羅志福,吳宇軒,梁積新
(中國(guó)原子能科學(xué)研究院 同位素研究所,北京 102413)
99mTc(T1/2=6h)藥物是目前核醫(yī)學(xué)臨床應(yīng)用最廣的放射性藥物,全球每年有4000~4000萬(wàn)次核醫(yī)學(xué)顯像診斷使用99mTc標(biāo)記藥物[1],其用量約占臨床SPECT顯像藥物的70%以上。99mTc主要是由其母體核素99Mo(T1/2=66h)衰變得到。當(dāng)前,全球99Mo的需求量約9000Ci/W(預(yù)刻度時(shí)間為6d)[1],其主要由加拿大MDS Nordion、荷蘭Mallinckrodt-Covidien、比利時(shí)IRE(Institut National des Raioéléments)、南非NTP(Nuclear Technology Products)、澳大利亞ANSTO(the Australian Nuclear Science and Technology Organisation)等五個(gè)全球性供應(yīng)商供應(yīng)[2]。99Mo是反應(yīng)堆生產(chǎn)的最重要醫(yī)用同位素,全球生產(chǎn)99Mo的反應(yīng)堆列于表1。這些國(guó)家的反應(yīng)堆運(yùn)行時(shí)間大多超過(guò)了40年,面臨停堆檢修、關(guān)停或退役等問(wèn)題。最近十幾年里,因安全問(wèn)題或技術(shù)問(wèn)題發(fā)生了一系列停堆事件[5],導(dǎo)致了放射性同位素尤其是裂變99Mo的供應(yīng)短缺。
研發(fā)99Mo制備和生產(chǎn)的新方法和技術(shù)是解決99Mo短缺問(wèn)題的有效途徑之一。美國(guó)提出利用均勻性水溶液堆以UO2(NO3)2溶液為核燃料,大規(guī)模生產(chǎn)醫(yī)用放射性核素99Mo,并開(kāi)展了99Mo提取的研究工作[6-8]。俄羅斯已建成的功率為20kW、以UO2SO4溶液為核燃料的均勻性水溶液堆(ARGUS),研究99Mo等核素的生產(chǎn)工藝[9-11]。作為同位素供應(yīng)的替代來(lái)源,美國(guó)和加拿大積極研究利用加速器生產(chǎn)99Mo。近年來(lái),99Mo制備和生產(chǎn)方法取得了較大的進(jìn)展,本文擬對(duì)目前用于99Mo的制備方法以及已取得的進(jìn)展進(jìn)行綜述,并對(duì)進(jìn)一步的研究工作提出建議。
表1 全球生產(chǎn)裂變99Mo的反應(yīng)堆[1,3-4]Table 1 Reactors for the production of fission 99Mo in global[1,3-4]
目前,用于99Mo的制備方法主要有反應(yīng)堆生產(chǎn)99Mo、加速器制備99Mo和中子發(fā)生器制備99Mo等。
反應(yīng)堆生產(chǎn)99Mo是99Mo的主要來(lái)源。目前,現(xiàn)有99Mo生產(chǎn)堆大多采用高濃鈾(highly enriched uranium,HEU,235U富集度高于90%)或低濃鈾(low enriched uranium,LEU,235U富集度低于20%)靶件。99Mo的裂變產(chǎn)額為6.06%,235U裂變還生成鉬的幾種穩(wěn)定同位素95Mo、97Mo、98Mo、100Mo,雖然裂變法生產(chǎn)的99Mo受到穩(wěn)定同位素的稀釋,但是由于總穩(wěn)定鉬的絕對(duì)量很少,99Mo的比活度約為370 TBq/g[12]。因此,可以從235U的裂變產(chǎn)物中大量提取高比活度99Mo。
1.1.1熱中子反應(yīng)堆生產(chǎn)99Mo
1) HEU生產(chǎn)裂變99Mo
(1) Cintichem流程
利用HEU生產(chǎn)裂變99Mo的第一個(gè)化學(xué)分離流程是由布魯克海文實(shí)驗(yàn)室(Brookhaven National Laboratory,NBL)提出的,采用豐度為93%的鈾鋁合金靶件,靶件輻照后用6mol/L HNO3溶解,采用氧化鋁色層法分離99Mo[13]。美國(guó)聯(lián)合碳化合物公司(the Union Carbide Corporation)對(duì)該流程進(jìn)行了改進(jìn)[14-16],豐度為93%的二氧化鈾靶件在中子通量為3×1013n·cm-2·s-1時(shí)輻照100 h,隨即用溶于H2SO4和HNO3混合液溶解靶件,再用α-安息香肟沉淀99Mo。該沉淀用NaOH溶解后,再經(jīng)涂銀活性炭、水合氧化鋯、活性炭色層柱純化得到99Mo產(chǎn)品,此工藝流程示于圖1。該流程被美國(guó)Cintichem公司在1970—1989年期間用來(lái)生產(chǎn)裂變99Mo料液,因而亦被稱為Cintichem流程。印度尼西亞BATAN(the Badan Tenaga Nuklir Nasional Institute)仍然在用Cintichem流程生產(chǎn)工藝生產(chǎn)裂變99Mo[17]。加拿大MDS Nordion使用過(guò)二氧化鈾靶件(MAPLE反應(yīng)堆,于2008年5月停止生產(chǎn))和鈾鋁合金靶(NRU反應(yīng)堆,于2018年3月底關(guān)停)[18],采用酸溶法,再通過(guò)氧化鋁色層法分離99Mo[19]。
圖1 Cintichem流程示意圖Fig.1 Schematic diagram of the Cintichem process
(2) 比利時(shí)IRE和中國(guó)CIAE裂變99Mo生產(chǎn)工藝
比利時(shí)IRE利用BR2反應(yīng)堆,使用235U豐度為93%的HEU鈾鋁合金靶件,靶件在中子通量為2.5×1014n·cm-2·s-1時(shí)輻照150h,然后用3mol/L NaOH和4mol/L NaNO3溶解靶件,過(guò)濾后溶液用HNO3酸化,再經(jīng)氧化鋁色層柱、陰離子交換柱和活性炭色層柱分離純化99Mo[20-21]。中國(guó)原子能科學(xué)研究院(China Institute of Atomic Energy,CIAE)于20世紀(jì)70年代末開(kāi)始裂變99Mo生產(chǎn)工藝研究,相繼以235U豐度為10%的UO2彌散體、U-Mg彌散體和235U豐度為0.39%的貧鈾U-Al合金為靶材。在20世紀(jì)90年代初,CIAE利用10MW的重水堆和3.5MW的泳池堆建立了以235U豐度為93%的HEU鈾鋁合金為靶材的百居里級(jí)裂變99Mo生產(chǎn)線,99Mo分離純化流程與IRE所用類似(圖2),批產(chǎn)量達(dá)到100~200 Ci(EOP)[22-24]。
圖2 中國(guó)CIAE裂變99Mo生產(chǎn)工藝流程[24]Fig.2 Process for the production of fission 99Mo at CIAE in China[24]
(3) 南非NTP、阿根廷INVAP、澳大利亞ANSTO裂變99Mo生產(chǎn)工藝
卡爾斯魯厄理工學(xué)院(Karlsruher Institut für Technologie,KIT)Sameh等[25-26]使用235U豐度為90%~93%的HEU鈾鋁合金靶件,在中子通量為5×1013~1×1014n·cm-2·s-1時(shí)輻照5~10d,輻照后靶件用3~6mol/L NaOH或KOH溶解,過(guò)濾后經(jīng)AG1-×8陰離子交換柱、Chelex100螯合樹(shù)脂交換柱和氧化鋁色層柱分離純化99Mo,工藝流程示于圖3。該流程被南非NTP、阿根廷CNEA(the Argentine Comision Nacional de Energía Atómic)、澳大利亞ANSTO等99Mo供應(yīng)商使用生產(chǎn)裂變99Mo[17]。
圖3 南非NTP、阿根廷INVAP、澳大利亞ANSTO裂變99Mo生產(chǎn)工藝流程Fig.3 Process for the production of fission 99Mo at NTP in South Africa,INVAP in Argentina and ANSTO in Australia
醫(yī)用同位素反應(yīng)堆(medical isotope pro-duction reactor,MIPR)是均勻性水溶液反應(yīng)堆,以硝酸鈾?;蛄蛩徕欟槿剂希紵?35U的富集度為20%~90%[6-11,27]。美國(guó)能源部和俄羅斯Kurchatov Institute合作,利用俄羅斯20 kW的水溶液堆開(kāi)展了99Mo、89Sr、131I等同位素的提取研究。俄羅斯Ponomarev-Stepnoy等[28]使用固體吸附劑(成分為順丁烯酸酐多聚物和α-安息香肟)從均相水溶液堆的硫酸鈾酰燃料中提取裂變99Mo,該吸附劑對(duì)99Mo的吸附率高于90%,而對(duì)其他裂變產(chǎn)物的吸附率低于2%、對(duì)鈾的吸附率低于0.01%。Betenekov等[29]以二氧化鈦水合物、水合氧化鋯和鈾為原料制備出一種無(wú)機(jī)離子吸附劑從硫酸鈾酰燃料中提取裂變99Mo。溶液堆液體燃料經(jīng)吸附劑層后,依次用0.1mol/L H2SO4、1mol/L HNO3淋洗吸附劑除去裂變產(chǎn)物雜質(zhì)和鈾,再用3~5mol/L氨水解吸99Mo。當(dāng)吸附劑中氧化鋯的摩爾比為40%時(shí),99Mo的吸附率可達(dá)到80%。中國(guó)核動(dòng)力研究院進(jìn)行了利用均相溶液堆通過(guò)HEU技術(shù)生產(chǎn)裂變99Mo的可行性研究,設(shè)計(jì)了功率為200 kW、以235UO2(NO3)2為燃料的MIPR,運(yùn)行24 h可生產(chǎn)2 000 Ci99Mo[30],其工程建設(shè)和運(yùn)行尚未獲得批準(zhǔn),未形成生產(chǎn)能力。
現(xiàn)有成熟的HEU生產(chǎn)裂變99Mo工藝依據(jù)靶件形式、靶件溶解方式和99Mo分離方法的差異各有優(yōu)缺,其對(duì)比情況列于表2。
表2 HEU生產(chǎn)裂變99Mo工藝對(duì)比Table 2 Comparison of process for the production of fission 99Mo by LEU
2) LEU生產(chǎn)裂變99Mo
與HEU生產(chǎn)裂變99Mo相比,使用LEU進(jìn)行裂變同等量的99Mo生產(chǎn)有以下不利因素[31]:①235U濃度由90%降到20%,靶件體積增大5~6倍;② 分離過(guò)程中液體操作量增大5倍;③ 镎和钚的量增大20倍;④ 放射性廢液體積增加。
(1) 鈾鋁彌散體靶件
在20世紀(jì)60年代,德國(guó)CINR(the Central Institute for Nuclear Research)采用天然鈾靶件,在中子通量為7.5×1013n·cm-2·s-1時(shí)輻照100 h,輻照結(jié)束后用HCl溶解靶件,采用氧化鋁色層法分離99Mo。此工藝被稱為L(zhǎng)ITEMOL流程。1964—1990年期間,該流程用于小規(guī)模裂變99Mo的提取來(lái)供應(yīng)歐洲99Mo/99mTc發(fā)生器的生產(chǎn)[17,32]。為實(shí)現(xiàn)LEU大規(guī)模生產(chǎn)裂變99Mo,德國(guó)KIT提出了KSA/KSS流程[33],KSA流程中采用UAlx彌散體低濃鈾靶件,KSS流程中采用U3Si2-Al低濃鈾靶件,靶件輻照后分別用6mol/L NaOH、6mol/L KOH溶解,靶件溶解液用裝載氧化銀的過(guò)濾器過(guò)濾,依次用AG1-×8陰離子交換柱、MoO2色層柱、Chelex 100螯合樹(shù)脂交換柱、AG1-×4陰離子交換柱分離純化99Mo,工藝流程示于圖4。Covidien公司用該工藝實(shí)現(xiàn)HEU轉(zhuǎn)化為L(zhǎng)EU生產(chǎn)裂變99Mo。
圖4 KSA/KSS流程示意圖Fig.4 Schematic diagram of the KSA/KSS process
(2) 鈾箔靶件
在美國(guó)能源部的支持下,阿貢國(guó)家實(shí)驗(yàn)室(Argonne National Laboratory,ANL)進(jìn)行了大量的LEU研究工作,研發(fā)了LEU金屬鈾箔靶件,采用修正的Cintichem工藝流程進(jìn)行99Mo的分離純化研究,給予印度尼西亞BATAN、阿根廷CNEA、澳大利亞ANSTO等大量的技術(shù)支持,現(xiàn)已成功進(jìn)行金屬鈾箔靶件堆照試驗(yàn)和99Mo小規(guī)模提取試驗(yàn)[34]。輻照過(guò)的U-Ni型金屬鈾箔采用HNO3溶解,用α-安息香肟沉淀法分離99Mo、活性炭/涂銀活性炭色層法和活性炭/涂銀活性炭/水合氧化鋯色層法純化99Mo,即改進(jìn)的Cintichem流程[17,35-36]。
巴基斯坦核科學(xué)與技術(shù)研究所(the Pakistan Institute of Nuclear Science and Technology,PINSTECH)將厚度為125μm的金屬鈾箔(235U豐度為19.99%)用15μm厚的鎳箔包裹制成U-Ni型金屬鈾箔靶件,靶件在PARR-1反應(yīng)堆(中子通量為1.33×1014n·cm-2·s-1)中輻照12 h后,用HNO3溶解靶件。加入AgNO3除碘,再加入KMnO4將Mo氧化成Mo6+后與α-安息香肟生成沉淀。該沉淀用NaOH溶解后,再經(jīng)涂銀活性炭/活性炭色層柱、涂銀活性炭/水合氧化鋯/活性炭色層柱純化得到99Mo產(chǎn)品[37],工藝流程示于圖5。而輻照過(guò)的U-Al型金屬鈾箔則采用NaOH溶解,再用陰離子交換柱、Chelex-100螯合樹(shù)脂交換柱分離純化99Mo[38]。
圖5 改進(jìn)的Cintichem流程Fig.5 Schematic diagram of the modified-Cintichem process
(3) 鈾鋁合金靶件
印度Rao等[39]采用天然鈾鋁合金靶件,在DHRUVA反應(yīng)堆(中子通量為5×1013n·cm-2·s-1)中輻照7d后,靶件用6mol/L NaOH溶解,靶件溶解液調(diào)酸至pH為8~9后過(guò)濾除去Al(OH)3,濾液蒸干加入濃HNO3和NaBiO3除去103Ru,用AgNO3除碘,α-安息香肟沉淀法99Mo。該沉淀用0.4mol/L NaOH溶解后,再經(jīng)涂銀活性炭色層柱、Amberlyst A26陰離子交換柱純化99Mo。
在LEU-裂變99Mo供應(yīng)商中,澳大利亞ANSTO、南非NTP采用法國(guó)AREVA/CERCA提供的鈾鋁彌散體靶件,阿根廷CNEA采用自主研制的鈾鋁彌散體靶件,但其LEU裂變99Mo生產(chǎn)工藝均尚未公開(kāi)報(bào)道。中國(guó)CIAE正在進(jìn)行LEU鈾箔靶件生產(chǎn)千居里級(jí)裂變99Mo的工藝研究[40]。
3) 反應(yīng)堆輻照天然Mo或富集98Mo生產(chǎn)99Mo
利用反應(yīng)堆輻照天然Mo或富集98Mo靶,通過(guò)98Mo(n,γ)99Mo核反應(yīng)生產(chǎn)99Mo。與235U裂變生產(chǎn)99Mo相比,天然Mo或富集98Mo靶輻照后靶件溶解容易,且99Mo的分離純化簡(jiǎn)單。但由于該反應(yīng)熱中子俘獲截面為0.13 b,比235U(n,f)99Mo反應(yīng)截面(35 b)低很多,使用該方法得到的99Mo產(chǎn)量低,且由于鉬載體存在,99Mo比活度低(1~2 Ci/g)[15]。為提高99Mo的比活度,天然Mo或富集98Mo靶需長(zhǎng)時(shí)間輻照以達(dá)到99Mo的最大產(chǎn)額及比活度。中子通量為1×1014n·cm-2·s-1時(shí),天然Mo或富集為90%的98Mo靶件輻照8d,產(chǎn)生99Mo的比活度分別為1.6 Ci/g(EOB)、6 Ci/g(EOB)[41]。該法生產(chǎn)的99Mo比活度較低,發(fā)生器體積大、淋洗體積大,淋洗液的比活度低,其使用受到限制,不適宜大規(guī)模生產(chǎn)。
1.1.2快中子反應(yīng)堆生產(chǎn)99Mo
Chuang等[42]測(cè)定了238U(純度為99.96%)的快中子裂變產(chǎn)額,其中99Mo的累積產(chǎn)額為(6±0.31)%。為了得到238U快中子裂變的絕對(duì)產(chǎn)額,Naik等[43]將純度為99.9997%238U靶件置于APSARA泳池堆內(nèi)輻照,測(cè)定的238U快中子裂變產(chǎn)額質(zhì)量分布示于圖6,99Mo的裂變產(chǎn)額為(6.658±0.693)%??熘凶幽芰繛?.9 MeV時(shí),238U(n,f)99Mo裂變反應(yīng)截面為0.5 b。快中子注量率為1013n/(cm2·s),1g天然鈾輻照24h后,計(jì)算99Mo的產(chǎn)量為47.9 μCi[44]。
根據(jù)加速器產(chǎn)生的粒子,可用于加速器生產(chǎn)99Mo的核反應(yīng)有100Mo(p,d+pn)99Mo、232Th(p,f)99Mo 、natU(p,f)99Mo 、natMo(d,x)99Mo、96Zr(α,n)99Mo 、238U(γ,f)99Mo 、100Mo(γ,n)99Mo等。與反應(yīng)堆生產(chǎn)99Mo相比,利用加速器生產(chǎn)99Mo建造成本低、輻照靶件體積小、產(chǎn)生的放射性廢物少,但加速器生產(chǎn)99Mo的產(chǎn)量低,不適于大規(guī)模生產(chǎn)99Mo。
圖6 快中子引起238U裂變產(chǎn)物質(zhì)量數(shù)-累積裂變產(chǎn)額分布曲線[43]Fig.6 Plot of cumulative yields vs.mass number in the fast neutron induced fission 238U[43]
1.2.1100Mo(p,d+pn)99Mo
圖7 100Mo(p,d+pn)99Mo核反應(yīng)激發(fā)函數(shù)[45]Fig.7 Excitation function of the 100Mo(p,d+pn)99Mo reaction[45]
Qaim等[45]計(jì)算了核反應(yīng)100Mo(p,d+pn)99Mo的激發(fā)函數(shù),結(jié)果示于圖7。結(jié)果表明,當(dāng)質(zhì)子能量為29 MeV時(shí),核反應(yīng)截面最大為(149.9±1.8) mb。當(dāng)質(zhì)子束流為1μA時(shí),99Mo的產(chǎn)額隨輻照時(shí)間的增加、質(zhì)子能量的增大而增大,當(dāng)質(zhì)子能量為60 MeV時(shí),輻照24 h可產(chǎn)生5.8 GBq99Mo。使用富集度為100%100Mo為靶材,靶厚為6 550μm,質(zhì)子能量范圍10~70 MeV,99Mo的產(chǎn)額為360 MBq·μA-1·h-1;靶厚為2 330μm,質(zhì)子能量范圍10~40 MeV,99Mo的產(chǎn)額為120 MBq·μA-1·h-1。Pupillo等[46]以富集度為99.05%100Mo為靶材,估算了質(zhì)子束流為500 μA時(shí)不同輻照時(shí)間下產(chǎn)生99Mo的活度及比活度,結(jié)果列于表 3。由表3可知,質(zhì)子能量越大,產(chǎn)額越大,但比活度降低。該核反應(yīng)以100Mo為靶材,產(chǎn)生有載體99Mo,且產(chǎn)額及比活度均低于235U裂變生產(chǎn)99Mo。
表3 富集度為99.05% 100Mo生產(chǎn)99Mo的活度(EOB)及其比活度(EOB)理論估算[46]Table 3 Theoretical estimations of 99Mo activity and specificactivity at EOB in case of 99.05% enriched 100Mo[46]
注:靶件密度為10.70g·cm-1,質(zhì)子束流為500μA。
1.2.2232Th(p,f)99Mo
Kudo等[47]采用1μA的質(zhì)子束流轟擊232Th靶(靶厚為500μg/cm2)測(cè)定了核反應(yīng)232Th(p,f)99Mo激發(fā)函數(shù),結(jié)果示于圖8。由圖8結(jié)果可知,質(zhì)子能量在8~12 MeV范圍內(nèi),232Th(p,f)99Mo核反應(yīng)截面隨質(zhì)子能量的增加而增大。Demetrious等[48]計(jì)算了質(zhì)子能量為26.5MeV時(shí),232Th(p,f)99Mo核反應(yīng)截面約為30 mb。Abbas等[49]對(duì)質(zhì)子轟擊232Th使232Th發(fā)生裂變產(chǎn)生99Mo的可行性進(jìn)行了研究,采用純度為99.90%232Th為靶材,束流強(qiáng)度為1μA,輻照1h,99Mo產(chǎn)額隨質(zhì)子能量增加而增大(圖9)。當(dāng)質(zhì)子能量分別為29.5MeV、26.5MeV,產(chǎn)生99Mo的活度分別為(3.7±0.3) MBq、(3.4±0.3) MBq。而質(zhì)子能量為40 MeV、束流強(qiáng)度為100μA時(shí),輻照24h可產(chǎn)生50GBq99Mo,但質(zhì)子能量增大會(huì)造成加速器運(yùn)行成本顯著增加。Mirnakili等[50]采用Cyclon-30質(zhì)子回旋加速器輻照232Th靶件,質(zhì)子能量為20 MeV、束流強(qiáng)度為30 μA、靶件厚度為65μm時(shí),99Mo的產(chǎn)額為166.5MBq/h。
圖8 核反應(yīng)232Th(p,f)99Mo激發(fā)函數(shù)[47]Fig.8 Excitation function of the 232Th(p,f)99Mo reaction[47]
圖9 質(zhì)子能量對(duì)99Mo產(chǎn)額的影響[49]Fig.9 Effect of proton beam energy on the yield of 99Mo[49]
1.2.3natU(p,f)99Mo
質(zhì)子能量為10~30 MeV時(shí),天然鈾的質(zhì)子誘發(fā)裂變截面示于圖10[50]。由圖10結(jié)果可知,天然鈾裂變截面隨質(zhì)子能量增加而增大,當(dāng)質(zhì)子能量大于20 MeV時(shí),裂變截面在1b以上。Mirnakili等[50]采用Cyclon-30質(zhì)子回旋加速器輻照天然鈾靶件時(shí)發(fā)現(xiàn),在質(zhì)子能量為15~30 MeV范圍內(nèi),99Mo產(chǎn)額與靶件厚度無(wú)關(guān),99Mo產(chǎn)額為(5.08±0.10) MBq/μA-1·h-1。當(dāng)質(zhì)子能量為20 MeV、束流強(qiáng)度為30 μA、靶件厚度為18μm時(shí),99Mo的產(chǎn)額為144.3 MBq/h。
1.2.4natMo(d,x)99Mo
Lebeda等[51]測(cè)定了核反應(yīng)natMo(d,x)99Mo在3.0~19.6 MeV質(zhì)子能量范圍內(nèi)的激發(fā)函數(shù),結(jié)果示于圖11。結(jié)果表明,質(zhì)子能量為8.96 MeV時(shí),反應(yīng)截面最大為(56.7±6.3) mb。
圖10 核反應(yīng)natU(p,f)99Mo激發(fā)函數(shù)[50]Fig.10 Excitation function of the natU(p,f)99Mo reaction[50]
圖11 核反應(yīng)natMo(d,x)99Mo激發(fā)函數(shù)[51]Fig.11 Excitation function of the natMo(d,x)99Mo reaction[51]
以天然鉬為靶材,99Mo的厚靶產(chǎn)額隨質(zhì)子能量的增加而增大,當(dāng)質(zhì)子能量為20 MeV時(shí),99Mo的產(chǎn)額約為8 MBq·μA-1·h-1。
1.2.596Zr(α,n)99Mo
Pupillo等[46]測(cè)定了核反應(yīng)96Zr(α,n)99Mo核反應(yīng)截面,結(jié)果示于圖12。由圖12結(jié)果可見(jiàn),當(dāng)α粒子能量為17 MeV時(shí),核反應(yīng)截面最大為160 mb。當(dāng)α粒子能量為25 MeV、96Zr靶(富集度為100%)厚度為120μm時(shí),99Mo產(chǎn)額為1.3 MBq·μA-1·h-1。采用富集度為86.4%的96Zr分別以35μA、100μA的α束流輻照后的理論產(chǎn)額結(jié)果列于表4[52]。由表4可知,99Mo產(chǎn)額隨α粒子能量和輻照時(shí)間的增加而增大,而99Mo比活度與之相反。該法得到無(wú)載體99Mo,比活度高,易于分離,產(chǎn)生的放射性廢物少,但需要較高的α束流強(qiáng)度。
圖12 核反應(yīng)96Zr(α,n)99Mo激發(fā)函數(shù)[46]Fig.12 Excitation function of the 96Zr(α,n)99Mo reaction[46]
注:靶件密度為6.78g·cm-1。
1.2.6238U(γ,f)99Mo
高能電子轟擊高原子序數(shù)靶材產(chǎn)生的韌致輻射可被用于誘發(fā)238U裂變產(chǎn)生99Mo[53]。Naik等[54]測(cè)定了韌致輻射能量為10MeV時(shí)誘發(fā)238U裂變產(chǎn)生的裂變產(chǎn)物質(zhì)量分布,結(jié)果示于圖13,其中99Mo的累積產(chǎn)額為(4.835±0.442)%。能量為10MeV、束流功率為4kW的電子束以10Hz的頻率轟擊鉭箔產(chǎn)生的韌致輻射輻照1g天然鈾靶件24h,產(chǎn)生(0.324±0.036) μCi99Mo[44]。光子或中子束流為1013n/(cm2·s)時(shí),1g天然鈾或235U輻照24h后產(chǎn)生的99Mo的產(chǎn)額計(jì)算結(jié)果列于表5[44]。由表5可知,當(dāng)光子能量不低于20MeV時(shí),natU(γ,f)反應(yīng)產(chǎn)生99Mo產(chǎn)額要高于natU(n,f)的99Mo產(chǎn)額,但兩者均比235U(n,f)的99Mo產(chǎn)額低得多。
圖13 238U(γ,f)反應(yīng)和238U(n,f)反應(yīng)裂變產(chǎn)物質(zhì)量數(shù)-累積裂變產(chǎn)額分布曲線[54]Fig.13 Plot of cumulative yields vs.mass number for the reaction of 238U(γ,f) and 238U(n,f)[54]
表5 光子或中子束流為1013 n/(cm2·s)時(shí),1 g天然鈾或235U輻照24 h后產(chǎn)生的99Mo的活度計(jì)算值[44]
1.2.7100Mo(γ,n)99Mo
圖14 核反應(yīng)100Mo(γ,n)99Mo激發(fā)函數(shù)[44]Fig.14 Excitation function of the 100Mo(γ,n)99Mo reaction[44]
100Mo(γ,n)99Mo的核反應(yīng)截面示于圖14,當(dāng)韌致輻射能量為14 MeV時(shí),該反應(yīng)的核反應(yīng)截面最大。能量為10 MeV、束流功率為4 kW的電子束以10 Hz的頻率轟擊鉭箔產(chǎn)生的韌致輻射輻照1g天然鉬靶件24 h,產(chǎn)生(0.311±0.046) μCi99Mo[44]。光子或中子束流為1013n/(cm2·s)時(shí),1g天然鉬輻照24 h后產(chǎn)生的99Mo的產(chǎn)額計(jì)算值列于表6。由表6可知,當(dāng)光子能量不低于20 MeV時(shí),natMo(γ,f)反應(yīng)產(chǎn)生99Mo產(chǎn)額遠(yuǎn)低于natMo(n,γ)的99Mo產(chǎn)額,但比238U(γ,f)的99Mo產(chǎn)額高。
1.3.1100Mo(n,2n)99Mo
日本Nagai等[55]提出利用加速器中子源以3H(d,n)4He反應(yīng)產(chǎn)生14 MeV快中子照射100Mo,通過(guò)100Mo(n,2n)99Mo反應(yīng)制備100Mo。100Mo(n,2n)99Mo的核反應(yīng)截面示于圖15,快中子能量為14 MeV時(shí),反應(yīng)截面約為1.5 b[56],為99Mo(n,γ)99Mo核反應(yīng)截面的10倍。14 MeV的中子注量率為1013n/(cm2·s)時(shí),1g100Mo(富集度為100%)和天然鉬分別輻照198 h、冷卻1d后產(chǎn)生99Mo比活度計(jì)算結(jié)果分別為79 GBq/g、7.6 GBq/g[55]。法國(guó)SPIRAL2通過(guò)能量為40 MeV、束流強(qiáng)度為5 mA的氘束轟擊天然碳可提供高達(dá)1015n/s的14 MeV中子束流[57],該束流照射251g100Mo 靶件(靶件厚度為2 cm、靶件半徑為2 cm),預(yù)計(jì)可產(chǎn)生7.1TBq99Mo[54]。日本JAEA(Japan Atomic Energy Agency)用14 MeV中子輻照100MoO3靶件,由于Tc2O7揮發(fā)溫度低于MoO3的揮發(fā)溫度,輻照后將靶件加熱至820℃,以氧氣為載氣,采用熱色層法分離由99Mo衰變產(chǎn)生的99mTc,所得99mTc產(chǎn)品中99Mo、97Zr、97Nb等含量低于0.01%[58]。
表6 光子或中子束流為1013 n/(cm2·s)時(shí),1 g天然鉬輻照24 h后產(chǎn)生的99Mo的產(chǎn)額計(jì)算值[44]Table 6 99Mo activity calculated from 1 g nature Molybdenum irradiated for 24 h by photon or neutron with total flux of 1013 n/(cm2·s)[44]
圖15 100Mo(n,2n)99Mo核反應(yīng)激發(fā)函數(shù)[56]Fig.15 Excitation function of the100Mo(n,2n)99Mo reaction[56]
1.3.299Tc(n,p)99Mo和102Ru(n,α)99Mo
Stevenson等[59]提出采用14 MeV中子輻照99Tc或102Ru靶通過(guò)99Tc(n,p)99Mo或102Ru(n,α)99Mo反應(yīng)制備99Mo。99Tc(n,p)99Mo和102Ru(n,α)99Mo核反應(yīng)激發(fā)函數(shù)示于圖16,中子能量為14 MeV時(shí),99Tc(n,p)99Mo反應(yīng)截面約為17 mb,102Ru(n,α)99Mo反應(yīng)截面約為6 mb。利用MCNPX計(jì)算了14 MeV中子注量率為1015n/(cm2·s)時(shí),1kg 靶材(99Tc、102Ru或天然釕)輻照150 h生成99Mo的產(chǎn)額,結(jié)果列于表7。由表7可知,使用102Ru或天然釕為靶材時(shí),99Mo的比活度為480 000 Ci/g,即可得到無(wú)載體99Mo。
圖16 99Tc(n,p)99Mo和102Ru(n,α)99Mo的核反應(yīng)激發(fā)函數(shù)[59]Fig.16 Excitation function of the 99Tc(n,p)99Mo reaction and 102Ru(n,α)99Mo reaction[59]
本文對(duì)近年來(lái)用于99Mo制備方法的研究進(jìn)展進(jìn)行了綜述。99Mo制備方法的優(yōu)缺點(diǎn)列于表8??傮w而言,反應(yīng)堆生產(chǎn)裂變99Mo的產(chǎn)量大、比活度高,仍為目前全球99Mo的主要來(lái)源。而堆照鉬、加速器或中子發(fā)生器產(chǎn)生99Mo的產(chǎn)額受限于發(fā)生核反應(yīng)的反應(yīng)截面較小,99Mo產(chǎn)量較低,當(dāng)以鉬為靶材時(shí),得到低比活度的有載體99Mo,其利用需配合非色層發(fā)生器(如凝膠型99Mo-99mTc發(fā)生器)的發(fā)展。但是通過(guò)96Zr(α,n)99Mo、99Tc(n,p)99Mo、102Ru(n,α)99Mo等核反應(yīng)可得到無(wú)載體99Mo,對(duì)這些反應(yīng)用于99Mo的商業(yè)供應(yīng)有待進(jìn)一步研究。
表7 14 MeV中子注量率為1015 n/(cm2·s)時(shí),1 kg靶材輻照150 h生成99Mo的產(chǎn)額計(jì)算值[59]Table 7 Yields of 99Mo calculated from 1 kg targets irradiated for 150 h by 14 MeV neutron with a flux of 1013 n/(cm2·s)[59]
表8 99Mo制備方法對(duì)比Table 8 Comparison of methods for the production of 99Mo
放射性核素及其制品已廣泛用于國(guó)民經(jīng)濟(jì)各個(gè)領(lǐng)域,核醫(yī)學(xué)作為放射性核素最活躍的領(lǐng)域,需確保放射性核素供應(yīng)。近年來(lái),由于生產(chǎn)99Mo的反應(yīng)堆面臨停堆檢修、關(guān)停或退役等問(wèn)題,導(dǎo)致99Mo供應(yīng)短缺。針對(duì)當(dāng)前現(xiàn)狀,作者對(duì)99Mo的生產(chǎn)或制備提出如下建議:
1) 增加和升級(jí)用于同位素生產(chǎn)的反應(yīng)堆,保證放射性核素(如99Mo)的可持續(xù)供應(yīng)。
2) 當(dāng)前裂變99Mo分離純化過(guò)程中產(chǎn)生大量的放射性廢物,可開(kāi)發(fā)環(huán)境友好型同位素生產(chǎn)技術(shù),減少放射性廢物的產(chǎn)生。
參考文獻(xiàn):
[1] Charlton K.The supply of medical radioisotopes,2017 medical isotope supply review:99Mo/99mTc market demand and production capacity projection 2017-2022[R].Boulogne-Billancourt:OECD Nuclear Energy Agency,2017:24.
[2] National Academies of Sciences,Engineering,and Medicine.Molybdenum-99 for medical imaging[M].Washington:The National Academies Press,2016:58.
[3] World Nuclear Association.Radioisotopes in medicine[J/OL].Accessed from http:∥www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx,December 2017.
[4] National Research Council.Medical isotope production without highly enriched uranium[M].Washington:The National Academies Press,2009:3.16-3.18.
[5] Ponsard B.Mo-99 supply issues:Status report and lessons learned[C]∥14th International Topical Meeting on Research Reactor Fuel Management (RRFM 2010).Berne:European Nuclear Society,2010.
[6] Ball R M.Characteristics of nuclear reactors used for the production of molybdenum-99[R].Vienna:International Atomic Energy Agency,1999,IAEA-TECDOC-1065:5-17.
[7] Ball R M,Pavshook V A,Khvostionovv V Y.Present status of the use of LEU in aqueous reactors to produce Mo-99,reduced enrichment for research and test reactors[C]∥1998 International Meeting on Reduced Enrichment for Research and Test Reactors.Sao Paulo:October 18,1998.
[8] Stepinski D C,Gelis A V,Gentner P,et al.Evaluation of radsorb,isosorb (termoxid) and PZC as potential sorbents for separation of99Mo from a homogeneous-reactor fuel solution[R].Vienna:International Atomic Energy Agency,2008,IAEA-TECDOC-1601:73-80.
[9] Chuvilin D Y,Khvostionov V E,Markovskij D V,et al.Low-waste and proliferation-free production of medical radioisotopes in solution and molten-salt reactors[M]∥Radioactive waste.Rijeka:InTech,2012:153-156.
[10] Chuvilin D Y,Meister J D,Abalin S S,et al.An interleaved approach to production of99Mo and89Sr medical radioisotopes[J].J Radioanal Nucl Chem,2003,257(1):59-63.
[11] Pavshook V A.Effective method of99Mo and89Sr production using liquid fuel reactor[R].Vienna:International Atomic Energy Agency,2008,IAEA-TECDOC-1601:65-68.
[12] Inaba Y.Development of99Mo production technology with solution irradiation method[M]∥Nuclear reactors.Rijeka:InTech,2012:324-325.
[13] Tucker W D,Greene M W,Weiss A J,et al.Methods of preparation of some carrier-free radioisotopes involving sorption on alumina[R].NY:Brookhaven National Lab,Upton,1958.
[14] Arino H,Cosolito F J,George K D,et al.Preparation of a primary target for the production of fission products in a nuclear reactor:US,3,940,318[P].1976-02-24.
[15] Arino H,Thornton A,Kramer H.Production of high purity fission product molybdenum-99:U S,3,799,883[P].1974-03-26.
[16] Technical Reports Series No.478,Feasibility of producing molybdenum-99 on a small scale using fission of low enriched uranium or neutron activation of natural molybdenum[R].VIENNA :IAEA,2014:64-66.
[17] Lee S K,Beyer G J,Lee J S.Development of industrial-scale fission99Mo production process using low enriched uranium target[J].Nuclear Engineering and Technology,2016,48(3):613-623.
[18] National Research Council.Medical isotope production without highly enriched uranium[C]∥Committee on medical isotope production without highly enriched uranium.Washington:The National Academies Press,2009:2.1-2.13.
[19] Vandegrift G F,Snelgrove J L,Aase S,et al.Converting targets and processes for fission-product molybdenum-99 from high-to low-enriched uranium[R].Vienna:International Atomic Energy Agency,1999,IAEA-TECDOC-1065:28.
[20] Salacz J.Production of fission Mo-99,I-131and Xe-133[J].Revue IRE Tijdschrift,1985,9(3):22.
[21] Van der Walt T N,Coetzee P P.The isolation of99Mo from fission material for use in the99Mo/99mTc generator for medical use[J].Radiochimica Acta,2004,92(4-6):251-257.
[22] 繆增星,馬會(huì)民,劉建民,等.醫(yī)用裂變99Mo的生產(chǎn)工藝研究[J].中國(guó)原子能科學(xué)研究院年報(bào),1989,0:146-147.Miu Zengxing,Ma Huimin,Liu Jianmin,et al.Study on the production process of medical fission99Mo[J].Annual Report of China Institute of Atomic Energy,1989,0:146-147(in Chinese).
[23] 繆增星,馬會(huì)民,劉建民,等.裂變99Mo生產(chǎn)工藝研究的進(jìn)展[J].中國(guó)原子能科學(xué)研究院年報(bào),1990,1:162-163.Miu Zengxing,Ma Huimin,Liu Jianmin,et al.Progress in the production process of fission99Mo[J].Annual Report of China Institute of Atomic Energy,1990,1:162-163(in Chinese).
[24] 肖倫.放射性同位素技術(shù)[M].北京:原子能出版社,2000:43-45.
[25] Sameh A,Ache H J.Production techniques of fission molybdenum-99[J].Radiochimica Acta,1987,41(2-3):65-72.
[26] Sameh A A,Ache H J.Production techniques of fission99Mo[R].Vienna:International Atomic Energy Agency,1989,IAEA-TECDOC-515:47-64.
[27] Chuvilin D Y,Khvostionov V E,Markovskij D V,et al.Production of89Sr in solution reactor[J].Applied Radiation and Isotopes,2007,65(10):1087-1094.
[28] Ponomarev-Stepnoy N N,Pavshook V A,Bebikh G F,et al.Method and apparatus for the production and extraction of molybdenum-99:U S,5,910,971[P].1999-06-08.
[29] Betenekov N D,Denisov E I,Nedobukh T A,et al.Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use:U S,6,337,055[P].2002-01-08.
[30] 鄧啟民,李茂良,程作用.醫(yī)用同位素生產(chǎn)堆(MIPR)生產(chǎn)99Mo的應(yīng)用前景[J].核科學(xué)與工程,2006,26(2):165-167.Deng Qimin,Li Maoliang,Cheng Zuoyong.Application of99Mo production through Medical Isotope Production Reactor(MIPR)[J].Chinese Journal of Nuclear Science and Engineering,2006,26(2):165-167(in Chinese).
[31] National Research Council.Medical isotope production without highly enriched uranium[C].Washington:The National Academies Press,2009:7.1-7.2.
[32] Novotny D,Wagner G.Procedure of small scale production of Mo-99 on the basis of irradiated natural uranium metal as target[C]∥Proceedings of the Consultants Meeting on “Small Scale Production of fission Mo-99 for Use in Tc-99m Generators.Vienna:International Atomic Energy Agency,2003.
[33] Dittrich S.History and actual state of non-HEU fission-based Mo-99 production with low-performance research reactors[J].Science and Technology of Nuclear Installations,2013:4.
[34] Snelgrove J L,Hofman G L,Wiencek T C,et al.Development and processing of LEU targets for99Mo production—Overview of the ANL Program[C]∥the 1995 International Meeting.Paris:Reduced Enrichment for Research and Test Reactors.Vienna:International Atomic Energy Agency,1995:18-21.
[35] Conner C,Sedlet J,Wiencek T C,et al.Production of MO-99 from LEU targets acid-side processing[R].IL (US):Argonne National Lab,2000:5-9.
[36] Vandegrift G F,Conner C,Hofman G L,et al.Modification of targets and processes for conversion of99Mo production from high-to low-enriched uranium[J].Industrial & engineering chemistry research,2000,39(9):3 140-3 145.
[37] Mushtaq A,Iqbal M,Muhammad A.Management of radioactive waste from molybdenum-99 production using low enriched uranium foil target and modified CINTICHEM process[J].Journal of Radioanalytical and Nuclear Chemistry,2009,281(3):379-392.
[38] Vandegrift G F,Koma Y,Cols H,et al.Production of MO-99 from LEU targets base-side processing[R].IL (US):Argonne National Lab,2000:3-6.
[39] Rao A,Sharma A K,Kumar P,et al.Studies on separation and purification of fission99Mo from neutron activated uranium aluminum alloy[J].Applied Radiation and Isotopes,2014,89:186-191.
[40] 王清貴,梁積新,吳宇軒,等.α-安息香肟沉淀法分離低濃鈾裂變產(chǎn)物中的鉬[J].同位素,2016,29(3):216-222.
Wang Qinggui,Liang Jixin,Wu Yuxuan et al,Separation of fission molybdenum from low enriched uranium products by precipitation with α-Benzoin Oxime[J].Journal of Isotopes,2016,29(3):216-222(in Chinese).
[41] Le V S.99mTc generator development:Up-to-date99mTc-recovery technologies for increasing the effectiveness of99Mo utilization[J].Sci.Technol Nucl Install,2014.
[42] Chung C,Woo M Y.Fission product yields in the fast-neutron fission of238U[J].Journal of Radioanalytical and Nuclear Chemistry,1987,109(1):117-131.
[43] Naik H,Nair A G C,Kalsi P C,et al.Absolute fission yields in the fast neutron induced fission of 99.9997 atom% pure238U using track£ tch-cum gamma spectrometric technique[J].Radiochimica Acta,1996,75(2):69-76.
[44] Naik H,Suryanarayana S V,Jagadeesan K C,et al.An alternative route for the preparation of the medical isotope99Mo from the238U(γ,f) and100Mo(γ,n) reactions[J].Journal of Radioanalytical and Nuclear Chemistry,2013,295(1):807-816.
[45] Qaim S M,Sudár S,Scholten B,et al.Evaluation of excitation functions of100Mo(p,d+pn)99Mo and100Mo(p,2n)99mTc reactions:estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced99mTc[J].Applied Radiation and Isotopes,2014,85:101-113.
[46] Pupillo G,Esposito J,Haddad F,et al.Accelerator-based production of99Mo:a comparison between the100Mo(p,x) and96Zr(α,n) reactions[J].Journal of Radioanalytical and Nuclear Chemistry,2015,305(1):73-78.
[47] Kudo H,Muramatsu H,Nakahara H,et al.Fission fragmentyields in the fission of232Th by proton of energies 8 to 22 MeV[J].Physical Review C,1982,25:4011-4023.
[48] Demetriou P,Keutgen T,Prieels R,et al.Fission properties of actinide nuclei from proton-induced fission at 26.5 and 62.9 MeV incident proton energies[J].Physical Review C,2010,82:054606-1-054606-11.
[49] Abbas K,Holzwarth U,Simonelli F,et al.Feasibility of99Mo production by proton-induced fission of232Th[J].Nuclear Instruments and Methods in Physics Research B,2012,278:20-25.
[50] Mirvakili S M,Alizadeh M,Vaziri J A,et al.Computational investigation of99Mo production yield via proton irradiation ofnatU and232Th targets[J].Applied Radiation and Isotopes,2015,101:127-134.
[51] Lebeda O,Fikrle M.New measurement of excitation functions for (d,x) reactions onnatMo with special regard to the formation of95mTc,96m+gTc,99mTc and99Mo[J].Applied Radiation and Isotopes,2010,68:2 425-2 432.
[52] Pupillo G,Esposito J,Gambaccini M,et al.Experimental cross section evaluation for innovative99Mo production via the (a,n) reaction on96Zr target[J].Journal of Radioanalytical and Nuclear Chemistry,2014,302:911-917.
[53] Ruth T.Accelerating production of medical isotopes[J].Nature,2009,457:29.
[54] Naik H,Nimje V T,Raj D,et al.Mass distribution in the bremsstrahlung-induced fission of232Th,238U and240Pu[J].Nuclear Physics A,2011,853:1-25.
[55] Nagai Y,Hatsukawa Y.Production of99Mo for nuclear medicine by100Mo(n,2n)99Mo[J].Journal of the Physical Society of Japan,2009,78(3):033201-1-033201-4.
[56] National Nuclear Data Center[EB/OL].http:∥www.nndc.bnl.gov/.
[57] Fadil M,Rannou B.The SPIRAL2 project team[J].Nuclear Instruments and Methods in Physics Research Section B,2008,266:4 318.
[58] Nagai Y.99Mo Production via100Mo(n,2n)99Mo using accelerator neutrons[J].EPJ Web of Conferences,2014,66:10 007.
[59] Stevenson N R,Schenter R E.Molybdenum-99 production with high specificactivity using medium energy neutrons on technetium or ruthenium targets[J].Journal of Labelled Compounds and Radiopharmaceuticals,2010,53:332-345.