• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Velocity of detonation measurement and fragmentation analysis to evaluate blasting efficacy

    2018-06-01 08:46:40EugieKabwe

    Eugie Kabwe

    aSchool of Civil,Environmental and Mining Engineering,The University of Adelaide,Adelaide,5005,Australia

    bDepartment of Mining Engineering,School of Mines,University of Zambia,Lusaka,Zambia

    1.Introduction

    This paper evaluates the performance of bulk emulsion explosives HEF100 through a velocity of detonation(VOD)measurement and fragmentation size distribution analysis.The VOD was measured in five blast holes using a resistance wire continuous VOD measurement system.The steady state VOD measured from the holes was compared with the published values under ideal conditions.It was concluded that the steady state VOD values were consistent with the published VOD values.The post blast fragmentation analysis carried out using empirical fragmentation models and image processing software showed that 90%of the blasted material was within 700 mm passing size.

    1.1.Velocity of detonation measurement

    Explosives with low VOD will have low impact on rock fragmentation than the ones with high VOD(Chiapetta,1988;Heit,2011).According to Cooper(1996),the explosive VOD is commonly used to approximate the detonation pressure and subsequently the explosive shock energy contained in an ideal explosive.The detonation pressure(Pd)of an explosive from the unreacted explosive density and VOD is given by

    wherePdis the detonation pressure(GPa),ρeis the explosive density(g/cm3),Cdis the VOD(m/s)andγis the ratio of speci fi c heats of detonation product gases (γ≈3).According to Cunningham(2002),γmay be approximately 2.6 for Ammonium Nitrate Fuel Oil(ANFO)to 3.2 for emulsion.Reduction in the VOD will produce a decrease in thePdvalue as well as the shock energy of the explosive(Tete et al.,2013).VOD measurements indicate the performance of an explosive in real time.There are two common VOD measurement systems,i.e.the point-to-point system and continuous system.The former has limitation as compared to the latter used in this study(Crosby et al.,1991;Mishra and Sinha,2003;Harsh et al.,2005).Pradhan and Jade(2012)carried out a study to investigate the performance of bulk emulsion explosive in a watery blast hole by measuring its in-hole VOD.The performance was found to be unsatisfactory due to reduction in VOD and failure of explosive column to detonate fully.ˇZganec et al.(2016)conducted a study to understand the influence of three different types of primers on the VOD of ANFO and complex ANFO blends.The VOD was measured in situ by a continuous method.It was concluded that ANFO or complex ANFO blends with the same percentage of added emulsion,density and borehole diameter had different steady VODs due to different primer properties.Mendes et al.(2014)compared the VOD for emulsion explosive sensitized with hollow glass micro-balloons and emulsion explosive sensitized with hollow polymer micro-balloons.They concluded that the nature of the sensitizing agent had no significant impact on the explosives detonation behavior.

    Fig.1.Schematic illustration showing formation of crushing zone,fracture zone and fragment formation zone.

    1.2.Empirical fragmentation models

    Kuznetsov(1973)suggested the following empirical equation to predict the mean fragmentation size resulting from rock blasting:

    wherexmis the mean fragment size(cm);Ais the rock factor(between 0.8 and 22,depending on rock hardness and structure and its derivation is given in Eqs.(3)and(4))(Gheibie et al.,2009;Singh et al.,2016);Kis the powder factor(kg/m3);Qis the mass explosive in the hole(kg);andRWSis the explosive weight strength relative to ANFO(%).The relation between rock factor(A)and blastability index(BI),proposed by Lilly(1986),can be obtained from Eq.(3),whereBIis determined from Eq.(4):

    whereRMDis the rock mass description,JPSis the joint plane spacing,JPOis the joint plane orientation,SGIis the speci fi c gravity in fl uence(t/m3),andHDis the hardness factor.Inserting the parameters ofBIandA,the model(Eq.(2))is presented as

    The Rosin-Rammler(Rosin and Rammler,1933)equation is then used to predict the fragment size distribution resulting from rock blasting.It is given by

    whereP(x1)is the proportion of the material larger thanx(sieve size,in m),x=x50(the 50%passing value)is the characteristic size(cm),andnis the uniformity index.The final equation of the Kuz-Ram(Cunningham,1983)is given by

    whereBis the burden thickness(m),Sis the spacing,dis the borehole diameter(mm),Lbis the bottom charge length(m),Lcis the column charge length(m),Ltotis the total charge length(m),His the bench height(m),andSDis the standard deviation of drilling accuracy(m).TheSDvalue is determined by

    The highnvalue indicates uniform sizing while lower value indicates larger proportion of fines and coarse material(Gheibie et al.,2009;Singh et al.,2016).The Kuz-Ram model can predict the coarse fragments reasonably accurate,but it can also significantly underestimate the amount of fines generated(Ouchterlony,2005).Spathis(2004)observed that the uniformity indices in the Kuz-Ram model ranged between 0.8 and 2.2,and the characteristic sizes of the model were in errors of 105%and 179%,respectively.This leads to model extensions which involve one Rosin-Rammler function for the coarse material and another to improve the prediction of fines.Ouchterlony(2005)proposed the Kuznetsov-Cunningham-Ouchterlony(KCO)model to predict the fragment size distribution by replacing the original Rosin-Rammler equation with the Swebrec function(Eq.(9)).The fines part of the fragment size distribution received a more satisfactory prediction when the Swebrec function was introduced(Ouchterlony,2016).Like the Rosin-Rammler,KCO model uses the 50%passing valuex50as the central parameter but it also introduces an upper limit to fragment sizexmaxand a curve undulating parameterbsimilar tonin the Kuz-Ram model(Gheibie et al.,2009).Expression for thex50remains the same,and the expression forband Swebrec function is given by

    Fig.2.Overview of the blast block.

    Table 1Rock parameters of the trial site determined on the gneiss rock type using RocData(Rocscience,2013).

    Table 2Rock mass rating of the trial site(Bieniawski,1989).

    Table 3Blast design parameters and initiation system used.

    whereP(x)is the percentage of material passing sieve sizex(%),andxmaxis the maximum in situ block size(cm).

    Spathis(2004)argued that Cunningham(1983)had misinterpreted the Kuznetsov(1973)formula for the mean fragment size used as a mean,but later treated it as a median.Spathis(2004)suggested the addition of a prefactor to the Rosin-Rammler equation and proposed thatx50should be

    Fig.3.Illustration of the conventional charged hole.

    Table 4Explosive properties.

    Fig.4.Blast timing design(unit in ms).

    whereΓis the gamma function.

    Eq.(12)represents the KCO model as an improved extension of Kuz-Ram model to overcome the failure of predicting the fine range and the upper limit of particle size:

    Kanchibotla et al.(1999)proposed the crush zone model(CZM)to improve the Kuz-Ram’s inability to predict the fragment size distribution.Based on the assumption that fragmentation is caused separately by two different mechanisms,the finer material is generated mainly in the crushed zone while the coarser material is generated by tensile fracturing and pre-existing fractures in the rock mass,as shown in Fig.1.

    The CZM model applies two different Rosin-Rammler functions to estimate the fragment size distribution curve.One function is used to predict the fines part of the curve and the other function describes the coarse part of the curve(Gheibie et al.,2009).The two curves join at a fragment size(xc)dependingon the rock properties.The coarse part of the curve is represented by

    Table 5Monitored blast holes parameters.

    Fig.5.Blasted muck pile and rock fragmentation.

    whereP(xc)is the percentage of material passing characteristic sizexc(%),xcis the characteristic size(m),andncoarseis the uniformity index for the coarse part of the curve.Thencoarsevalue can be determined from

    The fine material is considered to come from a cylindrical crushed zone around the blast hole in which particles are generated by crushing of the rock due to compressive shear failure(Kanchibotla et al.,1999;Kanchibotla,2003).The crushed zone radius is assumed to be the distance from the blast hole tothe point where radial stresses exceed the uniaxial compressive strength(UCS)of the rock mass.It is represented by

    wherercis the crushed zone radius(m),ris the blast hole radius(m),σcis the compressive strength of the rock(Pa).Detonation pressure is calculated by

    Fig.7.Time-depth graph for blast hole 2.

    whereρcis the density of explosive material(kg/m3).The mass of the rock that fails due to tensile failure is represented by

    whereFcis the fraction of rock mass that fails in tension,Mois the mass of rock failed in compression(kg),andMis the total mass of rock per blast hole(kg).The fines part of the size distribution curve is predicted by

    wherenfineis the uniformity index for the fines part of the curve,which can be determined from

    Fig.8.Time-depth graph for blast hole 3.

    1.3.Image processing

    There are several digital image processing software packages,e.g.Split,WipFrag,FragScan,and WIEP that are commercially available to analyze the fragment size distribution(Ozkahraman,2006).The Split-desktop(Split Engineering,2001)image processing software is used in this study.Split-desktop was designed to calculate the size distribution of rock fragments through analyzing digital grayscale images acquired through the use of a digital camera(Siddiqui et al.,2009).Image processing can be completely automated to eliminate several process-related expenses,and thus a larger number of measurements can be made by increasing the overall reliability and can be used on a continuous basis without affecting the production cycle(Sanchidrián et al.,2009).However,errors are associated with image processing software;these can be minimized by established sampling methods,employing proper sampling environment and site-specific calibration of the image processing software(Maerz,1999;Maerz and Zhou,2000).The most reliable way for fragmentation to be assessed is through sieving the entire muck pile which is almost impossible.

    1.4.Trial site

    The blasting was conducted at an open pit,which is part of the project hosted on the Mwombezhi basement dome in the western arm of the Neoproterozoic Lufilian Arc thrust fold belt(Stroud,2010).

    2.Materials and methods

    2.1.Blast design and parameters

    The blast block was approximately 104 m long and 75 m wide with a total of about 299 blast holes(Fig.2).Trial site conditions and rock mass rating were determined(Tables 1 and 2).The planned burden and spacing are 4.7 m×5.2 m with one free face available.The measured burden and spacing on the block did not vary significantly from the plan(Table 3).

    The blast holes were primed with AXXIS electronic delay detonators,400 g Viper RDX boosters and charged with HEF100.The average final cup density measured on the trial block was 1.2 g/cm3.Explosive samples were taken at regular intervals and were measured to ensure that the explosives had gassed to the required density.Adequate time was allowed for the explosives to gas before blast holes were stemmed with crushed aggregates.In the blast holes where the final stemming length was measured,the explosives gassed sufficiently before the blast holes were stemmed.Fig.3 shows the conventional charged hole.

    2.2.Explosive properties

    HEF100 is a booster sensitive bulk emulsion explosive designed for open pit mines.It is a low viscosity black emulsion specially formulated using recycled oil/alternative fuel.Its VOD can reach up to 5500 m/s depending on density,diameter size,and confinement.The product has a critical minimum diameter of 75 mm which yields proper confinement in order to deliver higher VOD results.HEF100 is pumpable and water-resistant,and is known for its high shock energy delivery to shatter the rock and provide properly fragmented rock particles.The technical specifications of the product are illustrated in Table 4.

    2.3.Blast timing

    The block was divided in northern and southern portions to optimize the results of the blasting.The northern section was timed with 17 ms between blast holes with partly 25 ms between rows in the eastern direction.Timing was increased to 65 ms in the last rows towards the position of the new high wall to protect the high wall and reduce back-break.The southern portion of the block was timed at 42 ms between the blast holes and 25 ms between rows,as illustrated in Fig.4.

    Fig.9.Time-depth graph for blast hole 4.

    Fig.10.Time-depth graph for blast hole 5.

    Five blast holes were selected to measure the VOD for HEF100.The five monitored blast holes were located on the north side of the block from the initiation point.The aim of this study was to monitor the in-hole blast performances of the explosives.The blasting design parameters and the time recorded during the VOD measurement are illustrated in Table 5.Post blast assessment and fragmentation analysis were conducted(Fig.5).

    Table 6Steady state VOD recorded in five blast holes.

    Table 8Kuz-Ram fragmentation model results.

    Table 9KCO fragmentation model results.

    Table 10CZM fragmentation model results.

    Table 11Fragmentation results.

    Table 12Different fragment sizes according to different fragmentation models.

    3.Analysis and results

    3.1.VOD analysis and results

    Depth of blast hole 1 was 13.2 m and full column detonation was recorded at 10.7 m.The recorded VOD was 5234 m/s for the full column length and 597 m/s around the stemming zone indicating contamination of the explosive at 0.2 m.The VOD inceased to 6505m/sat0.3m before attaining steady state,as illustrated in Fig.6.

    Depth of blast hole 2 was 12.7 m and stemming length was 3.3 m.Full detonation VOD was recorded at 9.8 m.The recorded VOD was 5478 m/s at 0.5 m at 0.095 ms.Due to low run-up,the explosive took time to attain a steady state of VOD.Initial VOD recorded was 4872 m/s at 1.7 m,and it attained steady state of 5387 m/s at 7.2 m and decreased to 788 m/s around the stemming area(Fig.7).

    Blast hole 3 with depth of 12 m was positioned in the second row with a planned timing of 59 ms after blast hole 1.The recorded rise in VOD was 4232 m/s at 0.7 m caused by mud around the primer restricting the detonation energy transfer from booster to the explosive.The hole recorded a low VOD of 947 m/s at 3.2 m from the bottom of the column due to reduced confinement.The steady state VOD of 5140 m/s at 4.3 m from the top was recorded.The last part of the blast hole showed a decline in VOD to 1533 m/s recorded at 0.5 m closer to the stemming zone due to reduced confinement around that part(Fig.8).

    Blast hole 4 with 12.2 m depth and stemming length of 3.6 m recorded a full column VOD at 8.6 m.The hole had a planned timing of 59 ms after the initial hole detonated.The run-up VOD from the booster was 6384 m/s,and it attained a steady state of VOD of 5169 m/s at the 7 m depth.The detonation slowed down to 620 m/s at 0.2 m around the stemming area(Fig.9).

    Fig.11.Fragmentation distribution curve.

    Fig.12.Comparison of fragmentation distribution curves.

    Blast hole 5 was positioned on the third row initiated at 67 ms after blast hole 1.The blasthole hada depth of 13.3 mwith a column length of 10.3 m and recorded a steady state VOD of 4981 m/s at 10.2 m.The run-up VOD recorded was 6420 m/s from the booster positioned at depth of0.4m from the bottom.The booster was pulled up 0.2 m from the bottom of the blast hole and the VOD of 756 m/s was recorded at the stemming region at a length of 0.3 m.VOD recorded was lower compared to the others,as a result of reduced confinement caused by movement of the burden on the block(Fig.10).The measured VODs for the five holes are listed in Table 6.

    3.2.Fragmentation analysis and results

    3.2.1.Fragmentation model analysis

    The allowable size classification for the crushers at the site is illustrated in Table 7.In the Kuz-Ram model,the predicted averagex50size was 220 mm and the uniformity factor was 1.42.Proportion of material below 900 mmP(x90)was about 99%for the conventional blast(Table 8).

    In the KCO model,the average fragment size is 100 mm and the curvewith varied parameter isb=1.59 for the conventional blasted muck pile(Table 9).

    In the CZM model,the predicted average value ofx50is 348 mm for the conventional blast.The uniformity factor for the fines part of the size distribution is 0.081 for the conventional blasts while for the coarse part of the distribution,it is 1.253(see Table 10).

    3.2.2.Digital imaging analysis

    Thirty pictures were taken on the muck piles analyzed and processed with Split-desktop(Split Engineering,2001)to estimate size distribution results.Size distribution results and fragment size distribution curves show that 70%of the muck pile passes through the 418.62 mm sieve,and an average top size measured was 1164.38 mm for 0.05%of the entire muck pile,as illustrated in Table 11 and Fig.11.The top size material is equivalent to 46 m3of blasted materials.These coarse fragmentations were resultant from the large toe burden as well as the back end of the muck pile.A total of 82,620 m3of blasted materials from the block were within 700 mm size.The values of the mean fragmentation from the empirical models were in range with those obtained from Splitdesktop image analysis(see Table 12 and Fig.12).

    4.Conclusions

    In this context,it is observed that the VOD recorded in blast hole 5 is lower as compared to other blast holes.This is a result of reduced confinement caused by movement of the burden on the block.The VOD is specified by explosive manufacturers in their product catalogue.Usually,these VOD values are based on the laboratory measurement.However,the laboratory values are usually different from those measured in the field.The following conclusions are drawn in this work:

    (1)The published VOD under ideal conditions for HEF 100 varies from 3500 m/s to 5500 m/s.The steady state VOD for the holes selected varies from 4981 m/s to 5387 m/s.The VOD recorded is consistent and within product specification.

    (2)The fragmentation size distribution analysis shows that more than 82,620 m3representing 90%of the blasted muck pile are within 700 mm passing rate and 46 m3of muck pile representing 0.05%are above 1100 mm.

    (3)The fragmentation size distribution analysis using Split Desktop shows that the 20%(x20),50%(x50),and 80%(x80)passing fractions are in close range with the predicted values from the empirical fragmentation models,which presents the data consistency.

    Conflicts of interest

    The author wishes to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Bieniawski ZT.Engineering rock mass classifications:a complete manual for engineers and geologists in mining,civil,and petroleum engineering.John Wiley&Sons Inc;1989.

    Chiappetta RF.Blast monitoring instruments and analysis techniques with an emphasis on fi eld application.Fragblast-International Journal of Blasting and Fragmentation 1988;2(1):79-101.

    Cooper PW.Acceleration,formation and flight of fragments.Wiley-VCH;1996.p.385-94.

    Cunningham CVB.The Kuz-Ram model for prediction of fragmentation from blasting.In:Holmberg R,Rustan A,editors.Proceedings of the first International symposium on rock fragmentation by blasting,vol.2;1983.p.439-53.Lulea,Sweden.

    Cunningham CVB.The energy of detonation:a fresh look at pressure in the blasthole.Fragblast-International Journal for Blasting and Fragmentation 2002;6(2):137-50.

    Crosby WA,Bauer AW,Warkentin JPF.State of the art explosive VOD measurement system.In:Proceedings of the 7th annual conference on explosive blasting Technology.International society for explosives engineers.Las Vegas:SEE;1991.p.23-34.

    Gheibie S,Aghababaei H,Hoseinie SH,Pourrahimian Y.Modi fi ed Kuz-Ram fragmentation model and its use at the sungun copper mine.International Journal of Rock Mechanics and Mining Sciences 2009;46(6):967-73.

    Harsh HK,Dwivedi RD,Swarup A,Prasad VVR.Velocity of detonation(VOD)-a review of measurement techniques.In:Proceedings of technological advancement and environmental challenges in mining and allied industries in 21st century.Rourkela,India:NIT Rourkela;2005.p.169-75.

    Heit A.An investigation into the parameters that affect the swell factor used in volume and design calculations at Callide open cut coal mine.PhD Thesis.University of Southern Queensland;2011.

    Kanchibotla SS,Valery W,Morrell S.Modelling fines in blast fragmentation and its impact on crushing and grinding.In:Explo’99-a conference on rock breaking.Kalgoorlie,Australia.The Australasian Institute of Mining and Metallurgy;1999.p.137-44.

    Kanchibotla SS.Optimum blasting?Is it minimum cost per broken rock or maximum value per broken rock?Fragblast-International Journal of Blasting and Fragmentation 2003;7(1):35-48.

    Kuznetsov VM.Mean diameter of fragments formed by blasting rock.Soviet Mining Science 1973;9(2):144-8.

    Lilly PA.An empirical method of assessing rock mass blastability.In:Proceedings of large open pit planning conference.Parkville,Victoria:AusIMM;1986.p.89-92.

    Maerz NH.Online fragmentation analysis:achievements in the mining industry.Austin Texas.In:Center for aggregates research(ICAR)seventh annual symposium Proceedings;1999.pp.C1-1-1 to B1-1-10.

    Maerz NH,Zhou W.Calibration of optical digital fragmentation measuring systems.Fragblast-International Journal for Blasting and Fragmentation 2000;4(2):126-38.

    Mendes R,Ribeiro J,Plaksin I,Campos J,Tavares B.Differences between the detonation behavior of emulsion explosives sensitized with glass or with polymeric micro-balloons.Journal of Physics:Conference Series 2014;500(5):1-6.

    Mishra AK,Sinha PR.VOD measurement techniques-a review.In:Proceedings of the 15th National seminar on explosive and blasting;2003.p.43-52.Dhanbad.

    Ouchterlony F.The Swebrec?function:linking fragmentation by blasting and crushing.Mining Technology-Transactions of the Institutions of Mining and Metallurgy:Section A 2005;114(1):29-44.

    Ouchterlony F.The case for the median fragment size as a better fragment size descriptor than the mean.Rock Mechanics and Rock Engineering 2016;49(1):143-64.

    Ozkahraman HT.Fragmentation assessment and design of blast pattern at Goltas Limestone Quarry,Turkey.International Journal of Rock Mechanics and Mining Sciences 2006;43(4):628-33.

    Pradhan M,Jade RK.Detonation behavior of bulk emulsion explosive in water filled blast holes.In:Performance of explosives and new developments.CRC Press;2012.p.65-70.

    Rocscience.Rocscience software products,RocData.Toronto,Canada:Rocsience Inc;2013.

    Rosin P,Rammler E.The laws governing the fineness of powdered coal.Journal of the Institute of Fuel 1933;7:29-36.

    Sanchidrián JA,Segarra P,Ouchterlony F,López LM.On the accuracy of fragment size measurement by image analysis in combination with some distribution functions.Rock Mechanics and Rock Engineering 2009;42(1):95-116.

    Siddiqui FI,Shah SA,Behan MY.Measurement of size distribution of blasted rock using digitalimage processing.JournalofKing Abdulaziz University 2009;20(2):81-93.

    Singh PK,Roy MP,Paswan RK,Sarim MD,Kumar S,Ranjan Jha R.Rock fragmentation control in opencast blasting.Journal of Rock Mechanics and Geotechnical Engineering 2016;8(2):225-37.

    Spathis AT.A correction relating to the analysis of the original Kuz-Ram model.Fragblast-International Journal of Blasting and Fragmentation 2004;8(4):201-5.

    Split Engineering.Split-desktop software manual.Tucson,USA:Split Engineering LLC;2001.

    Stroud R.2010 life of mine plan malundwe/kanga and chimiwungo pits.Perth:Optiro Pty Limited;2010.

    Tete AD,Deshmukh AY,Yerpude RR.Velocity of detonation(VOD)measurement techniques practical approach.International Journal of Engineering and Technology 2013;2(3):259-65.

    ˇZganec S,Bohanek V,Dobrilovi'c M.Influence of a primer on the velocity of detonation of ANFO and heavy ANFO blends.Central European Journal of Energetic Materials 2016;13(3):694-704.

    高清视频免费观看一区二区| 国产毛片在线视频| 亚洲欧美中文字幕日韩二区| 免费大片18禁| 日韩伦理黄色片| 日韩,欧美,国产一区二区三区| 久久久国产欧美日韩av| 国产精品久久久久久精品电影小说| 2018国产大陆天天弄谢| 两个人的视频大全免费| 国产免费又黄又爽又色| 亚洲精品成人av观看孕妇| 成人影院久久| 国产精品偷伦视频观看了| 肉色欧美久久久久久久蜜桃| 亚洲av综合色区一区| xxx大片免费视频| 纵有疾风起免费观看全集完整版| 一个人看视频在线观看www免费| 国产69精品久久久久777片| a级毛片免费高清观看在线播放| 大香蕉久久成人网| 国产成人freesex在线| 乱人伦中国视频| 美女福利国产在线| 亚洲色图 男人天堂 中文字幕 | 男人操女人黄网站| 久久久久国产网址| 欧美成人午夜免费资源| 婷婷色综合www| 成人18禁高潮啪啪吃奶动态图 | 看非洲黑人一级黄片| 亚洲成色77777| 97超碰精品成人国产| 亚洲不卡免费看| 亚洲不卡免费看| 欧美日韩亚洲高清精品| 97精品久久久久久久久久精品| 王馨瑶露胸无遮挡在线观看| 日本爱情动作片www.在线观看| 九色成人免费人妻av| 一边亲一边摸免费视频| 亚洲一级一片aⅴ在线观看| 美女国产视频在线观看| 国产一区二区在线观看av| 成人黄色视频免费在线看| 久久99蜜桃精品久久| 永久免费av网站大全| 看十八女毛片水多多多| 中国美白少妇内射xxxbb| 久久这里有精品视频免费| 免费少妇av软件| 新久久久久国产一级毛片| 国产一级毛片在线| 日韩免费高清中文字幕av| 热re99久久国产66热| av在线老鸭窝| 久久国内精品自在自线图片| 我的女老师完整版在线观看| 久久久久精品久久久久真实原创| 免费高清在线观看视频在线观看| 边亲边吃奶的免费视频| 欧美三级亚洲精品| 久久鲁丝午夜福利片| 久久久欧美国产精品| 国产精品国产三级国产专区5o| 晚上一个人看的免费电影| 久久久久国产精品人妻一区二区| 久久久久久久久久久丰满| 国产精品国产av在线观看| h视频一区二区三区| 91精品一卡2卡3卡4卡| 午夜视频国产福利| 两个人免费观看高清视频| 国内精品宾馆在线| 亚洲成人手机| 搡老乐熟女国产| 一本色道久久久久久精品综合| 91国产中文字幕| 久久久久久久久久久久大奶| 在线看a的网站| 久久鲁丝午夜福利片| 热99久久久久精品小说推荐| 老女人水多毛片| a级毛色黄片| 久久久精品区二区三区| 99久国产av精品国产电影| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩卡通动漫| 校园人妻丝袜中文字幕| a 毛片基地| 国产精品熟女久久久久浪| 热99国产精品久久久久久7| av国产久精品久网站免费入址| 国产精品三级大全| 爱豆传媒免费全集在线观看| 色吧在线观看| 少妇丰满av| av网站免费在线观看视频| 免费观看av网站的网址| 中文天堂在线官网| 免费av不卡在线播放| 99精国产麻豆久久婷婷| 天堂中文最新版在线下载| 夫妻性生交免费视频一级片| kizo精华| 在线观看免费视频网站a站| 成人综合一区亚洲| 国产日韩欧美在线精品| 一级毛片aaaaaa免费看小| 国产成人午夜福利电影在线观看| 国产深夜福利视频在线观看| 免费黄色在线免费观看| 免费大片18禁| 国产视频首页在线观看| 欧美少妇被猛烈插入视频| 欧美人与性动交α欧美精品济南到 | 美女xxoo啪啪120秒动态图| 黄片播放在线免费| 成人无遮挡网站| 国产黄色视频一区二区在线观看| 午夜激情福利司机影院| 中文字幕亚洲精品专区| 亚洲av在线观看美女高潮| av在线app专区| 精品亚洲成a人片在线观看| 大又大粗又爽又黄少妇毛片口| 黄色欧美视频在线观看| 中文字幕久久专区| 午夜免费男女啪啪视频观看| 熟女av电影| 热99久久久久精品小说推荐| 看免费成人av毛片| 亚洲欧美精品自产自拍| 最新的欧美精品一区二区| 精品久久蜜臀av无| 高清不卡的av网站| 99热全是精品| 日本91视频免费播放| 十八禁网站网址无遮挡| 三级国产精品欧美在线观看| 亚洲精品,欧美精品| 色婷婷av一区二区三区视频| 亚洲av男天堂| 日韩大片免费观看网站| 最新中文字幕久久久久| www.色视频.com| 亚洲精品久久久久久婷婷小说| 18在线观看网站| 国产精品国产三级专区第一集| 免费高清在线观看视频在线观看| 亚洲怡红院男人天堂| 99国产精品免费福利视频| 精品久久久精品久久久| 日韩免费高清中文字幕av| 五月天丁香电影| 蜜桃国产av成人99| 女的被弄到高潮叫床怎么办| 在线亚洲精品国产二区图片欧美 | 伦理电影大哥的女人| 国产精品99久久久久久久久| 久久精品人人爽人人爽视色| 亚洲成人av在线免费| 男女免费视频国产| 91国产中文字幕| 亚洲美女黄色视频免费看| av免费观看日本| 一区二区av电影网| 亚州av有码| 日日撸夜夜添| 国产国拍精品亚洲av在线观看| 国产高清国产精品国产三级| 最近中文字幕高清免费大全6| 2021少妇久久久久久久久久久| a 毛片基地| 欧美xxxx性猛交bbbb| 狠狠精品人妻久久久久久综合| 国产精品国产av在线观看| 伦精品一区二区三区| 在线看a的网站| 男的添女的下面高潮视频| av.在线天堂| 天堂中文最新版在线下载| 国产精品久久久久久久电影| 人成视频在线观看免费观看| 一区二区三区精品91| av播播在线观看一区| 亚洲av.av天堂| 午夜免费鲁丝| 人人妻人人添人人爽欧美一区卜| 久久国产亚洲av麻豆专区| 简卡轻食公司| 嘟嘟电影网在线观看| 乱人伦中国视频| 九草在线视频观看| 中文欧美无线码| 亚洲国产精品专区欧美| 在线观看三级黄色| 视频中文字幕在线观看| 丰满少妇做爰视频| 韩国av在线不卡| 一级爰片在线观看| 国产探花极品一区二区| 色网站视频免费| 亚洲一区二区三区欧美精品| 少妇丰满av| 亚洲美女黄色视频免费看| 成人黄色视频免费在线看| 国产精品免费大片| 高清不卡的av网站| 午夜激情av网站| 国产高清三级在线| 99国产综合亚洲精品| 亚洲激情五月婷婷啪啪| 国产 一区精品| av又黄又爽大尺度在线免费看| 黄片播放在线免费| 成人漫画全彩无遮挡| 一区二区三区乱码不卡18| 日韩一区二区三区影片| 国产无遮挡羞羞视频在线观看| 亚洲精品国产av蜜桃| av在线app专区| 日韩一区二区视频免费看| 亚洲久久久国产精品| 久久久久久久久久成人| kizo精华| 亚洲成人av在线免费| 成年美女黄网站色视频大全免费 | 亚洲一级一片aⅴ在线观看| 免费av中文字幕在线| 久久久久久久精品精品| 精品久久久精品久久久| 下体分泌物呈黄色| 狂野欧美激情性bbbbbb| 久久久久久人妻| 午夜免费男女啪啪视频观看| 色5月婷婷丁香| 五月开心婷婷网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 韩国高清视频一区二区三区| 人妻系列 视频| 欧美成人精品欧美一级黄| 欧美精品高潮呻吟av久久| 久热这里只有精品99| 国产一区二区三区综合在线观看 | 少妇的逼水好多| 尾随美女入室| 国产成人精品久久久久久| 免费少妇av软件| 日韩一区二区视频免费看| 免费看光身美女| 22中文网久久字幕| 亚洲人成网站在线播| 欧美 亚洲 国产 日韩一| 国产日韩欧美视频二区| 亚洲精华国产精华液的使用体验| 久久久久久久久久人人人人人人| av网站免费在线观看视频| 极品人妻少妇av视频| 人人澡人人妻人| 麻豆精品久久久久久蜜桃| 欧美成人午夜免费资源| 午夜福利,免费看| 久久热精品热| 午夜av观看不卡| 中文精品一卡2卡3卡4更新| 午夜91福利影院| 在现免费观看毛片| videos熟女内射| 色5月婷婷丁香| 国产成人精品无人区| 国产一区二区在线观看日韩| 国国产精品蜜臀av免费| 91精品伊人久久大香线蕉| 免费黄色在线免费观看| 国产亚洲精品第一综合不卡 | 国产日韩欧美视频二区| 欧美成人午夜免费资源| 蜜桃在线观看..| 国产av码专区亚洲av| 一区二区三区精品91| 亚洲精品色激情综合| 亚洲情色 制服丝袜| 午夜老司机福利剧场| 51国产日韩欧美| 新久久久久国产一级毛片| 国产精品国产av在线观看| 日韩熟女老妇一区二区性免费视频| freevideosex欧美| 成人国产av品久久久| 少妇猛男粗大的猛烈进出视频| 在现免费观看毛片| 久久久久久人妻| 国产成人午夜福利电影在线观看| 国产av码专区亚洲av| 亚洲天堂av无毛| √禁漫天堂资源中文www| 日韩免费高清中文字幕av| 飞空精品影院首页| 18+在线观看网站| 黑丝袜美女国产一区| 大香蕉久久成人网| 草草在线视频免费看| 亚洲精品成人av观看孕妇| 99久久人妻综合| a级片在线免费高清观看视频| 日本黄大片高清| 婷婷色综合大香蕉| 97在线视频观看| 欧美日韩av久久| 午夜免费男女啪啪视频观看| 看非洲黑人一级黄片| 91精品伊人久久大香线蕉| 久久久久久久久久久丰满| 波野结衣二区三区在线| 亚洲怡红院男人天堂| 夜夜骑夜夜射夜夜干| 一级毛片aaaaaa免费看小| 蜜臀久久99精品久久宅男| 91精品伊人久久大香线蕉| 99热这里只有精品一区| 欧美激情极品国产一区二区三区 | 伦精品一区二区三区| 亚洲精品日韩av片在线观看| 校园人妻丝袜中文字幕| 国产黄色视频一区二区在线观看| h视频一区二区三区| 男女啪啪激烈高潮av片| 国产精品国产三级国产av玫瑰| 男男h啪啪无遮挡| 亚洲精品国产av蜜桃| 人人妻人人澡人人爽人人夜夜| 国产熟女午夜一区二区三区 | 日本91视频免费播放| 亚洲经典国产精华液单| av免费在线看不卡| 欧美少妇被猛烈插入视频| 2021少妇久久久久久久久久久| 乱人伦中国视频| 欧美日韩一区二区视频在线观看视频在线| 少妇丰满av| 免费观看无遮挡的男女| 特大巨黑吊av在线直播| 国产男女内射视频| 又大又黄又爽视频免费| 日韩中字成人| 日韩中文字幕视频在线看片| 一级片'在线观看视频| 天堂8中文在线网| 好男人视频免费观看在线| 国产精品久久久久成人av| 亚洲国产色片| 99热6这里只有精品| 18禁动态无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 久久久精品免费免费高清| 永久网站在线| 亚洲av福利一区| 老司机影院成人| 国产日韩欧美在线精品| 夫妻性生交免费视频一级片| 日韩大片免费观看网站| 女性被躁到高潮视频| 一区二区日韩欧美中文字幕 | 丝瓜视频免费看黄片| 九九在线视频观看精品| 少妇人妻 视频| a级毛片黄视频| 一区二区日韩欧美中文字幕 | 天天影视国产精品| 人妻夜夜爽99麻豆av| 国产视频首页在线观看| 亚洲欧美日韩另类电影网站| 久久精品熟女亚洲av麻豆精品| 男女免费视频国产| 91久久精品国产一区二区三区| 人妻系列 视频| 午夜视频国产福利| 亚洲精品,欧美精品| 黄色毛片三级朝国网站| 国产深夜福利视频在线观看| 久久国产精品大桥未久av| 亚洲欧美成人综合另类久久久| 一二三四中文在线观看免费高清| 中文字幕免费在线视频6| 婷婷色麻豆天堂久久| 日韩强制内射视频| 最近的中文字幕免费完整| 国产精品99久久久久久久久| 精品国产一区二区久久| 黄色毛片三级朝国网站| 亚洲人成网站在线播| 亚洲中文av在线| 亚洲怡红院男人天堂| 天美传媒精品一区二区| 国产爽快片一区二区三区| 狠狠婷婷综合久久久久久88av| 在线观看三级黄色| 久久久久精品性色| 久久毛片免费看一区二区三区| 国产精品无大码| 国模一区二区三区四区视频| 精品一品国产午夜福利视频| 一区在线观看完整版| 日韩亚洲欧美综合| 亚洲久久久国产精品| 99热国产这里只有精品6| 成人无遮挡网站| 亚洲人成网站在线播| 国产探花极品一区二区| 久久久午夜欧美精品| 91在线精品国自产拍蜜月| 黄色欧美视频在线观看| 国产 一区精品| 婷婷色综合www| 狠狠精品人妻久久久久久综合| 精品熟女少妇av免费看| 丰满迷人的少妇在线观看| 国产69精品久久久久777片| 国产探花极品一区二区| 看非洲黑人一级黄片| 毛片一级片免费看久久久久| 18禁观看日本| 亚洲av二区三区四区| 一本—道久久a久久精品蜜桃钙片| 婷婷色综合www| 日本欧美视频一区| 久久热精品热| av天堂久久9| 99热这里只有是精品在线观看| 人妻一区二区av| 一区在线观看完整版| 色视频在线一区二区三区| 丝袜在线中文字幕| 女人久久www免费人成看片| 亚洲av男天堂| 色婷婷久久久亚洲欧美| av专区在线播放| 这个男人来自地球电影免费观看 | 最后的刺客免费高清国语| 国产免费又黄又爽又色| 午夜福利在线观看免费完整高清在| 最近最新中文字幕免费大全7| 2021少妇久久久久久久久久久| 欧美一级a爱片免费观看看| 全区人妻精品视频| 一本—道久久a久久精品蜜桃钙片| 国产精品嫩草影院av在线观看| 夜夜爽夜夜爽视频| 亚洲精品视频女| 青青草视频在线视频观看| 在线亚洲精品国产二区图片欧美 | 亚洲欧洲日产国产| 午夜激情福利司机影院| 久久久欧美国产精品| 又大又黄又爽视频免费| av女优亚洲男人天堂| kizo精华| 国产精品秋霞免费鲁丝片| 水蜜桃什么品种好| 久久精品人人爽人人爽视色| 亚洲国产欧美在线一区| 久久99热6这里只有精品| .国产精品久久| 黑人猛操日本美女一级片| 蜜桃国产av成人99| 老司机影院毛片| 午夜激情久久久久久久| 超碰97精品在线观看| 亚洲av日韩在线播放| 久久99热这里只频精品6学生| 高清毛片免费看| 亚洲av欧美aⅴ国产| 午夜精品国产一区二区电影| 亚洲美女黄色视频免费看| 狠狠婷婷综合久久久久久88av| 国产成人av激情在线播放 | 极品少妇高潮喷水抽搐| 国产精品 国内视频| 91精品国产国语对白视频| 久热这里只有精品99| 最黄视频免费看| 狂野欧美激情性bbbbbb| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 欧美 日韩 精品 国产| 你懂的网址亚洲精品在线观看| 少妇的逼好多水| 成人二区视频| 黑丝袜美女国产一区| 午夜久久久在线观看| 香蕉精品网在线| 精品熟女少妇av免费看| 在线观看美女被高潮喷水网站| 久久精品国产a三级三级三级| 交换朋友夫妻互换小说| 美女xxoo啪啪120秒动态图| 精品亚洲乱码少妇综合久久| 中文天堂在线官网| 少妇猛男粗大的猛烈进出视频| 日韩精品免费视频一区二区三区 | 乱码一卡2卡4卡精品| 一级,二级,三级黄色视频| av在线播放精品| 国产色婷婷99| 国产精品一国产av| 2021少妇久久久久久久久久久| 亚洲国产精品999| 啦啦啦在线观看免费高清www| 国产深夜福利视频在线观看| freevideosex欧美| 国产亚洲精品久久久com| 欧美激情 高清一区二区三区| 18禁裸乳无遮挡动漫免费视频| 欧美日韩亚洲高清精品| 街头女战士在线观看网站| 国产精品久久久久成人av| 国产白丝娇喘喷水9色精品| 狂野欧美激情性xxxx在线观看| 乱码一卡2卡4卡精品| 国产极品粉嫩免费观看在线 | 久久精品熟女亚洲av麻豆精品| 七月丁香在线播放| 热re99久久精品国产66热6| 国产有黄有色有爽视频| 最近中文字幕高清免费大全6| 热99久久久久精品小说推荐| 日韩中文字幕视频在线看片| 丝袜在线中文字幕| 91午夜精品亚洲一区二区三区| 亚洲国产最新在线播放| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 纯流量卡能插随身wifi吗| 日韩一本色道免费dvd| 一级毛片我不卡| 日韩在线高清观看一区二区三区| 一级毛片 在线播放| 婷婷色av中文字幕| 一级,二级,三级黄色视频| 夜夜骑夜夜射夜夜干| 国产成人精品在线电影| 久久97久久精品| 91精品一卡2卡3卡4卡| 日韩中文字幕视频在线看片| 如何舔出高潮| 男的添女的下面高潮视频| 精品少妇内射三级| 人妻制服诱惑在线中文字幕| 亚洲欧洲日产国产| 三级国产精品片| 边亲边吃奶的免费视频| 婷婷色综合www| 亚洲成人av在线免费| 一二三四中文在线观看免费高清| 久久精品人人爽人人爽视色| 久久人人爽av亚洲精品天堂| 亚洲精品一二三| 国产亚洲欧美精品永久| 高清在线视频一区二区三区| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 久久99一区二区三区| 亚洲国产最新在线播放| 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| 99精国产麻豆久久婷婷| 大片免费播放器 马上看| 亚洲成人av在线免费| 精品卡一卡二卡四卡免费| 亚洲经典国产精华液单| 黄色毛片三级朝国网站| 成年人免费黄色播放视频| 国产av国产精品国产| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 国产成人精品福利久久| 啦啦啦视频在线资源免费观看| 国产欧美亚洲国产| 久久 成人 亚洲| 不卡视频在线观看欧美| 青春草亚洲视频在线观看| kizo精华| 国产精品一区二区在线不卡| av在线老鸭窝| 亚洲欧洲国产日韩| 成人二区视频| 一级,二级,三级黄色视频| 日韩免费高清中文字幕av| 国产精品.久久久| 黄片播放在线免费| 午夜免费男女啪啪视频观看| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 观看av在线不卡| 青春草国产在线视频| 国产女主播在线喷水免费视频网站| 久久国内精品自在自线图片| 日本免费在线观看一区| 嫩草影院入口| 欧美激情国产日韩精品一区| 国产精品三级大全| 久久久国产欧美日韩av| 欧美bdsm另类| 亚洲av综合色区一区| 18在线观看网站| 国内精品宾馆在线| 全区人妻精品视频| 精品卡一卡二卡四卡免费| 国产精品一区二区在线观看99| 在线观看免费高清a一片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91精品三级在线观看| 午夜免费鲁丝|