripe rust resistance in TZ-2. Of the 200 F6:7RILs, 103 were resistant (IT 0–2) and 97 were susceptible (3–4), which fits the expected 1:1 ratio (χ21:1=0.18,P<0.05), indicating that a single locus, provisionally designatedYrTZ2, in TZ-2 is responsible for the stripe rust resistance.

    3.2. ldentification of microsatellite markers linked to YrTZ2

    Initially, 194 SSR primers distributed randomly throughout the whole genome were screened for polymorphisms between the parents as well as the resistant and susceptible DNA bulks. SSR markers,Xwmc406,Xwmc230,Xgwm413,Xwmc128, andXcfd65revealed polymorphisms between the parents and linkage with the bulks. These markers were tested on the F6:7population and a linkage map for stripe rust disease resistance geneYrTZ2was constructed. The geneYrTZ2was located into a 1.1-cM genetic interval between SSR markersXwmc230andXgwm413(Fig. 1).

    3.3. Chromosome arm assignment and physical bin mapping

    Fig. 1 Genetic linkage map of the stripe rust resistance gene YrTZ2. Ae. tauschii, Aegilops tauschii.

    In order to locate theYrTZ2in the deletion bins on chromosome 1BS, Chinese Spring homoeologous group 1 nullisomic-tetrasomics, ditelosomics and deletion lines were used to assign the chromosome and physical bin location of theYrTZ2-linked SSR markers. Both SSR markersXgwm413andXwmc230were present in N1A-T1B, N1DT1A, Dt1BS, and 1BS-9, but absent in N1B-T1A, Dt1BL,and 1BS-10 (Fig. 2), indicating thatYrTZ2is located on chromosome 1BS bin 0.50–0.84 (Fig. 1).

    3.4. ldentification of SNP markers linked to YrTZ2

    Fig. 2 Amplification patterns of markers Xwmc230 (2A)and Xgwm413 (2B) in the parental lines TZ-2 and Langdon,Chinese Spring (CS) and its homoeologous group 1 nullisomictetrasomics, ditelosomics, and deletion lines.

    The 200 F6:7RILs were genotyped with 90K iSelect SNP genotyping assay. Based on the maximum likelihood estimation with LOD threshold of 3.0, linkage groups were constructed with cluster threshold (recombination rate) value of 0.1. After ordering, the matrix data of each linkage group were output and the markers with low confidence order were rechecked with clustering graph in polyploid version of GenomeStudio, especially makers with double crossover.Linkage analysis and recheck between the matrix data and GenomeStudio clustering graph were performed alternately to adjust or delete the markers with low confidence order.The jackknife resampling procedure was used to evaluate the reliability of the ordered linkage groups with the parameter setting: Jackknife value 90, number of iteration 10, time to Es 0.3, and control of monotony threshold of 1.0, which can remove the markers causing unstable neighborhoods in each linkage group. Then the cluster threshold (recombination rate) value was increased to merge different pairs of linkage groups that maybe belong to one chromosome. Finally, 15 625 polymorphic SNP markers were clustered into 14 linkage groups. Polymorphic SNP and SSR markers linked toYrTZ2were used to construct a high-resolution linkage map ofYrTZ2. Due to the limitation of population size, multiple co-segregating SNP markers were mapped at one locus and used as skeleton marker.All together, 11 polymorphic loci (consisting of 250 SNP markers),IWB33689,IWB10487,IWB54031,IWB21709,IWB19368,IWB28744,IWB31649,IWB56173,IWB57972,IWB46473, andIWB40316, were integrated into the genetic linkage map ofYrTZ2(Fig. 1).YrTZ2was finally delimited into a 0.8-cM interval between SNP locusIWB19368and SSR markerXgwm413, and co-segregated with SNP locusIWB28744(co-segregated with 28 SNP markers)(Fig. 1).

    3.5. ldentification of collinearity genomic region of YrTZ2 in Ae. tauschii and comparative genomics analysis

    The sequences of the 250 SNP markers clustered into 11 polymorphic loci were used as queries to search theAe.tauschiiSNP marker extended sequence database to identify the orthologous gene pairs betweenT.dicoccoides1BS andAe.tauschii1DS. Out of the 11 polymorphic loci, 7 loci,IWB54031,IWB19368, IWB28744,IWB31649,IWB56173,IWB57972,andIWB40316, identified 31 orthologous SNP marker extended sequence inAe.tauschii. Compararive genomics analysis revealed high levels collinearity betweenYrTZ2genomic region and its orthologous genomic regions inAe.tauschii1DS (Fig. 1;Appendix A).

    YrTZ2was mapped between SNP markersIWB19368andIWB31649, and co-segregated withIWB28744.IWB19368andIWB31649correspond to the extended sequences of markers AT1D0112 (distal) and AT1D0150(proximal), respectively, on chromosome 1DS that were anchored to the assembled BAC contigs ctg220 and ctg2295 in the physical map ofAe.tauschii. Therefore, the genomic region betweenIWB19368andIWB31649was orthologous to a 24.5-Mb containing 15 BAC contigs, ctg220, ctg4623,ctg1063, ctg5929, ctg3163, ctg699, ctg1065, ctg6879,ctg554, ctg2446, ctg393, ctg2286, ctg4912, ctg798, and ctg2295 on chromosome 1DS (Fig. 1).

    4. Discussion

    4.1. Comparison of YrTZ2 with other stripe rust resistance genes on chromosome 1BS

    Bread wheat is serving as an important global food crop all the time. The maximizing wheat production is becoming a big challenge for researchers, breeders, and growers.

    Wild relatives of wheat harbor rich genetic resource for wheat improvement (Schneideret al. 2008; Xie and Nevo 2008). Wild emmer is the ancestor of modern cultivated wheat and mainly distributed in central-eastern (Turkey,Iran and Iraq) and western areas (Syria, Lebanon, Jordan and Israel) of the Fertile Crescent (Avniet al. 2014). Wild emmer harbors abundant beneficial traits that can be introgressed into tetraploid and hexaploid wheat in modern wheat breeding programs. However, wild emmer has not been explored thoroughly and its potential in wheat breeding programs remains to be further characterized (Xie and Nevo 2008).

    Wild emmer accession TZ-2 was collected from Mount Hermon, Israel, and showed highly stripe rust resistance to manyPstraces (CYR29, CYR30, CYR31, CYR32, CYR33,and CYR34) in the greenhouse at the seedling stage and in field at the adult plant stage. In this study, genetic analysis showed that the stripe rust resistance to CYR34 in TZ-2 is controlled by a single dominant geneYrTZ2that was flanked byIWB19368andXgwm413in a 0.8-cM genetic interval on chromosome 1BS in deletion Bin 1BS10-0.50-0.84. Two stripe rust resistance genes,Yr15andYrH52, were derived from Israeli wild emmer wheat and located on chromosome 1BS.Yr15was identified from wild emmer accession G25 and mapped on chromosome 1BS using cytogenetic analysis (McIntoshet al. 1996) and molecular markers (Sunet al. 1997; Chaguéet al. 1999; Ramirez-Gonzalezet al.2015). Stripe rust resistance geneYrH52inT.dicoccoidesaccession Hermon 52 (Penget al. 1999, 2000) was linked to SSR markerXgwm413with a genetic distance of 1.3 cM(proximal).YrH52-linked polymorphic microsatellite markers analysis revealed thatYr15(Xgwm413/UBC212a-Yr15-Nor1) is different fromYrH52(Xgwm413/UBC212a/Nor1-YrH52-Xgwm273) on 1BS (Penget al. 2000). In the current study,YrTZ2(Xgwm413-YrTZ2-IWB19368) was located at similar portion of chromosome 1BS as that ofYr15andYrH52. Allelism tests need to be conducted in the future to clarify ifYrTZ2is allelic or closely linked toYr15orYrH52.

    In addition toYr15,YrH52, andYrTZ2, several other stripe rust resistance genes have been identified on chromosome 1BS.Yr10was identified from Turkish hexaploid wheat accession PI 178383 and mapped at the telomeric region of chromosome 1BS (Wanget al. 2002).Yr24was derived fromT.turgidumsubsp.durumaccession K733 (McIntosh and Lagudah 2000).Yr26was assumed to be from durum line γ80-1, a γ-radiated mutant (Maet al.2001).YrCH42was identified from Chinese wheat cultivar Chuanmai 42 (Liet al. 2006). Evidences showed thatYr24,Yr26, andYrCH42were the same gene (Maet al. 2001; Liet al. 2006; McIntoshet al. 2013) and are ineffective against the new virulentPstrace CYR34 in China (Hanet al. 2012).YrAlpwas derived from spring wheat cultivar Alpowa with race-specific all-stage resistance (Lin and Chen 2007).Chenget al. (2014) identified broad-spectrum all-stage stripe rust resistance genesYr64andYr65in different bins of chromosome 1BS from durum wheat accessions PI 331260 and PI 480016, respectively. Converting these co-segregating SNPs into KASP assay and validate in the Chinese breeding materials would benefit the pyramiding of these genes on chromosome 1BS and development of durable and broad-spectrum stripe rust resistance varieties in wheat breeding program.

    4.2. A SNP-based genetic linkage map of stripe rust resistance gene YrTZ2

    The characteristics of large genome size, hexaploid nature and numerous repetitive DNA sequences presented a formidable challenge to fine mapping and map-based cloning of wheat genes. The nature of biallelic, costeffective, and high-throughput genotyping makes SNPs more suitable for genetic studies. The advent of wheat 90K iSelect SNP genotyping assay increased the number of gene-based markers which was applied for wheat genetic linkage map construction, genome-wide association studies,and comparative genomics analysis (Cavanaghet al. 2013;Wanget al. 2014; Wuet al. 2015). In this study,YrTZ2was initially mapped into a 1.1-cM genetic interval between SSR markersXwmc230andXgwm413. SNP genotyping assay was applied to saturate the genomic region ofYrTZ2.Finally,YrTZ2was delimited within a 0.8-cM genetic interval between locusIWB19368and markerXgwm413, and cosegregated with locusIWB28744(consisting of 28 attaching SNP markers) that could be served as a starting point for chromosome landing and map-based cloning as well as marker-assisted selection (MAS) of theYrTZ2gene.

    4.3. Comparative genomics analyses of YrTZ2 with Aegilops tauschiii

    Comparative genomics analyses provided an effective way for wheat gene mapping. By applying comparative genomics analysis using genome sequences ofBrachypodium,rice or sorghum, high-density genetic linkage maps of vernalization (VRN) genes (Yanet al. 2003, 2004, 2006),pairing homologous 1 (Ph1) (Griffithset al. 2006), grain protein content-B1 (Gpc-B1) (Uauyet al. 2006), yellow rust resistance geneYr36(Fuet al. 2009), wax production geneW1(Luet al. 2015), and powdery mildew resistance genePm6(Qinet al. 2011),Pm41 (Wanget al. 2014),Ml3D232(Zhanget al. 2010),MlIW170(Liuet al. 2012; Lianget al.2015), andMlIW172(Ouyanget al. 2014) were constructed.The draft genome sequences ofT.aestivum cv. Chinese Spring,T.urartuaccession G1812, andAe.tauschiiaccession AL8/78 enriched the available sequence resource and accelerated the wheat genomics research(Brenchleyet al. 2012; Jiaet al. 2013; Linget al. 2013).The physical map ofAe.tauschii, anchored with 7185 SNP marker-extended sequences, provided an efficient tool for comparative genomics analyses among grass families,and marker development for fine mapping and map-based cloning of genes in wheat (Luoet al. 2013). Comparative genomics analysis indicated highly collinearity betweenYrTZ2genomic region (IWB19368–IWB31649) of 1BS and a 24.5-Mb orthologous genomic region spanning 15 BAC-contigs ofAe.tauschii1DS. The recently finished BAC-contig sequence ofAe.tauschiiand Chinese Spring IWGSC whole genome assembly ver. 1.0 would further contribute to fine mapping, map-based cloning, and MAS ofYrTZ2.

    5. Conclusion

    Stripe rust resistance geneYrTZ2, originated from wild emmer, was mapped in a 0.8-cM genetic interval between SNP markerIWB19368and SSR markerXgwm413, and co-segregated with 28 SNP markers on chromosome 1BS.

    Acknowledgements

    This work was financially supported by the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-ZDTP-024).

    Appendixassociated with this paper can be available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G,Mohler V, Lehmensiek A, Kuchel H, Hayden M J, Howes N,Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A. 2006.Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome.Theoretical and Applied Genetics,113, 1409–1420.

    Akhunov E, Nicolet C, Dvorak J. 2009. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay.Theoretical and Applied Genetics,119, 507–517.

    Avni R, Nave M, Eilam T, Sela H, Alekperov C, Peleg Z, Dvorak J, Korol A, Distelfeld A. 2014. Ultra-dense genetic map of durum wheat×wild emmer wheat developed using the 90K iSelect SNP genotyping assay.Molecular Breeding,34,1549–1562.

    Blanco A, Bellomo M P, Cenci A, De Giovanni C, D’ovidio R, Iacono E, Laddomada B, Pagnotta M A, Porceddu E, Sciancalepore A, Simeone R, Tanzarella O A. 1998.A genetic linkage map of durum wheat.Theoretical and Applied Genetics,97, 721–728.

    Brenchley R, Spannagl M, Pfeifer M, Barker G L, D’Amore R,Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S,et al. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing.Nature,491, 705–710.

    Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L,et al. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars.Proceedings of the National Academy of Sciences of the United States of America,110,8057–8062.

    Chagué V, Fahima T, Dahan A, Sun G L, Korol A B, Ronin Y I, Grama A, R?der M S, Nevo E. 1999. Isolation of microsatellite and RAPD markers flanking theYr15gene of wheat using NILs bulked segregant analysis.Genome,42, 1050–1056.

    Cheng P, Xu L S, Wang M N, See D R, Chen X M. 2014.Molecular mapping of genesYr64andYr65for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016.Theoretical and Applied Genetics,127, 2267–2277.

    Dvorak J, Terlizzi P, Zhang H B, Resta P. 1993. The evolution of polyploid wheats: Identification of the a genome donor species.Genome,36, 21–31.

    Dvorak J, Zhang H B. 1990. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes.Proceedings of the National Academy of Sciences of the United States of America,87, 9640–9644.

    Feldman M. 2001. The origin of cultivated wheat. In: Benjean A P, Angus J, eds.,The Wheat Book:A History of Wheat Breeding. Lavoisier Publishing, Paris. pp. 3–56.

    Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust.Science,323, 1357–1360.

    Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S,Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Le Paslier M C, McMullen M D, Montalent P, Rose M, Sch?n C C, Sun Q, Walter H, Martin O C, Falque M.2011. A large maize (Zea maysL.) SNP genotyping array:Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome.PLoS ONE,6, e28334.

    Griffiths S, Sharp R, Foote T N, Bertin I, Wanous M, Reader S,Colas I, Moore G. 2006. Molecular characterization ofPh1as a major chromosome pairing locus in polyploid wheat.Nature,439, 749–752.

    Han D J, Wang N, Jiang Z, Wang Q L, Wang X J, Kang Z S.2012. Characterization and inheritance of resistance to stripe rust in the wheat line Guinong 775.Hereditas,34,1607–1613.

    IWGSC (The International Wheat Genome Sequencing Consortium). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome.Science,345, 1251788.

    Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F,et al.2013.Aegilops tauschiidraft genome sequence reveals a gene repertoire for wheat adaptation.Nature,496, 91–95.

    Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P,Huerta-Espino J, McFadden H, Bossolini E, Selter L L,Keller B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat.Science,323, 1360–1363.

    Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. 2006. Molecular mapping of stripe rust resistance geneYrCH42in Chinese wheat cultivar Chuanmai 42 and its allelism withYr24andYr26.Theoretical and Applied Genetics,112, 1434–1440.

    Liang Y, Zhang D Y, Ouyang S, Xie J, Wu Q, Wang Z, Cui Y,Lu P, Zhang D, Liu Z J, Zhu J, Chen Y X, Zhang Y, Luo M C, Dvorak J, Huo N, Sun Q, Gu Y Q, Liu Z. 2015. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance geneMlIW170inTriticum dicoccoidesandAegilops tauschii.Theoretical and Applied Genetics,128, 1617–1629.

    Lin F, Chen X M. 2007. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-racespecific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa.Theoretical and Applied Genetics,114, 1277–1287.

    Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D,Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S,Wang B, Yu K, Liang Q, Yang W,et al. 2013. Draft genome of the wheat A-genome progenitorTriticum urartu.Nature,496, 87–90.

    Liu R H, Meng J L. 2003. MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data.Hereditas(Beijing),25, 317–321.

    Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang T, Sun Q, Liu Z. 2012. Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer(Triticum turgidumvar.dicoccoides) on chromosome 2BS.Theoretical and Applied Genetics,124, 1041–1049.

    Lu P, Qin J, Wang G, Wang L, Wang Z, Wu Q, Xie J, Liang Y, Wang Y, Zhang D, Sun Q, Liu Z. 2015. Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat.Theoretical and Applied Genetics,128, 1595–1603.

    Luo M C, Deal K R, Akhunov E D, Akhunova A R, Anderson O D, Anderson J A, Blake N, Clegg M T, Coleman-Derr D,Conley E J, Crossman C C, Dubcovsky J, Gill B S, Gu Y Q, Hadam J, Heo H Y, Huo N, Lazo G, Ma Y, Matthews D E,et al. 2009. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.Proceedings of the National Academy of Sciences of the United States of America,106, 15780–15785.

    Luo M C, Gu Y Q, You F M, Deal K R, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen C M, Zhang Y, McGuire P E, Pasternak S, Stein J C, Ware D, Kramer M, McCombie W R, Kianian S F, Martis M M,et al. 2013. A 4-gigabase physical map unlocks the structure and evolution of the complex genome ofAegilops tauschii, the wheat D-genome progenitor.Proceedings of the National Academy of Sciences of the United States of America,110, 7940–7945.

    Ma J X, Zhou R H, Dong Y S, Wang L F, Wang X M, Jia J Z.2001. Molecular mapping and detection of the yellow rust resistance geneYr26in wheat transferred fromTriticum turgidumL. using microsatellite markers.Euphytica,120,219–226.

    McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. 2014. Catalogue of gene symbols for wheat:2013–2014 supplement. [2016-06-07]. http://shigennigacjp/wheat/komugi/genes/symbolClassListjsp

    McIntosh R A, Dubcovksy J, Rogers W J, Morris C, Appels R, Xia X C. 2016. Catalogue of gene symbols for wheat:2015–2016 supplement. [2017-06-07]. http://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

    McIntosh R A, Lagudah E S. 2000. Cytogenetical studies in wheat. XVIII. GeneYr24for resistance to stripe rust.Plant Breeding,119, 81–83.

    McIntosh R A, Silk J, The T T. 1996. Cytogenetic studies in wheat. XVII. Monosomic analysis and linkage relationships of geneYr15for resistance to stripe rust.Euphytica,89,395–399.

    McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C,Appels R, Xia X C. 2013. Catalogue of gene symbols for wheat. In:12th International Wheat Genetics Symposium Yokohama. [2017-06-07]. http://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

    Michelmore R W, Paran I, Kesseli R V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations.Proceedings of the National Academy of Sciences of the United States of America,88, 9828–9832.

    Nachit M M, Elouafi I, Pagnotta M A, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut J M, Tanzarella O A, Porceddu E, Sorrells M E. 2001. Molecular linkage map for an intraspecific recombinant inbred population of durum wheat(Triticum turgidumL. var. durum).Theoretical and Applied Genetics,102, 177–186.

    Ouyang S, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo N,Liang Y, Xie J, Wang Z, Wu Q, Chen Y X, Lu P, Zhang D Y, Wang L, Sun H, Yang T, Keeble-Gagnere G, Appels R,Dole?el J,et al. 2014. Fine physical and genetic mapping of powdery mildew resistance geneMlIW172originating from wild emmer (Triticum dicoccoides).PLoS ONE,9, e100160.

    Peleg Z, Saranga Y, Suprunova T, Ronin Y, R?der M S, Kilian A, Korol A B, Fahima T. 2008. High-density genetic map of durum wheat×wild emmer wheat based on SSR and DArT markers.Theoretical and Applied Genetics,117, 103–115.

    Peng J H, Fahima T, R?der M S, Huang Q Y, Dahan A, Li Y C, Grama A, Nevo E. 2000. High-density molecular map of chromosome region harboring stripe-rust resistance genesYrH52andYr15derived from wild emmer wheat,Triticum dicoccoides.Genetica,109, 199–210.

    Peng J H, Fahima T, R?der M S, Li Y C, Dahan A, Grama A,Ronin Y I, Korol A B, Nevo E. 1999. Microsatellite tagging of stripe-rust resistance geneYrH52derived from wild emmer wheat,Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B.Theoretical and Applied Genetics,98, 862–872.

    Qin B, Cao A, Wang H, Chen T, You F M, Liu Y, Ji J, Liu D, Chen P, Wang X E. 2011. Collinearity-based marker mining for the fine mapping ofPm6, a powdery mildew resistance gene in wheat.Theoretical and Applied Genetics,123, 207–218.

    Ramirez-Gonzalez R H, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C. 2015. RNA-Seq bulked segregant analysis enables the identification of highresolution genetic markers for breeding in hexaploid wheat.Plant Biotechnology Journal,13, 613–624.

    Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger A E. 2012. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize.Proceedings of the National Academy of Sciences of the United States of America,109, 8872–8877.

    Schneider A, Molnár I, Molnár-Láng M. 2008. Utilisation ofAegilops(goatgrass) species to widen the genetic diversity of cultivated wheat.Euphytica,163, 1–19.

    Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivumL.).Theoretical and Applied Genetics,109,1105–1114.

    Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. 2005. Development and mapping of microsatellite (SSR) markers in wheat.Theoretical and Applied Genetics,110, 550–560.

    Sun G L, Fahima T, Korol A B, Turpeinen T, Grama A, Ronin Y I, Nevo E. 1997. Identification of molecular markers linked to theYr15stripe rust resistance gene of wheat originated in wild emmer wheatTriticum dicoccoides.Theoretical and Applied Genetics,95, 622–628.

    Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. 2006.A NAC gene regulating senescence improves grain protein,zinc, and iron content in wheat.Science,314, 1298–1301.

    de Vallavieille-Pope C, Ali S, Leconte M, Enjalbert J, Delos M,Rouzet J. 2012. Virulence dynamics and regional structuring ofPuccinia striiformisf. sp.triticiin France between 1984 and 2009.Plant Disease,96, 131–140.

    Wan A M, Chen X M, He Z H. 2007. Wheat stripe rust in China.Australian Journal of Agricultural Research,58, 605–619.

    Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G,Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. 2004. Wheat stripe rust epidemic and virulence ofPuccinia striiformisf. sp.triticiin China in 2002.Plant Disease,88, 896–904.

    Wang L F, Ma J X, Zhou R H, Wang X M, Jia J Z. 2002.Molecular tagging of the yellow rust resistance geneYr10in common wheat, P.I.178383 (Triticum aestivumL.).Euphytica,124, 71–73.

    Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E,Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, IWGSC (International Wheat Genome Sequencing Consortium), Lillemo M, Mather D, Appels R,et al. 2014.Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array.Plant Biotechnology Journal,12, 787–796.

    Wang Z, Cui Y, Chen Y, Zhang D, Liang Y, Zhang D, Wu Q, Xie J, Ouyang S, Li D, Huang Y, Lu P, Wang G, Yu M, Zhou S, Sun Q, Liu Z. 2014. Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance genePm41.Theoretical and Applied Genetics,127, 1741–1751.

    Wu Q H, Chen Y X, Zhou S H, Fu L, Chen J J, Xiao Y, Zhang D,Ouyang S H, Zhao X J, Cui Y, Zhang D Y, Liang Y, Wang Z Z, Xie J Z, Qin J X, Wang G X, Li D L, Huang Y L, Yu M H, Lu P,et al. 2015. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817×Beinong 6.PLoS ONE,10, e0118144.

    Xie W L, Nevo E. 2008. Wild emmer: Genetic resources, gene mapping and potential for wheat improvement.Euphytica,164, 603–614.

    Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. 2006. The wheat and barley vernalization geneVRN3is an orthologue ofFT.Proceedings of the National Academy of Sciences of the United States of America,103, 19581–19586.

    Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W,SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. 2004. The wheatVRN2gene is a flowering repressor down-regulated by vernalization.Science,303, 1640–1644.

    Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. 2003. Positional cloning of the wheat vernalization geneVRN1.Proceedings of the National Academy of Sciences of the United States of America,100, 6263–6268.

    Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z. 2010. Genetic and comparative genomics mapping reveals that a powdery mildew resistance geneMl3D232originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivumL.).Theoretical and Applied Genetics,121, 1613–1621.

    Zhang J Y, Xu S C, Zhang S S, Zhao W S, Zhang J X. 2001.Monosomic analysis of resistance to stripe rust for source wheat line Jinghe 8811.Acta Agronomica Sinica,27,273–277. (in Chinese)

    Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits inOryza sativa.Nature Communications,2, 467.

    av在线蜜桃| 免费看av在线观看网站| 一区二区三区免费毛片| 亚洲aⅴ乱码一区二区在线播放| 亚洲色图综合在线观看| 国产av国产精品国产| 99久久综合免费| 嫩草影院入口| 成人无遮挡网站| 国内精品宾馆在线| 国精品久久久久久国模美| 日本一二三区视频观看| 亚洲欧美日韩卡通动漫| 国产黄片视频在线免费观看| 成人漫画全彩无遮挡| 搡老乐熟女国产| 七月丁香在线播放| 一本—道久久a久久精品蜜桃钙片| 中文欧美无线码| 国产老妇伦熟女老妇高清| 一区二区三区四区激情视频| 在线观看国产h片| 一二三四中文在线观看免费高清| 丰满少妇做爰视频| 丝袜脚勾引网站| 成人二区视频| 免费黄频网站在线观看国产| 国产精品国产av在线观看| 伊人久久精品亚洲午夜| 精品熟女少妇av免费看| 国产女主播在线喷水免费视频网站| 久久久成人免费电影| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 超碰av人人做人人爽久久| 国产免费视频播放在线视频| 香蕉精品网在线| 99re6热这里在线精品视频| 只有这里有精品99| 国产综合精华液| 国产精品一二三区在线看| 久久久精品免费免费高清| 三级国产精品欧美在线观看| 国国产精品蜜臀av免费| 一级黄片播放器| 人人妻人人看人人澡| 91午夜精品亚洲一区二区三区| 七月丁香在线播放| 在线观看三级黄色| 成人国产av品久久久| 国产一区有黄有色的免费视频| 国产在线男女| 女性生殖器流出的白浆| 亚洲精品aⅴ在线观看| 黄片wwwwww| 一级a做视频免费观看| 久久国产亚洲av麻豆专区| 在线 av 中文字幕| 中文字幕制服av| 亚洲丝袜综合中文字幕| h日本视频在线播放| 国产极品天堂在线| 我的女老师完整版在线观看| 老司机影院成人| 成人综合一区亚洲| 亚洲真实伦在线观看| 欧美性感艳星| 中文字幕亚洲精品专区| 99视频精品全部免费 在线| 亚洲国产精品专区欧美| 97热精品久久久久久| 国产日韩欧美亚洲二区| 制服丝袜香蕉在线| 中国国产av一级| 国产视频内射| 亚洲久久久国产精品| 一区在线观看完整版| 视频中文字幕在线观看| 久久精品国产亚洲av天美| 欧美最新免费一区二区三区| 日韩大片免费观看网站| 亚洲人与动物交配视频| 免费看光身美女| 久久久久精品久久久久真实原创| 高清欧美精品videossex| 久久久久久久亚洲中文字幕| 午夜日本视频在线| 久久影院123| 成年免费大片在线观看| 看十八女毛片水多多多| 777米奇影视久久| 亚洲国产精品成人久久小说| 91精品一卡2卡3卡4卡| 在线观看免费日韩欧美大片 | 自拍欧美九色日韩亚洲蝌蚪91 | h视频一区二区三区| 国产乱人视频| 亚洲,一卡二卡三卡| 久久精品国产亚洲av天美| 大陆偷拍与自拍| 99久久中文字幕三级久久日本| 免费观看的影片在线观看| 亚洲三级黄色毛片| 亚洲精品亚洲一区二区| 18禁在线播放成人免费| 中文字幕人妻熟人妻熟丝袜美| 国产熟女欧美一区二区| 成人特级av手机在线观看| 久久99热6这里只有精品| 国产精品99久久久久久久久| 又大又黄又爽视频免费| 亚洲va在线va天堂va国产| 亚洲第一av免费看| 亚洲av国产av综合av卡| 在线观看美女被高潮喷水网站| 蜜桃亚洲精品一区二区三区| 欧美三级亚洲精品| 亚洲国产精品一区三区| 久久久久久人妻| 最近中文字幕2019免费版| 成人国产麻豆网| 亚洲美女黄色视频免费看| 精品99又大又爽又粗少妇毛片| 免费黄色在线免费观看| 女的被弄到高潮叫床怎么办| 亚洲图色成人| 久久av网站| 永久网站在线| 又大又黄又爽视频免费| 久久久久人妻精品一区果冻| 中文乱码字字幕精品一区二区三区| 亚洲精品国产av蜜桃| 亚洲精华国产精华液的使用体验| 在线看a的网站| 亚洲国产精品专区欧美| 免费观看性生交大片5| 秋霞在线观看毛片| 精品一区二区三卡| 国产熟女欧美一区二区| 国内揄拍国产精品人妻在线| 国产综合精华液| 欧美精品亚洲一区二区| 91精品国产九色| 亚洲一级一片aⅴ在线观看| 亚洲美女视频黄频| 欧美国产精品一级二级三级 | 高清不卡的av网站| 韩国高清视频一区二区三区| 久久久久久久国产电影| 日韩在线高清观看一区二区三区| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频| 男男h啪啪无遮挡| 欧美精品亚洲一区二区| 久久久久久久久久久丰满| 性色av一级| 老女人水多毛片| 午夜激情福利司机影院| 亚洲高清免费不卡视频| 性色av一级| 久久久精品免费免费高清| 成人亚洲精品一区在线观看 | 免费播放大片免费观看视频在线观看| 搡女人真爽免费视频火全软件| 日韩av免费高清视频| 欧美日韩国产mv在线观看视频 | 深夜a级毛片| 91久久精品国产一区二区三区| 在现免费观看毛片| 少妇精品久久久久久久| 波野结衣二区三区在线| 美女主播在线视频| 欧美一区二区亚洲| 一级黄片播放器| 日韩一区二区视频免费看| av网站免费在线观看视频| 在线观看美女被高潮喷水网站| 日日啪夜夜爽| 亚洲美女黄色视频免费看| 97热精品久久久久久| 亚洲av中文字字幕乱码综合| 色婷婷av一区二区三区视频| 色视频www国产| 久久久久久久久久人人人人人人| 丰满迷人的少妇在线观看| 99久久人妻综合| av网站免费在线观看视频| 日本爱情动作片www.在线观看| tube8黄色片| 国产黄色免费在线视频| 王馨瑶露胸无遮挡在线观看| 日韩成人伦理影院| xxx大片免费视频| 超碰97精品在线观看| 高清午夜精品一区二区三区| 国产精品女同一区二区软件| 精品一区二区三卡| av国产免费在线观看| 中文字幕精品免费在线观看视频 | 美女福利国产在线 | 色吧在线观看| 欧美成人精品欧美一级黄| 男女免费视频国产| 色视频在线一区二区三区| 国产色爽女视频免费观看| 久久99精品国语久久久| 亚洲国产色片| 欧美日韩综合久久久久久| 精品一区在线观看国产| 99热这里只有是精品50| 免费播放大片免费观看视频在线观看| 久久99热6这里只有精品| 国产熟女欧美一区二区| 国产成人免费无遮挡视频| 成人综合一区亚洲| 美女国产视频在线观看| 如何舔出高潮| 22中文网久久字幕| 久久国产亚洲av麻豆专区| 午夜免费观看性视频| 日韩精品有码人妻一区| 色视频www国产| 制服丝袜香蕉在线| 嫩草影院入口| 国产一区有黄有色的免费视频| av在线蜜桃| 超碰av人人做人人爽久久| 免费在线观看成人毛片| 在线天堂最新版资源| 天堂8中文在线网| 国产精品麻豆人妻色哟哟久久| 国产黄频视频在线观看| 熟女人妻精品中文字幕| 午夜福利在线观看免费完整高清在| 综合色丁香网| 国产精品人妻久久久久久| www.色视频.com| 亚洲欧美日韩另类电影网站 | 久久久久久久精品精品| 国产成人午夜福利电影在线观看| 午夜激情久久久久久久| 久久久久久久久久久丰满| 久久99精品国语久久久| 国产美女午夜福利| www.av在线官网国产| 精品国产三级普通话版| 大香蕉久久网| 亚洲成色77777| 亚洲熟女精品中文字幕| 黄色怎么调成土黄色| 性色av一级| 国产探花极品一区二区| 免费高清在线观看视频在线观看| 18禁在线播放成人免费| 91精品国产九色| 性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 亚洲综合精品二区| 日韩欧美一区视频在线观看 | 国产黄频视频在线观看| 日日摸夜夜添夜夜爱| 国产在线一区二区三区精| 在线天堂最新版资源| 一级a做视频免费观看| 国产视频内射| 伦理电影大哥的女人| 我的女老师完整版在线观看| 国产美女午夜福利| 99re6热这里在线精品视频| 少妇人妻 视频| 在线 av 中文字幕| 尾随美女入室| 黑人猛操日本美女一级片| 老女人水多毛片| 少妇被粗大猛烈的视频| 国产精品久久久久久精品古装| 午夜福利高清视频| 国内精品宾馆在线| 久久国产精品大桥未久av | 欧美成人精品欧美一级黄| 精品国产乱码久久久久久小说| 国产老妇伦熟女老妇高清| 免费av不卡在线播放| 青青草视频在线视频观看| 久久精品熟女亚洲av麻豆精品| 99热网站在线观看| 99热这里只有精品一区| 五月伊人婷婷丁香| 亚洲精品中文字幕在线视频 | 欧美bdsm另类| 免费看日本二区| freevideosex欧美| 久久久久国产精品人妻一区二区| 在线观看av片永久免费下载| 黄色视频在线播放观看不卡| 永久免费av网站大全| 午夜老司机福利剧场| 日韩,欧美,国产一区二区三区| 久久久精品94久久精品| 日韩一区二区视频免费看| 一本色道久久久久久精品综合| 狠狠精品人妻久久久久久综合| 2022亚洲国产成人精品| 午夜激情福利司机影院| 永久免费av网站大全| 亚洲精品国产av成人精品| 国产精品.久久久| 一级毛片久久久久久久久女| 欧美+日韩+精品| 成人特级av手机在线观看| 日韩视频在线欧美| 国产亚洲91精品色在线| 亚洲av成人精品一区久久| www.色视频.com| 欧美极品一区二区三区四区| 久久精品久久久久久噜噜老黄| 欧美丝袜亚洲另类| 国产av码专区亚洲av| 高清不卡的av网站| 大香蕉久久网| 啦啦啦中文免费视频观看日本| 久久亚洲国产成人精品v| 欧美国产精品一级二级三级 | 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品电影小说 | 高清午夜精品一区二区三区| 国产在视频线精品| 在线天堂最新版资源| 亚洲婷婷狠狠爱综合网| .国产精品久久| 国精品久久久久久国模美| 久久久久久久久久成人| 观看美女的网站| 国产成人午夜福利电影在线观看| 国产高清国产精品国产三级 | 欧美zozozo另类| 欧美激情国产日韩精品一区| 偷拍熟女少妇极品色| 国产在线男女| 舔av片在线| 国产成人午夜福利电影在线观看| 在线观看国产h片| av视频免费观看在线观看| 午夜激情久久久久久久| 在线观看免费视频网站a站| 自拍欧美九色日韩亚洲蝌蚪91 | 岛国毛片在线播放| av在线播放精品| 国产毛片在线视频| 成人影院久久| 麻豆成人av视频| 久久ye,这里只有精品| 久久婷婷青草| 色哟哟·www| 又黄又爽又刺激的免费视频.| 搡女人真爽免费视频火全软件| 极品教师在线视频| 最黄视频免费看| 男人狂女人下面高潮的视频| 亚洲欧美日韩无卡精品| 久久99热6这里只有精品| 亚洲精品亚洲一区二区| 日韩 亚洲 欧美在线| 男女免费视频国产| 成年人午夜在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 欧美成人一区二区免费高清观看| 最近中文字幕2019免费版| 卡戴珊不雅视频在线播放| 国产精品99久久久久久久久| 天美传媒精品一区二区| 亚洲欧美日韩东京热| 免费大片18禁| 欧美激情国产日韩精品一区| 日韩成人av中文字幕在线观看| 亚洲无线观看免费| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| av国产精品久久久久影院| 在线精品无人区一区二区三 | 黑丝袜美女国产一区| 久久 成人 亚洲| 亚洲中文av在线| 久久97久久精品| 国产一区二区三区综合在线观看 | 日韩电影二区| 国产精品三级大全| 小蜜桃在线观看免费完整版高清| 日韩强制内射视频| 国产成人一区二区在线| 国精品久久久久久国模美| 久久鲁丝午夜福利片| 久久99热这里只频精品6学生| 亚洲在久久综合| 国产综合精华液| 国产伦在线观看视频一区| 国产精品精品国产色婷婷| 久久毛片免费看一区二区三区| 一级毛片电影观看| 国产精品人妻久久久久久| 成人影院久久| 亚洲久久久国产精品| 国产黄片视频在线免费观看| 免费大片黄手机在线观看| av在线播放精品| 国产精品一区二区三区四区免费观看| 久久国产亚洲av麻豆专区| 女人久久www免费人成看片| 午夜福利视频精品| 精品国产一区二区三区久久久樱花 | 欧美丝袜亚洲另类| 亚洲精品日韩av片在线观看| 国产爽快片一区二区三区| 亚洲国产av新网站| av黄色大香蕉| 亚洲精品色激情综合| tube8黄色片| 一本色道久久久久久精品综合| 亚洲第一av免费看| 亚洲国产欧美人成| 丝袜喷水一区| 亚洲激情五月婷婷啪啪| 精品午夜福利在线看| 最新中文字幕久久久久| 午夜福利影视在线免费观看| 久热这里只有精品99| 美女主播在线视频| 丝袜脚勾引网站| 亚洲欧美日韩东京热| 国产男女内射视频| 老熟女久久久| 成人国产麻豆网| 欧美丝袜亚洲另类| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久| 少妇被粗大猛烈的视频| 亚洲精品第二区| 精品国产一区二区三区久久久樱花 | 亚洲熟女精品中文字幕| 国产黄色视频一区二区在线观看| 欧美区成人在线视频| 一级二级三级毛片免费看| 免费看不卡的av| 在线观看国产h片| 人妻一区二区av| 嫩草影院新地址| 黄色一级大片看看| videossex国产| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 免费人妻精品一区二区三区视频| 极品教师在线视频| 欧美 日韩 精品 国产| 欧美日韩在线观看h| 亚洲人成网站在线播| 十分钟在线观看高清视频www | 国产欧美日韩精品一区二区| 国产一级毛片在线| 汤姆久久久久久久影院中文字幕| 久久久久久久国产电影| 日韩三级伦理在线观看| 18+在线观看网站| 亚洲色图综合在线观看| 夜夜看夜夜爽夜夜摸| 最近的中文字幕免费完整| 少妇人妻一区二区三区视频| 亚洲精品一区蜜桃| 有码 亚洲区| 99re6热这里在线精品视频| 欧美xxxx黑人xx丫x性爽| 男女免费视频国产| 天堂俺去俺来也www色官网| 看非洲黑人一级黄片| 在线观看人妻少妇| 伦理电影免费视频| 性高湖久久久久久久久免费观看| 久久久久网色| 成人黄色视频免费在线看| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看| 午夜视频国产福利| 亚洲色图综合在线观看| 午夜福利在线观看免费完整高清在| 秋霞在线观看毛片| 婷婷色麻豆天堂久久| 欧美精品亚洲一区二区| 国产免费一级a男人的天堂| 亚洲综合精品二区| 久久久久久久久久久免费av| 久久人人爽av亚洲精品天堂 | 一级毛片电影观看| 免费人成在线观看视频色| 国产久久久一区二区三区| 黄片无遮挡物在线观看| 亚洲国产精品成人久久小说| 九草在线视频观看| 91午夜精品亚洲一区二区三区| 成人漫画全彩无遮挡| 美女中出高潮动态图| 久久人人爽人人爽人人片va| 日韩欧美一区视频在线观看 | 成人国产麻豆网| 国产v大片淫在线免费观看| 亚洲一区二区三区欧美精品| 丝袜脚勾引网站| 国产高潮美女av| 91精品伊人久久大香线蕉| 一个人看视频在线观看www免费| 免费观看性生交大片5| 成人高潮视频无遮挡免费网站| 久久青草综合色| 成人高潮视频无遮挡免费网站| av在线播放精品| 伦理电影大哥的女人| 欧美成人a在线观看| 欧美最新免费一区二区三区| 亚洲国产最新在线播放| 插逼视频在线观看| 日韩免费高清中文字幕av| 夜夜看夜夜爽夜夜摸| 亚洲av免费高清在线观看| 国产免费一级a男人的天堂| 简卡轻食公司| 亚洲精品亚洲一区二区| 韩国av在线不卡| 亚洲欧美日韩无卡精品| 成人二区视频| 美女国产视频在线观看| 尾随美女入室| 99久久精品国产国产毛片| 欧美日韩在线观看h| 亚洲av成人精品一区久久| 人人妻人人添人人爽欧美一区卜 | 久久6这里有精品| 欧美精品一区二区大全| 亚洲美女搞黄在线观看| 国产亚洲欧美精品永久| 少妇高潮的动态图| 国产 精品1| 少妇人妻 视频| 亚洲人成网站在线观看播放| 六月丁香七月| 日产精品乱码卡一卡2卡三| videos熟女内射| 欧美一区二区亚洲| 国产成人精品久久久久久| 如何舔出高潮| 男女边吃奶边做爰视频| 久久久久久久久久久免费av| 免费黄色在线免费观看| 少妇被粗大猛烈的视频| 中文字幕人妻熟人妻熟丝袜美| 五月玫瑰六月丁香| 国产亚洲欧美精品永久| 日本欧美国产在线视频| 人体艺术视频欧美日本| 欧美成人a在线观看| 人妻制服诱惑在线中文字幕| 久久国产亚洲av麻豆专区| 高清视频免费观看一区二区| 一级片'在线观看视频| 国产高清三级在线| xxx大片免费视频| 直男gayav资源| 亚洲精品日韩av片在线观看| 纯流量卡能插随身wifi吗| 亚洲综合色惰| 夜夜爽夜夜爽视频| 久久久久人妻精品一区果冻| 伊人久久精品亚洲午夜| 美女内射精品一级片tv| 男女免费视频国产| 少妇熟女欧美另类| 观看av在线不卡| 新久久久久国产一级毛片| 国产成人精品婷婷| 亚洲精华国产精华液的使用体验| 久久青草综合色| 成人亚洲欧美一区二区av| 中文乱码字字幕精品一区二区三区| 亚洲一区二区三区欧美精品| 嘟嘟电影网在线观看| 国产成人免费观看mmmm| 99久久精品一区二区三区| 日本av手机在线免费观看| 亚洲成人av在线免费| 日韩亚洲欧美综合| av免费观看日本| 久久婷婷青草| 日韩欧美精品免费久久| 欧美精品一区二区大全| 欧美丝袜亚洲另类| 欧美bdsm另类| 啦啦啦在线观看免费高清www| 亚洲美女搞黄在线观看| 色婷婷av一区二区三区视频| 国产免费又黄又爽又色| 色哟哟·www| 久久亚洲国产成人精品v| 少妇猛男粗大的猛烈进出视频| 免费观看av网站的网址| 在线免费观看不下载黄p国产| 3wmmmm亚洲av在线观看| av在线老鸭窝| 舔av片在线| 九九在线视频观看精品| 亚洲精品第二区| 亚洲国产精品专区欧美| 免费看不卡的av| 大片免费播放器 马上看| 在线看a的网站| 欧美3d第一页|