• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessment of clay stiffness and strength parameters using index properties

    2018-06-01 08:46:48SayedAhmed

    Sayed M.Ahmed

    Structural Engineering Department,Ain Shams University,Cairo,11517,Egypt

    1.Introduction

    Determination of the parameters of compressibility and strength of geomaterials is a difficult yet essential task in geotechnical analyses.Reliable estimates of these parameters allow geotechnical engineers to design structures,roads and utilities to be safe,serviceable and economic.Commonly,geotechnical engineers,in the initial phases of the geotechnical investigation,focus on the index properties such as the liquid limit,LL,plastic limit,PL,natural water content,wn,and gradation tests.These tests are generally cheap,as they do not require expensive capacious equipment or special experience.They are mainly used to serve in the classi fi cation of soils.

    Geotechnical engineers commonly utilize clay index properties to estimate the geotechnical parameters.For example,the use of plasticity index,PI,to estimate the effective friction angle,φ′,and the use of the liquidity index,LI,to determine the undrained shear strength,su,are the normal geotechnical practices.Nevertheless,such correlations have a substantial scatter(Kulhawy and Mayne,1990;Ameratunga et al.,2015).Fig.1 shows the obviously scatteredPI-φ′data,pertaining to different clays(Tanaka,2002),versus a recentPI-φ′correlation proposed by Sorensen and Okkels(2013).This figure also illustrates that some clays may have a high effective friction angle,φ′,despite of high plasticity index,PI,which contradicts with the commonly related correlations.

    Moreover,some clays naturally exist with a liquidity index,LI,greater than 100%(i.e.the natural water content,wn,is greater than the liquid limit,LL);yet they have non-trivial undrained shear strength,su,that increases with depth.This contradicts with the common correlations that relatesutoLIas they presume such clays to have negligible undrained strength.Examples of these clays include Ariake clay in Japan and Champlain clay in Canada(Rochelle et al.,1974;Tanaka et al.,2001).

    The above-mentioned discrepancies shed doubts on the reliability of the correlations relating the clay parameters to the index properties.One of the anticipated reasons for these discrepancies is that such correlations are developed based on the data pertaining to particular sites.Hence,inaccuracies may occur when such correlations are applied to other sites with varied clay mineralogy,gradation and/or state of stresses.Additionally,many influencing factors,such as aging,cementation,and anisotropy,cannot simply be incorporated into the correlations that relate clay parameters to the index properties.In this context,site-specific correlations are generally expected to perform better than generic correlations.

    In this study,the parameters controlling the site-specific relationships between the shear wave velocity,VS,the void ratio,e0,and the effective mean stress,p′,are obtained using measurements of the clay index properties with depth.Subsequently,the strength and stiffness parameters are determined using relationships interrelating clay stiffness and strength.The presented approach comprises an iterative site-specific methodology rather than a direct correlation.It can be implemented using a simple spreadsheet.Thus,it can be utilized in both geotechnical research and routine engineering practices.

    Fig.1.Relationship between the effective friction angle φ′and plasticity index PI.

    2.Previous related correlations

    The following correlations are utilized in this study as a part of the presented procedures:

    (1)The compression index,CC,is related to the plasticity index,PI,as follows(Wroth and Wood,1978):

    Eqs.(1)-(7)can simply be substituted with alternative sitespecific correlations or factual data without affecting the structure of the presented methodology.

    3.Site-specific formulation of the shear wave velocity

    Recently,the use of shear wave velocity(either independently or with other parameters)has become an increasing trend in geotechnical engineering.The shear wave velocity has been related to many important geotechnical parameters such as the bulk unit weight,effective friction angle,undrained shear strength,and atrest earth pressure coefficient(Mayne,2014;Hussien and Karray,2016;L’Heureux and Long,2016;Moon and Ku,2016a).Moreover,the indispensable need to consider the small-strain stiffness in geotechnical applications is related to the shear wave velocity,which has been frequently demonstrated(Burland,1989;Atkinson,2000;Elhakim,2005;Benz,2007;Clayton,2011).

    Many studies have shown that the shear wave velocity can be expressed directly as a function of the effective mean stress,p′,the soil void ratio,e0,and theOCR(Hardin and Richart,1963;Hardin,1978).More recently,a different approach has been presented.The shear wave velocity is expressed as a function of certain sitespecific parameters with either the effective mean stress,p′,or the void ratio,e0(Santamarina et al.,2001;Ku et al.,2016)as follows:

    whereVS,p′andVS,e0are the estimates of shear wave velocity using the mean effective stress,p′,or the void ratio,e0,respectively.The pa

    rametersα,β,a,andbare the site-specific parameters.

    It is noted that Eqs.(8)and(9)do not provideVSas functions of the effective mean stressp′or void ratioe0only,as these formulae depend also on site-specific parameters,i.e.α,β,a,andb.Based on the measurements made in many sites with different geomaterials(including clays and sands)at different states of stresses and OCRs,it is found that the site-specific parametersαandaare related toβ andb,respectively,which can be written as follows(Ku et al.,2016;Moon and Ku,2016b):

    Generally,the site-specific parameters(i.e.α,β,a,andb)are determined from in situ measurements of the shear wave velocityVS.In this study,the shear wave site-specific parameters,i.e.α,β,a,andb,are determined by utilizing the variation of the natural water content,wn(or the void ratioe0)with the effective mean stress,p′.Hence,shear wave velocityVScan be estimated consequently.

    Fig.2.Iterative procedure used in this study.

    Fig.3.Continuation of the analysis after convergence.

    4.Methodology

    4.1.Determination of the shear wave velocity VS

    According to Eqs.(8)-(11),VS,p′andVS,e0may be expressed as follows:

    As lnGS≈1 for the common value range ofGS,lne0in saturated soils may be expressed as follows:

    Fig.4.Locations of the five case studies.

    Fig.5.Index properties and inferred OCR of Bothkennar clay case study.Sources of data:Allman and Atkinson(1992),Hight et al.(1992,2003),Nash et al.(1992),McGinty(2006),and Mayne(2016).

    Fig.6.Regression analysis of Bothkennar clay case study.Sources of data:Allman and Atkinson(1992),Hight et al.(1992,2003),Nash et al.(1992),McGinty(2006),and Mayne(2016).

    Fig.7.Undrained shear strength suof Bothkennar clay case study.Sources of data:Allman and Atkinson(1992),Hight et al.(1992,2003),Nash et al.(1992),McGinty(2006),and Mayne(2016).

    whereiwandmware the site-specific parameters representing the intercept and the negative slope of the lnwn-lnp′linear relationship,respectively.

    The interceptiwand the slopemwin Eq.(16)can be determined using simple regression analysis with common spreadsheet program,such as EXCEL,by assuming a power fitting function with respect to the natural water content,wn,and the mean effective stress,p′,as follows:

    whereie,me,andIeare the site-specific parameters representing the intercept of the lne0-lnp′linear relationship,the negative exponent of thee0-p′power relationship,and the constant of thee0-p′power relationship,respectively.

    The relationships betweeniw,ieandmw,meare

    Fig.8.At-rest earth pressure coefficient K0of Bothkennar clay case study.Sources of data:Allman and Atkinson(1992),Hight et al.(1992,2003),Nash et al.(1992),McGinty(2006),and Mayne(2016).

    Theoretically,Vsestimated using the formulations ofVS,p′orVS,e0should be identical.Nevertheless,as commonly acknowledged,there might be differences between independent expressions for the same geotechnical parameter,especially when they depend on different inputs.Hence,in case ofVS,p′≠VS,e0,it is logical to use the average of them as an estimate ofVS.This average is assumed herein as the geometric mean value.Hence,the shear wave velocityVSmay be estimated usingVS,e0andVS,p′as follows:

    Fig.9.The shear wave velocity VSof Bothkennar clay case study.Sources of data:Allman and Atkinson(1992),Hight et al.(1992,2003),Nash et al.(1992),McGinty(2006),and Mayne(2016).

    The geometric mean value,expressed in Eqs.(25)and(26),is preferred over other averaging methods as it yields a similar expression to the direct correlations that relate the shear wave velocityVSto both of the mean effective stress,p′,and the void ratio,e0.Nevertheless,it is noted that the above equations utilize the site-specific parametersβandbin lieu of constants in the direct correlations.

    The mean effective stress,p′,in the above equations is determined in accordance with Eqs.(2)-(7).An initial value for the effective friction angle,φ′,is needed at the start of the analyses.This initial value may be assumed as 30°.Subsequently,an iterative procedure is used to determine the true value ofφ′as detailed in the following sections.

    4.2.Determination of clay stiffness parameters

    In this section,the small-strain shear modulus,G0,and the operative moduli,G50,andEoed,are deduced from the deduced shear wave velocity.Firstly,the small-strain shear modulus,G0,is determined from the shear wave velocity and the soil unit weight as follows(Mayne,2014):

    whereγandgare the clay unit weight and the gravitational acceleration,respectively.

    Fig.10.The effective friction angle φ′of Bothkennar clay case study.Sources of data:Allman and Atkinson(1992),Hight et al.(1992,2003),Nash et al.(1992),McGinty(2006),and Mayne(2016).

    The secant shear modulus at 50%of the ultimate shear stress,

    G

    50,is related to the small-shear modulus,G0,as follows(Krage et al.,2014):

    4.3.Determination of the effective friction angle

    In this section,the effective friction angle, φ′,is determined using the formulation of the rigidity index,Ir,which relates clay strength to its stiffness.The parameter,Ir,is defined as the ratio of the operative shear modulusGto the undrained shear strengthsu(i.e.Ir=G/su).

    For the case of the consolidated isotropic undrained triaxial compression(CIUC)testin soft to firm clays,the rigidity indexIr,CIUCmay be estimated using the critical state mechanics as follows(Kulhawy and Mayne,1990;Mayne,2001):

    whereMis a critical state strength parameter.It is related to the critical state friction angle φcsasM= 6 sin φcs/(3-sinφcs).However,in soft to firm clays,the difference between the peak strength friction angle,φ′,and the critical state friction angle,φcs,may be ignored.Hence,the parameterMmay be defined for these studied clays asM=6 sinφ′/(3-sinφ′)(Kulhawy and Mayne,1990).

    The operative shear modulusGin Eq.(30)may be assumed equal toG50(Kulhawy and Mayne,1990;Mayne,2001).Thus,Eq.(30)may be modified as follows:

    Subsequently,the effective friction angle,φ′,is estimated using the value ofMobtained from Eq.(33)as follows:

    The outcome of Eq.(34)is considered a better estimate of the effective friction angle φ′than its initial assumption(i.e.30°).The effective friction angle, φ′,becomes closer to its real value with more iterations;the value ofφ′concluded from an iteration is considered to be the new initial value in the subsequent iteration.The iterations stop when the effective friction angle φ′converges to its anticipated correct value.

    Fig.11.Index properties and OCR of Ariake clay case study.Source of data:Tanaka et al.(2001).

    Fig.12.Regression analysis of Ariake clay case study.Source of data:Tanaka et al.(2001).

    4.4.Determination of the undrained shear strength

    The undrained shear strength varies with the stress path.Typically,the undrained shear strength of the triaxial compression(TC)test is the largest and that of the triaxial extension(TE)test is the lowest.The undrained strength of the direct simple shear(DSS)test is nearly the average of these limits,and hence it is often employed in the geotechnical analysis that involves different stress paths such as the analysis of foundations and slopes.

    The DSS undrained strengthsu,DSScan be obtained from the estimated effective friction angle,φ′,overconsolidation ratio,OCR,and the effective vertical stress,σ′v0,as follows(Wroth and Wood,1978;Kulhawy and Mayne,1990):

    Fig.13.Undrained shear strength suof Ariake clay case study.Source of data:Tanaka et al.(2001).

    The undrained shear strength for other stress paths can also be determined for the same stress and effective strength parameters(Kulhawy and Mayne,1990).

    4.5.Determination of the cone factors Irand Nkt

    Based on the estimated values ofG50andsu,DSS,the cone rigidity factor,Ir,cone,may be determined as

    Fig.14.Small-strain shear modulus G0of Ariake clay case study.Source of data:Tanaka et al.(2001).

    Fig.15.Cone factor Nktof Ariake clay case study.Source of data:Tanaka et al.(2001).

    4.6.Iterative procedure

    As mentioned previously,the analysis starts with an assumption of the effective friction angle φ′=30°.Subsequently,an updated value is obtained from Eq.(34).A new iteration starts with the updated value ofφ′until two subsequent iterations yield close values of the effective friction angle,φ′.Fig.2 shows the flow chart of the proposed methodology before and during the iteration process.Once convergence is reached,the clay stiffness and strength parameters are calculated as demonstrated in Fig.3.

    5.Validation cases

    Five well-reported case studies are analyzed using the proposed approach.The case studies are from different places around the world(i.e.United Kingdom,Japan,Thailand,South Korea and Canada),as shown in Fig.4.The consistency of the clays in these case studies varies from very soft to firm.In two of the cases,the natural water content,wn,exceeds the liquid limit,LL(i.e.Ariake and Champlain clays).As illustrated before,a regression analysis is required to determine the power function that relates the natural water content,wn,and the mean effective stress,p′,in Eqs.(17)and(18).This function is represented by a straight line in the log10wn-log10p′space.Data points used in the regression analyses are to be selected in accordance with the following tentative criteria:

    (1)The natural water content,wn,should decrease with the increase of the mean stress,p′.Data points having different trends are to be ignored in the regression analyses.

    (2)Outliers(i.e.points that may substantially reduce the coefficient of determinationR2when considered)are removed from the data utilized for the regression analyses.

    Fig.16.Index properties and OCR of Bangkok clay case study.Source of data:Bergado et al.(2002).

    The measured undrained shear strength of clays in the case studies was mainly determined using vane shear test(VST).In some case studies,clay parameters other than the undrained shear strength(e.g.VS,G0,φ′,K0andNkt)were also reported;these parameters are also compared with the results of the analyses for validation of the proposed approach.

    5.1.Bothkennar clay

    This site is located in Bothkennar,Scotland,United Kingdom.It has been intensively used for the geotechnical researches related to soft clays.An exhaustive geotechnical site investigation program was carried out that comprised undisturbed sampling with different methods(i.e.block samples,Delft continuous samples and piston samples),installation of piezometers,conducting of piezocones(CPTU),seismic piezocone(SCPTU),VST,dilatometer(DMT),and self-boring pressuremeter(SBPM)(Allman and Atkinson,1992;Hight et al.,1992,2003;Nash et al.,1992;McGinty,2006;Mayne,2016).

    Fig.5 shows the liquid limit,LL,plastic limit,PL,natural moisture content,wn,and inferred overconsolidation ratio,OCR.A regression analysis between the natural water content,wn,and effective mean stress,p′,was conducted as shown in Fig.6.The following results are obtained:Iw=572.8,iw=6.35,andmw=0.551.The coefficient of determination,R2,is 0.89.The site-specific shear wave parametersβandbare 0.553 and-1.003,respectively.

    Fig.7 shows the predicted DSS undrained strength versus the corrected VST undrained strength.In general,there is a good agreement between the predicted undrained strength and the corrected undrained VST strength except for the few meters near the ground surface.It is noted that different in situ investigations(i.e.CPTU,DMT and VST)conducted as a part of the different site investigation campaigns have shown similar contradictions near the ground surface in this particular site(Mayne,2016).Hence,it is believed that the revealed differences near the ground surface are mainly due to the substantial natural variability of the surficial soil layers at this site.

    Fig.8 shows the predicted at-rest earth pressure coefficient,K0,as well as the values inferred from the self-boring pressuremeter SBPM measurements.Fig.9 shows the predicted and the measured values of the shear wave velocityVS.Generally,there is a good agreement between the measurements and the predicted values ofK0andVSexcept for few points near the ground surface for the reasons explained above.

    The commonly reported effective friction angle φ′for Bothkennar clay is 34°.Fig.10 shows that the predicted values for the effective friction angle,φ′,generally ranges between 32°and 38°,except for positions near the ground surface where higher values are anticipated.It is realized that the measured and predicted ranges of the effective friction angles are mostly in a good agreement.

    5.2.Ariake clays

    This experimental site is located in Kyushu Island,Japan.It has been used for studying Ariake soft clays by the Japanese research institutes.The natural water content is generally greater than the liquid limit in this site(generally,110%≤LI≤ 170%).This special aspect gives Ariake site a special importance as the other Japanese soft clay sites have lowerLIvalues(Tanaka et al.,2001).

    Fig.11 shows the liquid limit,LL,the plastic limit,PL,the natural moisture content,wn,and the overconsolidation ratio,OCR,at the Ariake site.The predicted values ofOCRare generally in good agreement with the values known for this site,except for the depth of 17 m or deeper(predictedOCR≈1.5;actualOCR≈1.7-2).It is also noted that the soil granulometry also changes abruptly from silty clay(about 50%silt+50%clay)above the depth of 18 m to sandy clay(about 50%sand+50%clay)below that depth(Tanaka et al.,2001).

    Fig.17.Regression analysis of Bangkok clay case study.Source of data:Bergado et al.(2002).

    Fig.18.Undrained shear strength suof Bangkok clay case study.Source of data:Bergado et al.(2002).

    The regression analysis between the natural water content,wn,and the effective mean stress,p′,is shown in Fig.12;the results areIw=937.44,iw=6.843,mw=0.582 andR2=0.89.Hence,the site-specific shear wave parameters areβ=0.732 andb=-1.257.Fig.13 shows the predicted undrained strength as well as the measured undrained strength.Fig.14 shows the predicted small strain modulus and values inferred from the shear wave velocity.Fig.15 shows the predicted cone factor,Nkt,as well as the value inferred from the measurement of the cone and the vane shear(Tanaka et al.,2001).

    In general,the predicted values ofsu,G0andNktare in good agreement with the measured/reported values except for the depth of 17 m or deeper.The reason for the deviation between the predicted and measuredsuandG0values below this depth is the above-discussed abrupt changes in the clay’sOCRvalues as well as in its granulometry,implying different characteristics below the depths of 17-18 m.

    5.3.Bangkok clay

    This clay is located approximately 30 km east of Bangkok City.The soil profile at the site consisted of a 2-m thick weathered crust overlying soft to stiff Bangkok clay.AVST was carried out for the top 15 m of the site.Fig.16 shows the liquid limit,LL,the plastic limit,PL,the natural moisture content,wn,and the overconsolidation ratio,OCR,at the site(Bergado et al.,2002).

    The results of the regression analysis between the natural water contentwnand the effective mean stressp′,as shown in Fig.17,areIw=2341.8,iw=7.759,mw=0.897 andR2=0.95.Hence,the sitespecific shear wave parameters areβ=0.677 andb=-0.755.The predicted DSS undrained strength is plotted versus the corrected vane shear strength,as shown in Fig.18.Generally,a close agreement between the actual and predicted strengths is observed.

    5.4.Busan clay

    This site is located in Busan New Port,southeast coastal region of South Korea.Busan clay extends from a depth of approximately 7 m to the end of the exploration depth at 40 m.The natural water contentwnis almost equal to or slightly lower than the liquid limit,LL,for the entire depth.Fig.19 shows the liquid limit,LL,plastic limit,PL,natural moisture content,wn,and overconsolidation ratio,OCR,at the site(Choo et al.,2016).

    Fig.20.Regression analysis of Busan clay case study.Source of data:Choo et al.(2016).

    Fig.19.Index properties and OCR of Busan clay case study.Source of data:Choo et al.(2016).

    Regressionanalyses between the natural watercontent(wn)and the effective mean stressp′,as shown in Fig.20,were carried out.The results areIw=24787,iw=10.118,mw=1.235 andR2=0.78.Hence,the site-specific shear wave parameters areβ=1.214 andb=-0.983.The predicted DSS undrained strength is plotted versus the corrected vane shear strength,as shown in Fig.21.A close agreement between the measured and predicted undrained strengths is generally observed.

    Fig.21.Undrained shear strength suof Busan clay case study.Source of data:Choo et al.(2016).

    5.5.Champlain clay

    This experimental site is located in Quebec,Canada.The prevailing formation,often termed as Champlain clay,is mainly soft sensitive cemented silty clay that has low-to-medium plasticity.One of the main characteristics of this clay is having natural water content,wn,that is substantially higher than its liquid limit,LL(generally,140%≤LI≤270%).Fig.22 shows the liquid limit,LL,plastic limit,PL,natural moisture content,wn,and the inferred overconsolidation ratio,OCR,at this site.In addition to the undrained strengths inferred from the VST,the undrained shear strength that corresponded to the failure of a full-scale test embankment was also back-calculated.The depth of failure was about 7-9 m from the ground surface.The undrained strength ratiosu/σ′pfor the clay mass within the failure zone was estimated to be 0.22(Rochelle et al.,1974).

    Regression analyses between the natural water content(wn)and the effective mean stressp′were carried out,as shown in Fig.23.The results areIw=318.47,iw=5.763,mw=0.499 andR2=0.56.The site-specific shear wave parameters areβ=0.421 andb=-0.843.The predicted DSS undrained strength versus the corrected vane shear strength is plotted in Fig.24.The predicted strength is generally in a good agreement with the back-calculated undrained strength and corrected VST undrained strength from the ground surface till reaching the depth of the failure surface.At the failure surface(i.e.at the depths of 7-9 m from the ground surface),the analysis predicts the undrained strengths of much lower value than the VST and the back-calculated undrained strengths.This may be due to reaching the post-peak low undrained strength at the failure surface.

    Fig.22.Index properties and OCR of Champlain clay case study.Source of data:Rochelle et al.(1974).

    Below the failure zone(i.e.deeper than 7-9 m from the ground surface),the predicted strength approaches again the VST undrained strength,which is higher than the back-calculated strength.These results are acceptable since the back-calculated strength is limited to the depth of the failure zone(i.e.at depths shallower than 7-9 m from the ground surface).The anticipated relatively high undrained strength below the depth of the failure zone explains the reason that the failed soil mass did not extend below that depth.

    Fig.23.Regression analysis of Champlain clay case study.Source of data:Rochelle et al.(1974).

    Fig.24.Undrained strength suof Champlain clay case study.Source of data:Rochelle et al.(1974).

    6.Limitations and advantage of the proposed approach

    Based on the results obtained in the five case studies,the suggested methodology may be utilized to determine the stiffness and strength parameters of clay layers,which is however subjected to the following constraints:

    (1)The analyzed clay layers should have nearly unified geological setting,clay mineralogy and granulometry.

    (2)Water content and Atterberg limits should be accurately determined.Low-quality geotechnical site investigations may produce unreliable index parameters.

    (3)Water content and Atterberg limits should be frequently determined(e.g.at a spacing of 1 m along the clay depth)to ensure that the data are sufficient to conduct a reliable regression analysis.

    (4)The trend of decreasing water content with increasing effective stress for a number of the points should be included in the results.In the absence of this trend,the presented approach cannot be utilized.

    (5)The vertical effective stress profile should be determinable.This may limit the use of the presented approach in under-consolidated clays,as the effective stress profiles are varied with depth and time,and thus cannot be easily determined.

    Conversely,there are advantages of the presented approach as follows:

    (1)It depends on simple tests that are often carried out for soil classification.

    (2)It is site-specific,as it depends on a regression analysis relating the water contentwnto the mean effective stressp′for the site under consideration.

    7.Conclusions

    A new approach is presented to relate the shear wave velocity,VS,and small-strain shear modulus,G0,to the index properties of saturated soft to firm clays using the site-specific variation of the natural water content,wn,with the effective mean stress,p′.The clay stiffness and strength parameters as well as the CPT modulus of rigidityIrand bearing factorNktare assessed based on the presented approach.

    The suggested approach is used as an iterative methodology rather than direct correlations.It utilizes the relationships between clay strength and stiffness inferred from the critical state mechanics.The analysis starts with an assumption of the effective friction angle φ′that is enhanced with the progress of the iterations until convergence is achieved.The proposed iterative scheme,which is described in the flowcharts shown in Figs.2 and 3,can be performed using a simple EXCEL spreadsheet.

    Five case studies in the United Kingdom,Japan,Thailand,South Korea,and Canada,respectively,were analyzed using the presented approach.It is shown that the suggested approach provides acceptable estimates of the strength and the stiffness of clays using their index properties.

    Conflicts of interest

    The author wishes to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Acknowledgments

    The author would like to express his sincere gratitude to Prof.F.M.El-Nahhas for his kind advices during the preparations of this study.The author would also like to acknowledge the efforts of the anonymous reviewers of the Journal of Rock Mechanics and Geotechnical Engineering(JRMGE).Their constructive comments helped the author to enhance the contents and the presentation of this paper.

    Appendix A.Supplementary data

    Supplementary data related to this article can be found at https://doi.org/10.1016/j.jrmge.2017.10.006.

    List of symbols

    aParameter related to the site-speci fi cVS-e0relationship

    bVoid ratio exponent in the site-specificVS-e0relationship

    CCCompression index

    CIUC Consolidated isotropic undrained triaxial compression

    DS Sample discrimination function to determineσ′

    p

    DSS Direct simple shear

    e0Natural void ratio,e0=GSwn/100 for saturated soils

    EoedConstrained/oedometric modulus

    GOperative secant shear modulus,G=G50

    gGravitational acceleration,g=9.81 m/s2

    G0Small-strain shear modulus(i.e.at shear strains less than

    G50Shear secant modulus at a shear stress equal to 50%of the ultimate shear stress

    GSSpecific gravity

    IeParameter inp′-e0relationship

    ieParameter inp′-e0relationship,ie=lnIe

    IrRigidity index,Ir=G/su

    Ir,CIUCRigidity index for the CIUC case

    Rigidity index for the cone penetration test,Ir,cone=Ir,DSS

    Ir,DSSRigidity index for the DSS case

    IwParameter inp′-wnrelationship

    iwParameter inp′-wnrelationship,iw=lnIw

    K0at-rest earth pressure coefficient

    LIliquidity index,LI=100(wn-PL)/PI(expressed as a percentage)

    LLLiquid limit(expressed as a percentage)

    meStress exponent ine0-p′relationship

    mwStress exponent inwn-p′relationship

    MStrength parameter in the Cam Clay Model

    NktBearing capacity factor related to the cone penetration

    OCROverconsolidation ratio

    p′Effective mean stress,p′=(1+2K0)σ′v0/3

    paAtmospheric pressure,pa≈100 kPa

    PIPlasticity index(expressed as a parentage),PI=LL-PL

    PLPlastic limit(expressed as a parentage)

    qtTotal cone resistance

    R2Coefficient of determination

    SBPM Self-boring pressuremeter

    suUndrained shear strengthsu,CIUCUndrained shear strength obtained from the CIUC triaxial test

    su,DSSUndrained shear strength obtained from the DSS test

    TC Triaxial compression

    TE Triaxial extension

    VSShear wave velocity

    VS,e0Shear wave velocity estimated using a site-specific Correlation withe0

    VS,p′Shear wave velocity estimated using a site-specific correlation withp′

    VST Field shear vane test

    wnNatural water content(expressed as a percentage)

    α Parameter in theVS-p′site-specific relationship

    β Stress exponent in theVS-p′site-specific relationship

    φ′Effective friction angle

    φcsCritical state friction angle

    Allman MA,Atkinson JH.Mechanical properties of reconstituted Bothkennar soil.Géotechnique 1992;42(4):289-301.

    Ameratunga J,Sivakugan N,Das BM.Correlations of soil and rock properties in geotechnical engineering.Springer;2015.

    Atkinson JH.Nonlinear soil stiffness in routine design.Géotechnique 2000;50(5):487-508.

    Benz T.Small-strain stiffness of soils and its numerical consequences.Institut für Geotechnik,Universit?t Stuttgart;2007.

    Bergado DT,Balasubramaniam AS,Fannin RJ,Holtz RD.Prefabricated vertical drains(PVDs)in soft Bangkok clay:a case study of the new Bangkok International Airport project.Canadian Geotechnical Journal 2002;39(2):304-15.

    Burland JB.Ninth Laurits Bjerrum Memorial Lecture: “Small is beautiful”-the stiffness of soils at small strains.Canadian Geotechnical Journal 1989;26(4):499-516.

    Choo H,Lee W,Hong SJ,Lee C.Application of the dilatometer test for estimating undrained shear strength of Busan New Port clay.Ocean Engineering 2016;115:39-47.

    Clayton CRI.Stiffness at small strain:research and practice.Géotechnique 2011;61(1):5-37.

    Elhakim AF.Evaluation of shallow foundation displacements using soil small-strain stiffness.Georgia Institute of Technology;2005.

    Hardin BO,Richart JFE.Elastic wave velocities in granular soils.Journal of the Soil Mechanics and Foundations Division 1963;89(1):33-65.

    Hardin BO.The nature of stress-strain behavior for soils.In:Proceedings of earthquake engineering and soil dynamics,ASCE,Pasadena,19-21 June 1978.American Society of Civil Engineers;1978.p.3-89.

    Hight DW,Bond AJ,Legge JD.Characterization of the Bothkennar clay:an overview.Géotechnique 1992;42(2):303-47.

    Hight DW,Gasparre A,Nishimura S,Minh NA,Jardine RJ,Coop MR.Characteristics of the London clay from the terminal 5 site at Heathrow airport.Géotechnique 2007;57(1):3-18.

    Hight DW,Paul MA,Barras BF,Powell JJM,Nash DFT,Smith PR,Jardine RJ,Edwards DH.The characterisation of the Bothkennar clay.In:Characterisation and engineering properties of natural soils.A.A.Balkema;2003.p.543-98.

    Hussien MN,Karray M.Shear wave velocity as a geotechnical parameter:an overview.Canadian Geotechnical Journal 2016;53(2):252-72.

    Kootahi K,Mayne PW.Index test method for estimating the effective preconsolidation stress in clay deposits.Journal of Geotechnical and Geoenvironmental Engineering 2016;142(10). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001519.

    Krage CP,Broussard NS,DeJong JT.Estimating rigidity index(IR)based on CPT measurements.In:Proceedings of the 3rd international symposium on cone penetration testing;2014.p.727-35.

    Ku T,Subramanian S,Moon SW,Jung J.Stress dependency of shear-wave velocity measurements in soils.Journal of Geotechnical and Geoenvironmental Engineering 2016;143(2).https://doi.org/10.1061/(ASCE)GT.1943-5606.0001592.

    Kulhawy FH,Mayne PW.Manual on estimating soil properties for foundation design.EPRI EL-6800,Palo Alto,CA,USA.Ithaca,NY,USA:Cornell University;1990.

    L’Heureux JS,Long M.Correlations between shear wave velocity and geotechnical parameters in Norwegian clays.In:The 17th nordic geotechnical meetingchallenges in Nordic Geotechnic(NGM 2016);2016.p.299-308.

    Mayne PW,Kulhawy FH.K0-OCR relationships in soil.Journal of the Geotechnical Engineering Division 1982;108:851-72.

    Mayne PW.Stress-strain-strength- fl ow parameters from enhanced in-situ tests.In:International conference on in situ measurement of soil properties&case histories;2001.p.27-47.

    Mayne PW,Christopher BR,DeJong J.Manual on subsurface investigations.Publication No.FHWA NHI-01-031.Washington,D.C.:National Highway Institute,Federal Highway Administration;2001.

    Mayne PW.Interpretation of geotechnical parameters from seismic piezocone tests.In:Proceedings of the 3rd international symposium on cone penetration testing(CPT’14,Las Vegas);2014.p.47-73.

    Mayne PW.Evaluating effective stress parameters and undrained shear strengths of soft- firm clays from CPTu and DMT.In:The 5th international conference on site characterization (ISC-5).Gold Coast,Brisbane,Australia:Australian Geomechanics Society;2016.p.27-55.

    McGinty K.The stress-strain behaviour of Bothkennar clay.University of Glasgow;2006.

    Moon SW,Ku T.Empirical estimation of soil unit weight and undrained shear strength from shear wave velocity measurements.In:The 5th international conference on geotechnical and geophysical site characterisation.Sydney,Australia:Australian Geomechanics Society;2016a.p.1247-52.

    Moon SW,Ku T.Development of global correlation models between in situ stressnormalized shear wave velocity and soil unit weight for plastic soils.Canadian Geotechnical Journal 2016b;53(10):1600-11.

    Nash DFT,Powell JJM,Lloyd IM.Initial investigations of the soft clay test site at Bothkennar.Géotechnique 1992;42(2):163-81.

    Rochelle P La,Trak B,Tavenas F,Roy M.Failure of a test embankment on a sensitive champlain clay deposit.Canadian Geotechnical Journal 1974;11(1):142-64.

    Santamarina JC,Klein KA,Fam MA.Soils and waves:particulate materials behavior,characterization and process monitoring.Wiley&Sons Inc.;2001.

    Skempton AW.The consolidation of clays by gravitational compaction.Quarterly Journal of the Geological Society 1970;125(1-4):373-411.

    Sorensen KK,Okkels N.Correlation between drained shear strength and plasticity index of undisturbed overconsolidated clays.In:Proceedings of the 18th international conference on soil mechanics and geotechnical engineering;2013.p.423-8.

    Tanaka H.Re-examination of established relations between index properties and soil parameters.In:Nakase A,Tsuchida T,editors.Proceedings of the International Symposium on Coastal Geotechnical Engineering in Practice,vol.2.Yokohama:A.A.Balkema;2002.p.3-25.

    Tanaka H,Locat J,Shibuya S,Soon TT,Shiwakoti DR.Characterization of Singapore,Bangkok,and Ariake clays.Canadian Geotechnical Journal 2001;38(2):378-400.

    Wroth CP,Wood DM.The correlation of index properties with some basic engineering properties of soils.Canadian Geotechnical Journal 1978;15(2):137-45.

    Yu HS,Herrmann LR,Boulanger RW.Analysis of steady cone penetration in clay.Journal of Geotechnical and Geoenvironmental Engineering 2000;126(7):594.https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(594).

    日本黄色视频三级网站网址 | 国产麻豆69| 久久精品aⅴ一区二区三区四区| 国产成人av激情在线播放| 免费av中文字幕在线| 久久人妻av系列| av天堂久久9| 久久久国产一区二区| 欧美日韩福利视频一区二区| 美女主播在线视频| 纵有疾风起免费观看全集完整版| 免费在线观看黄色视频的| 国产成人啪精品午夜网站| 成人精品一区二区免费| 91精品三级在线观看| 午夜日韩欧美国产| 啦啦啦中文免费视频观看日本| 男女高潮啪啪啪动态图| 两个人看的免费小视频| 午夜激情久久久久久久| 国产黄色免费在线视频| 久久精品亚洲精品国产色婷小说| 一区二区日韩欧美中文字幕| 亚洲成人免费电影在线观看| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品一区二区www | 欧美国产精品一级二级三级| 夫妻午夜视频| 欧美精品av麻豆av| 国产在线精品亚洲第一网站| 我的亚洲天堂| 精品少妇内射三级| 老司机深夜福利视频在线观看| 老司机在亚洲福利影院| 国产无遮挡羞羞视频在线观看| 国产精品久久久久久精品古装| 黄色怎么调成土黄色| 国产伦人伦偷精品视频| 日韩欧美免费精品| 青草久久国产| 国产成人啪精品午夜网站| 午夜福利影视在线免费观看| 亚洲精品国产区一区二| 国产av一区二区精品久久| 丝袜美腿诱惑在线| 成人黄色视频免费在线看| 伦理电影免费视频| 亚洲成人手机| 亚洲国产成人一精品久久久| 美女国产高潮福利片在线看| 在线亚洲精品国产二区图片欧美| 午夜福利一区二区在线看| 人妻一区二区av| 久久久国产精品麻豆| 夜夜爽天天搞| 成人手机av| 免费在线观看黄色视频的| 首页视频小说图片口味搜索| 正在播放国产对白刺激| 精品久久久精品久久久| 另类精品久久| 丝袜喷水一区| 一二三四社区在线视频社区8| 国内毛片毛片毛片毛片毛片| 久久免费观看电影| 日本wwww免费看| 法律面前人人平等表现在哪些方面| 亚洲精品久久午夜乱码| 757午夜福利合集在线观看| 国产精品久久久久久精品古装| 精品人妻熟女毛片av久久网站| 香蕉国产在线看| 色视频在线一区二区三区| 999久久久精品免费观看国产| kizo精华| 嫁个100分男人电影在线观看| 久久影院123| 成人特级黄色片久久久久久久 | 国产黄频视频在线观看| 男男h啪啪无遮挡| 老熟女久久久| 久久中文字幕人妻熟女| 亚洲欧洲日产国产| 久久久久久免费高清国产稀缺| 99国产精品免费福利视频| 久久香蕉激情| 91精品国产国语对白视频| 自线自在国产av| 午夜福利免费观看在线| 国产成人免费观看mmmm| 97人妻天天添夜夜摸| 午夜福利一区二区在线看| 汤姆久久久久久久影院中文字幕| 啦啦啦中文免费视频观看日本| 亚洲 国产 在线| 亚洲人成77777在线视频| 国产成人免费观看mmmm| 在线观看66精品国产| 亚洲成人国产一区在线观看| 男人操女人黄网站| 国产亚洲精品一区二区www | 国产精品 国内视频| 国产精品一区二区在线不卡| 女人被躁到高潮嗷嗷叫费观| 在线永久观看黄色视频| 日韩三级视频一区二区三区| 岛国毛片在线播放| 国产精品九九99| 国产精品二区激情视频| 不卡av一区二区三区| 午夜激情av网站| 中文亚洲av片在线观看爽 | av国产精品久久久久影院| 五月天丁香电影| 亚洲伊人色综图| 深夜精品福利| 亚洲国产欧美一区二区综合| 操美女的视频在线观看| 精品少妇久久久久久888优播| 黄色成人免费大全| 无遮挡黄片免费观看| 19禁男女啪啪无遮挡网站| 丝袜人妻中文字幕| 91麻豆av在线| 色综合婷婷激情| 麻豆乱淫一区二区| 欧美日本中文国产一区发布| 亚洲成a人片在线一区二区| 成人永久免费在线观看视频 | 精品一区二区三区av网在线观看 | 久久精品91无色码中文字幕| xxxhd国产人妻xxx| 国产精品麻豆人妻色哟哟久久| 天天操日日干夜夜撸| 男女高潮啪啪啪动态图| 亚洲av成人不卡在线观看播放网| 国产福利在线免费观看视频| 国产在线精品亚洲第一网站| 新久久久久国产一级毛片| 国产成人精品久久二区二区91| 黄色丝袜av网址大全| 久久婷婷成人综合色麻豆| 视频区欧美日本亚洲| 久久精品国产99精品国产亚洲性色 | 五月天丁香电影| 国产不卡av网站在线观看| 成人黄色视频免费在线看| 色播在线永久视频| 国产一卡二卡三卡精品| 99香蕉大伊视频| 欧美乱码精品一区二区三区| 日韩欧美一区视频在线观看| 美女主播在线视频| 黄色视频在线播放观看不卡| 黄色视频不卡| 精品欧美一区二区三区在线| 国产无遮挡羞羞视频在线观看| 午夜福利在线免费观看网站| 国产激情久久老熟女| 999久久久精品免费观看国产| 90打野战视频偷拍视频| 大码成人一级视频| 国产亚洲一区二区精品| 成人免费观看视频高清| 久久久精品94久久精品| 极品少妇高潮喷水抽搐| 欧美乱妇无乱码| 咕卡用的链子| 久热这里只有精品99| 青草久久国产| 无限看片的www在线观看| 久久毛片免费看一区二区三区| 人人妻,人人澡人人爽秒播| 国产三级黄色录像| 日韩中文字幕视频在线看片| 亚洲精品国产区一区二| 交换朋友夫妻互换小说| 午夜福利视频精品| 18禁国产床啪视频网站| 中文字幕色久视频| 亚洲精品在线美女| 久久精品国产亚洲av高清一级| 9色porny在线观看| 国产又爽黄色视频| 无人区码免费观看不卡 | 欧美精品一区二区免费开放| 一本大道久久a久久精品| 国产不卡av网站在线观看| 一区二区av电影网| 亚洲三区欧美一区| 黄色视频,在线免费观看| 法律面前人人平等表现在哪些方面| 欧美亚洲日本最大视频资源| 亚洲国产精品一区二区三区在线| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 欧美黄色淫秽网站| 黄网站色视频无遮挡免费观看| 黑丝袜美女国产一区| 欧美日韩亚洲国产一区二区在线观看 | 国产免费视频播放在线视频| 另类亚洲欧美激情| 大码成人一级视频| 伊人久久大香线蕉亚洲五| 男女下面插进去视频免费观看| 国产成人av激情在线播放| 欧美av亚洲av综合av国产av| 一区二区三区精品91| 久久精品国产综合久久久| 亚洲视频免费观看视频| 精品久久久久久电影网| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 国产1区2区3区精品| 久久精品aⅴ一区二区三区四区| 免费在线观看黄色视频的| 成年版毛片免费区| 精品国产一区二区三区久久久樱花| 久久ye,这里只有精品| 97在线人人人人妻| 香蕉国产在线看| 国产精品熟女久久久久浪| 亚洲久久久国产精品| 久久精品国产99精品国产亚洲性色 | 人人妻人人爽人人添夜夜欢视频| 少妇的丰满在线观看| 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 青青草视频在线视频观看| 欧美精品高潮呻吟av久久| 如日韩欧美国产精品一区二区三区| 又黄又粗又硬又大视频| 性高湖久久久久久久久免费观看| 两个人看的免费小视频| av欧美777| 99久久国产精品久久久| 亚洲精品在线美女| 免费看十八禁软件| 欧美激情久久久久久爽电影 | 亚洲一区中文字幕在线| 天天添夜夜摸| 亚洲情色 制服丝袜| 啦啦啦免费观看视频1| 69精品国产乱码久久久| 中文亚洲av片在线观看爽 | 亚洲第一欧美日韩一区二区三区 | 这个男人来自地球电影免费观看| 久久精品亚洲精品国产色婷小说| 性高湖久久久久久久久免费观看| 久久影院123| 天天影视国产精品| 性少妇av在线| 12—13女人毛片做爰片一| 夜夜爽天天搞| 日韩免费高清中文字幕av| 亚洲久久久国产精品| 大片电影免费在线观看免费| videos熟女内射| 国产欧美日韩一区二区精品| 日韩一区二区三区影片| 久久天躁狠狠躁夜夜2o2o| 午夜91福利影院| 中文字幕人妻丝袜一区二区| 成人18禁在线播放| 美女午夜性视频免费| 欧美日韩福利视频一区二区| 在线观看www视频免费| 国产成人精品久久二区二区91| 亚洲中文日韩欧美视频| 老汉色av国产亚洲站长工具| 久久影院123| 美女午夜性视频免费| 国产麻豆69| 999精品在线视频| 色精品久久人妻99蜜桃| 五月天丁香电影| 老司机影院毛片| 色视频在线一区二区三区| 精品一品国产午夜福利视频| 中文字幕色久视频| 午夜福利视频在线观看免费| 日韩有码中文字幕| 亚洲国产欧美日韩在线播放| 欧美精品一区二区免费开放| 中文亚洲av片在线观看爽 | 成人18禁在线播放| 日韩精品免费视频一区二区三区| 99热网站在线观看| 黑人巨大精品欧美一区二区蜜桃| 午夜精品久久久久久毛片777| 又紧又爽又黄一区二区| a级毛片在线看网站| 欧美人与性动交α欧美软件| 女性生殖器流出的白浆| 久久 成人 亚洲| 亚洲av美国av| 欧美精品av麻豆av| 久久毛片免费看一区二区三区| 大码成人一级视频| 在线观看一区二区三区激情| 亚洲免费av在线视频| 女人被躁到高潮嗷嗷叫费观| 亚洲天堂av无毛| 国产视频一区二区在线看| 满18在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 三上悠亚av全集在线观看| 又大又爽又粗| 亚洲专区国产一区二区| 男女下面插进去视频免费观看| 一本久久精品| 90打野战视频偷拍视频| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女 | 久久午夜综合久久蜜桃| 热99久久久久精品小说推荐| 午夜成年电影在线免费观看| 亚洲精品久久成人aⅴ小说| 国产精品亚洲av一区麻豆| 亚洲av成人不卡在线观看播放网| 久久久精品国产亚洲av高清涩受| 亚洲av成人不卡在线观看播放网| 亚洲国产av新网站| 乱人伦中国视频| 日韩有码中文字幕| 亚洲 国产 在线| 69精品国产乱码久久久| 三上悠亚av全集在线观看| 日韩免费高清中文字幕av| avwww免费| 18禁国产床啪视频网站| 一二三四社区在线视频社区8| 黄色片一级片一级黄色片| 在线观看舔阴道视频| 丁香欧美五月| 一区二区三区精品91| 王馨瑶露胸无遮挡在线观看| 国产淫语在线视频| 欧美精品一区二区免费开放| 91九色精品人成在线观看| 国产一卡二卡三卡精品| 日本vs欧美在线观看视频| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 日韩大片免费观看网站| 国产一区二区三区视频了| 欧美激情高清一区二区三区| 国产人伦9x9x在线观看| 久久精品国产a三级三级三级| 国产色视频综合| 女同久久另类99精品国产91| 黄片大片在线免费观看| 国产精品久久久久久精品古装| 在线观看免费日韩欧美大片| 精品国产亚洲在线| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线| 精品国产一区二区久久| 亚洲精品在线美女| 别揉我奶头~嗯~啊~动态视频| 国产无遮挡羞羞视频在线观看| 国产精品偷伦视频观看了| 国产亚洲av高清不卡| 免费看十八禁软件| 激情视频va一区二区三区| 国产精品偷伦视频观看了| 亚洲熟女毛片儿| 嫁个100分男人电影在线观看| 国产视频一区二区在线看| 视频在线观看一区二区三区| 激情视频va一区二区三区| 青草久久国产| 国产高清视频在线播放一区| 日本wwww免费看| 久久精品国产a三级三级三级| 国产麻豆69| 亚洲少妇的诱惑av| 亚洲第一欧美日韩一区二区三区 | 母亲3免费完整高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品久久久久5区| 我要看黄色一级片免费的| 少妇裸体淫交视频免费看高清 | 国产激情久久老熟女| 精品一品国产午夜福利视频| 正在播放国产对白刺激| 中文字幕人妻丝袜一区二区| 国产免费视频播放在线视频| 俄罗斯特黄特色一大片| 欧美国产精品va在线观看不卡| 最近最新中文字幕大全免费视频| 国产精品免费视频内射| 欧美乱妇无乱码| 黄色 视频免费看| 亚洲人成电影免费在线| 女人高潮潮喷娇喘18禁视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久狼人影院| 亚洲欧洲精品一区二区精品久久久| 日韩欧美一区二区三区在线观看 | 王馨瑶露胸无遮挡在线观看| 精品免费久久久久久久清纯 | 久热这里只有精品99| 国产高清videossex| 欧美黑人精品巨大| 欧美黄色淫秽网站| 亚洲专区国产一区二区| 不卡一级毛片| 91av网站免费观看| 国产av国产精品国产| 久久毛片免费看一区二区三区| 欧美另类亚洲清纯唯美| 超碰97精品在线观看| 在线天堂中文资源库| 久久影院123| 天天影视国产精品| 老司机午夜福利在线观看视频 | 天天躁狠狠躁夜夜躁狠狠躁| 日本vs欧美在线观看视频| 久久精品国产a三级三级三级| 最黄视频免费看| 少妇粗大呻吟视频| 桃红色精品国产亚洲av| 97人妻天天添夜夜摸| cao死你这个sao货| 精品国产国语对白av| 99re6热这里在线精品视频| 91大片在线观看| 成年动漫av网址| av网站在线播放免费| 日韩三级视频一区二区三区| 亚洲伊人久久精品综合| 999精品在线视频| 中国美女看黄片| 欧美性长视频在线观看| 国产精品一区二区在线观看99| 淫妇啪啪啪对白视频| 精品亚洲成国产av| 大码成人一级视频| 18禁国产床啪视频网站| 91精品国产国语对白视频| 久久人妻福利社区极品人妻图片| 亚洲色图av天堂| 大香蕉久久成人网| 黑人巨大精品欧美一区二区蜜桃| 精品午夜福利视频在线观看一区 | 老司机午夜十八禁免费视频| 丁香欧美五月| 久久午夜综合久久蜜桃| 黄色视频不卡| 亚洲va日本ⅴa欧美va伊人久久| 久久免费观看电影| 成人av一区二区三区在线看| 女人精品久久久久毛片| 国产免费av片在线观看野外av| 亚洲欧美日韩高清在线视频 | 欧美精品啪啪一区二区三区| 高清毛片免费观看视频网站 | 看免费av毛片| 91av网站免费观看| 亚洲五月色婷婷综合| 后天国语完整版免费观看| 91字幕亚洲| 成年女人毛片免费观看观看9 | 国产成人精品在线电影| 亚洲午夜精品一区,二区,三区| 超色免费av| 亚洲国产成人一精品久久久| 成年女人毛片免费观看观看9 | 午夜福利在线免费观看网站| 老熟妇乱子伦视频在线观看| 制服诱惑二区| 波多野结衣av一区二区av| 欧美国产精品一级二级三级| 啦啦啦 在线观看视频| 一本久久精品| 99riav亚洲国产免费| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美精品永久| 亚洲久久久国产精品| 久久精品国产综合久久久| av网站免费在线观看视频| 蜜桃国产av成人99| 久久精品国产99精品国产亚洲性色 | 亚洲免费av在线视频| 男女无遮挡免费网站观看| 两个人看的免费小视频| 国产精品av久久久久免费| 亚洲欧美精品综合一区二区三区| 别揉我奶头~嗯~啊~动态视频| 一个人免费看片子| 丰满迷人的少妇在线观看| 精品久久久久久久毛片微露脸| 亚洲一区中文字幕在线| 69精品国产乱码久久久| 亚洲第一av免费看| 亚洲情色 制服丝袜| 亚洲性夜色夜夜综合| 国产精品98久久久久久宅男小说| 欧美人与性动交α欧美精品济南到| 国产男靠女视频免费网站| 一级毛片电影观看| 成人亚洲精品一区在线观看| 国产精品一区二区精品视频观看| 在线观看免费午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲情色 制服丝袜| 久久中文字幕人妻熟女| 亚洲欧美激情在线| 国产一区二区在线观看av| 日韩欧美一区视频在线观看| 日日摸夜夜添夜夜添小说| 日本a在线网址| 超碰97精品在线观看| 成人国语在线视频| 人人妻人人爽人人添夜夜欢视频| 亚洲专区字幕在线| 国产黄频视频在线观看| 免费黄频网站在线观看国产| 国产精品一区二区免费欧美| 久久人妻福利社区极品人妻图片| 国产亚洲一区二区精品| 99久久国产精品久久久| 考比视频在线观看| 99久久99久久久精品蜜桃| 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| 十分钟在线观看高清视频www| 久久天堂一区二区三区四区| 9191精品国产免费久久| 1024视频免费在线观看| 精品人妻1区二区| 中文字幕最新亚洲高清| 丝袜美腿诱惑在线| 999久久久精品免费观看国产| 国产单亲对白刺激| 十八禁网站网址无遮挡| 岛国在线观看网站| 在线观看免费午夜福利视频| 日韩欧美一区视频在线观看| 丝袜美足系列| a在线观看视频网站| 涩涩av久久男人的天堂| 国产在线精品亚洲第一网站| 亚洲av第一区精品v没综合| 婷婷成人精品国产| 精品欧美一区二区三区在线| 国产欧美亚洲国产| 亚洲色图av天堂| 99久久国产精品久久久| 国产xxxxx性猛交| 亚洲色图综合在线观看| 电影成人av| 国产在线一区二区三区精| 国产高清国产精品国产三级| 成年人免费黄色播放视频| 热99国产精品久久久久久7| 一区二区三区精品91| 午夜免费成人在线视频| 午夜激情久久久久久久| 国产精品久久久人人做人人爽| 青青草视频在线视频观看| 大香蕉久久网| 最近最新中文字幕大全电影3 | 99久久国产精品久久久| 99久久人妻综合| 大码成人一级视频| 亚洲,欧美精品.| 大片免费播放器 马上看| 男女下面插进去视频免费观看| 天堂俺去俺来也www色官网| 三级毛片av免费| 免费少妇av软件| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线 | 男女高潮啪啪啪动态图| 亚洲精品美女久久av网站| 中文字幕精品免费在线观看视频| 亚洲人成电影观看| 自线自在国产av| 亚洲国产欧美在线一区| 91麻豆精品激情在线观看国产 | 久久这里只有精品19| av欧美777| 91大片在线观看| 久久久国产精品麻豆| a级毛片黄视频| 久久香蕉激情| 欧美在线黄色| 久久ye,这里只有精品| 性高湖久久久久久久久免费观看| 一本大道久久a久久精品| 欧美亚洲 丝袜 人妻 在线| 嫩草影视91久久| 欧美一级毛片孕妇| 黄片小视频在线播放| 精品少妇内射三级| 亚洲国产精品一区二区三区在线| 亚洲专区国产一区二区| 麻豆国产av国片精品| 搡老岳熟女国产| 黄片播放在线免费| 99精国产麻豆久久婷婷| 水蜜桃什么品种好| 亚洲一卡2卡3卡4卡5卡精品中文| 丁香欧美五月| 正在播放国产对白刺激| 日韩三级视频一区二区三区| 丰满少妇做爰视频| 国产成人精品无人区| 激情视频va一区二区三区| aaaaa片日本免费| h视频一区二区三区| 淫妇啪啪啪对白视频| 天天添夜夜摸|