• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of the behaviors of test square for prehistoric earthen sites during archaeological excavation

    2018-06-01 08:46:48XudongWangZongrenYuJingkeZhangQinglinGuoShanlongYangManliSun

    Xudong Wang,Zongren Yu,Jingke Zhang,Qinglin Guo,Shanlong Yang,Manli Sun

    aKey Laboratory of Mechanics on Environment and Disaster in Western China,School of Civil Engineering and Mechanics,Lanzhou University,Lanzhou,730000,China

    bNational Research Center for Conservation of Ancient Wall Paintings and Earthen Sites,Dunhuang Academy,Dunhuang,73620,China

    c School of Cultural Heritage,Northwest University,Xi’an,710069,China

    1.Introduction

    Prehistoric earthen site,invaluable cultural heritage in China,plays a key role in understanding the origin of Chinese civilization.After thousands of years,most of them are buried underground.Due to the absence of historical documents,archeological excavation becomes the only way to illustrate the prehistoric life and civilization process(Rotroff,2001).Thereby,test square becomes the most popular structure to obtain archeological information in prehistoric archeology,mainly due to its standard profile resulting from the vertical wall surface.In addition,historical strata can be read and distinguished from four sides of rectangular test square,and the buried relics can be collected as well.It should be noted that the absence of collaboration between archaeologist and conservator is currently a challenging issue in archeological works.Archeologists tend to adopt the shape of test square according to archeological information distribution without considering the stability of test square;as a result,collapse of test square may occasionally occur(Ehrenhard,1994;Charnov,2011;Corfield,2014).Failure of test square not only leads to the loss of prehistoric information,but also threatens the safety of archeologist and cultural relics.Therefore,stability of prehistoric earthen sites during excavation is becoming a hot issue.The principle of saving historic sites has gained interest and has been seen an increasing involvement by geotechnical engineers(Calabresi,2013).It is worthy to make any effort to achieve a convincing explanation of the potential information loss caused and to propose schemes that are safe for the history of the sites.

    In geotechnical field,test square in archeological excavation is basically using a method of simple foundation pit.In terms of foundation pit,various researches on theory and method of stability evaluation have been conducted for the purposes of the standardization of foundation pit design and construction.In the late 1980s,Finno et al.(1989)observed the performance of a deep excavation in soft-to-medium stiff,saturated clays in Chicago by measuring the three-dimensional(3D)surface and subsurface ground movements,pore waterpressures,sheet-pile deformations,and strut loads.Lee et al.(1998)discovered the corner effects in strutted excavation.Hashash and Whittle(1996)and Hashash et al.(2006,2008)predicted the ground movement for deep excavation in soft clay and proposed a novel approach to integrate the numerical modeling and field observation for deep excavations.Jen(2005)proposed design methods of deep excavations in clay.Kung et al.(2007)established a simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays.Seo et al.(2009)analyzed different characteristics of ground movements of three deep excavation sites with mixed ground profiles.Currently,various design and construction standards for foundation pit in clay have been proposed in many countries.Unfortunately,less attention is paid to the stability of test square in archeological excavation.Although test square shares similar shapes with foundation pit in geotechnical field,it has its own special characteristics.For instance,in consideration of archeological requirements,test square is characteristic of vertical or step profiles,which should facilitate site excavation as possible and keep the cultural relics undisturbed due to the long-term exposure to archeological investigation(Rotroff,2001).

    A number of propping measures during excavation are also involved in foundation pit to reduce the exposure time and guarantee the pit stability(Salgado,2008).Fruitful researches reveal that the performances of foundation pit are affected by many factors(e.g.pit geometries,construction methods,soil conditions,and retaining systems).In foundation pit,many empirical or semiempirical approaches are derived from rectangular excavations(Ou et al.,1993;Hsieh and Ou,1998;Wang et al.,2005,2010;Tan and Wei,2012;Tan and Wang,2013),which provided references for the test square in archeological excavation.For conservation of intangible cultural heritages,it is needed to develop suitable stability evaluation approaches to ensure the safety of archeologist and cultural relics and to protect surrounding cultural information.Due to poorly documented field data,the behaviors of test squarein prehistoric sites still remain unclear.

    For this,the archeological excavations in Liangzhu prehistoric sites,China,provide a good opportunity.According to the principle for the conservation of heritage sites in China(ICCOMOS-China,2015),a test square under the similar geotechnical setting was excavated based on the archeological procedure adopted for Liangzhu prehistoric sites.In order to better understand the behaviors of the test square,the lateral displacement and ground settlement were measured during excavation.Numerical simulation using FLAC3D was applied to modeling the whole excavation process,and then comparison between modeled and measured results was conducted to validate the feasibility of the established numerical simulation method.

    2.Modeled test square for prehistoric earthen sites

    2.1.Location and geometry

    The Liangzhu prehistoric sites in Hangzhou,Zhejiang Province,China,are located at the lower reaches of Qiantang River on Southeast China.Liangzhu prehistoric sites sit on the fl at alluvial plain,which is featured by high water tables and thick soft clay in the upper layers.Fig.1 presents the location of Hangzhou in China.In view of the properties of cultural heritages,destructive testing is strictly forbidden on real archeological sites.Therefore,modeling test square with similar environments and strata is adopted to study the deformation and failure behaviors of cultural heritages during excavation.In this study,the experimental site is chosen on the basis of archaeometry and conservation technology of cultural relics,as shown in Fig.2.The site is surrounded by one electrical pipeline in the proximity,open space on the north side,brick walls with 2 m in height on the south and east sides,and the laboratory building(10 m high)on the west side.

    Fig.1.Geographical location of Hangzhou,China.

    Fig.2.Plan view of the in situ experiment.

    2.2.Engineering geology and hydrogeology

    Fig.3.Stratum section.

    Prior to excavation,the subsurface conditions and soil properties at the site had been extensively studied by a series of field and laboratory tests.Fig.3 presents the soil profiles with the measured properties along depth at the site.In general,the subsurface conditions are featured by two layers of fillings in the upper 1.15 m below the ground surface,followed by a layer of silty clay(Layer 3)to a depth of 1.5 m.The next layer is mucky clay(Layer 4)extending to a depth of 1.7 m,which is underlain by yellow clay(Layer 5)and cinereous clay(Layer 6)until the depth of 3 m.The observed long-term water table at the site is approximately 0.8 m.More detailed information regarding the geological and hydrological conditions in Hangzhou can be found in Wang and Chen(2010)and Xu et al.(2015).

    2.3.Excavation procedure

    It is proved(Youssef and Andrew,1996;Wang et al.,2005;Youssef and Richard,2008;Tan and Li,2011)that dewatering should be carried out before excavation of ground pit in high water-level area;otherwise,it is almost impossible to form the expected shape of ground pit due to the pit collapse induced by groundwater.Because of this,dewatering trench was considered around the test square prior to excavation of the test square, filled with sand and gravel as well as equipped by two pumping wells at the two corners.Meanwhile,the protective shed was built above the planned test square to prevent frequent rainfall and facilitate excavation.After the water table was lowered to the depth of 2 m,the test square was dug following the standard procedure of archaeological excavation using the top-down method,as illustrated in Fig.4.The size of the investigated test square is 5 m long,5 m wide and 2.3 m deep,with a cross-sectional area of 25 m2.It consists of two portions:(1)archeological column(1 m×2 m×2.3 m,length×width×height)at the center for the presentation of cultural strata,and(2)the 2.5 m deep peripheral rectangular pit,among which the south side is using one step profile and the others are vertical profiles for comparison purposes.The excavation of the test square was only performed at day time and it took 5 d in total.

    2.4.Monitoring layout

    To investigate the excavation behaviors and ensure the safety of working staff,a comprehensive field instrumentation program was conducted during the entire excavation progress,as shown in Fig.4.Assuming that the modeled archeological column sitting on the center of the test square keeps stable during the whole excavation process,the archaeological column is then not considered in the monitoring program.Observation from the entire excavation verified the assumption.The monitored items associated with instrumentsare(1)lateral soil movement measured by 4 inclinometer casings(designated as L1-L4)that are distributed in each side;and(2)ground settlements surveyed at one critical section behind the north wall using a level instrument(designated as M1-M8).

    3.Numerical simulation

    Numerical simulation is carried out to analyze the behaviors of the test square during each construction step,and the feasibility of numerical simulation on stability evaluation of test square is validated for prehistoric earthen sites during archaeological excavation.

    3.1.Numerical model

    Fig.4.Monitoring layout,plan view,and cross-sections.

    Fig.5.Simulation model and excavation process.

    A 3D numerical model was built using FLAC3D (Itasca Consulting Group,2007).The dimensions of this model are 12 m deep(four times the excavation depth)and 50 m wide(ten times the excavation length and width).In this sense,the effects of boundary conditions on the responses of the pit can be negligible.The model is divided into 207,360 zones with 218,489 nodes,as shown in Fig.5.For the regions away from the excavation,coarser meshes were used;for regions in the vicinity of the excavation face,finer meshes were utilized.The selected dimensions of the model are large enough to account for any restriction of propagation of stress and strains.Considering the stress and strain propagation,dimensions of the model to avoid any restrictions at the boundaries were determined using the trial-and-error method.The 3D linear hexahedron elements were used for the 3D modeling of soil materials,with three degrees of freedom at each node inx-,y-,andzdirections.The hexahedron elements are able to withstand plastic deformation,creep,swelling,stress stiffening,and large strain.

    Table 1Physico-mechanical parameters of soils.

    Table 2Physico-mechanical parameters of filling materials in dewatering trench.

    3.2.Calculation conditions

    (1)Boundary conditions

    According to the characteristics of the model,the top surface of the model was designed as a free face,the side faces were restrained by rollers,and the bottom of the model was assumed to be fixed.

    (2)Mechanical parameters of the model

    The geological investigations of the site report the physicomechanical parameters of different layers of soils as listed in Table 1.The physico-mechanical parameters of filling materials of dewatering trench are shown in Table 2.Water lever is represented by means of FISH function in FLAC3D and is illustrated in Fig.6,and water level can be seen in Fig.7.

    (3)Failure criterion

    The soil is assumed isotropic and homogenous with Mohr-Coulomb yield criterion.Mohr-Coulomb criterion was applied in modeling the stress-strain behaviors of soils during excavation.

    3.3.Analysis results

    3.3.1.Horizontal displacement contour

    In order to reveal the distribution of horizontal displacement around the test square,numerical results after each excavation step are displayed in Fig.8.

    Fig.6.Water lever contours after dewatering.

    (1)After the first excavation step,the upper part of south side yields a positive displacement,which means the upper part of south side wall deforms towards the test square direction.The upper part of the opposite side(north side)deforms towards the inner wall.Comparatively,the other sides(east and west sides)have no apparent deformation.

    (2)When the second excavation step is completed,the south and west walls of test square are subsequently formed.The west side shows nonlinear deformation along the vertical section.From the bottom to the top,the west side wall moves towards the inner wall,and then transfers and moves towards the test square direction.However,no apparent differential deformation occurs at the south side wall.Those scenarios indicate that the step-shape profile has a better mechanical performance than vertical shape profile.

    (3)After the third excavation step,the test column is partly formed.From the contours of horizontal displacements,it can be seen that no obvious deformation occurs in this excavation step.The side walls that are formed in the second excavation step still keep a stable deformation trend.

    (4)The entire shape of the test square maintains well after the fourth excavation step.In comparison with the four sides of the test square,no apparent deformation occurs in north and south sides.However,the west side wall shows an apparent positive deformation and the east side wall yields a negative deformation.

    Fig.7.Water lever represented by FISH.

    3.3.2.Contour of shear strain increment

    For the purpose of stability evaluation of the test square,contours of shear strain increment are obtained using strength reduction method.In Fig.9,it can be clearly seen that no sliding surface appears at the south side;however,the other side walls have a potential sliding surface.In order to demonstrate the slide belt of side walls,higher values of shear strain increment are highlighted and displayed in Fig.10.This clearly shows that step shape performs better than vertical shape does.

    3.4.Comparison between numerical and monitoring results

    3.4.1.Lateral soil movement

    Modeling section is selected according to the actual monitoring one where inclinometers are set up.Monitoring points are listed in Table 3.

    Considering the time effect,the initial and final displacements in the modeling are displayed in Fig.11.Along the vertical section,soil mass moves towards the outside of the test square in the range of 0-0.5 m of depth,and then gradually moves towards inside of the test square after 0.5 m deep.It can be observed that the modeled results are in good agreement with the monitoring data except for a point at east side.This basically proves that the numerical simulation used in the research is suitable for stability evaluation of archeological excavation in prehistoric earthen sites.

    3.4.2.Ground settlement

    Comparison of the ground settlements(M1-M8)between numerical and monitoring results is shown in Fig.12.It is apparent that the modeled results match well with the monitoring ones at four steps of excavation.In view of absolute value,ground settlement is larger than lateral displacement in the studied test square,which shows that soil consolidation is still in progress during excavation.For safe evaluation purpose,ground settlement will pose less threat to the safety of archaeological information by the archaeologists in comparison with lateral displacement.Comparison results also validate the established numerical method.In other words,FLAC3D can be applied to the stability evaluation of archaeological test square during excavation.

    Fig.8.Horizontal displacement contours at different excavation steps.

    Fig.9.Contour of shear strain increment in the completed test square.

    Fig.10.Distribution of high shear strain among test square.

    4.Conclusions

    In order to understand the behaviors of test square in archeological excavation,Liangzhu prehistoric earthen sites are used as an example.For this,numerical simulation of test square behaviors during archaeological excavation is conducted.Finally,the modeling results are compared and validated by the monitoring results.The following conclusions can be drawn:

    (1)Horizontal displacements around the test square show apparent different characteristics in the four sides of the pit.Except for the step side,other three vertical sides demonstrate a slow increase and then decrease in horizontal displacements from ground to bottom of test square.It is verified that step shape is superior to vertical shape for stability purpose of test square.

    (2)The excavation procedure and dimension of the test square in this paper show a good stability without any cracks.The match between the modeling and monitoring results verifies the feasibility and applicability of numerical simulation in archeological works.However,sensitive analyses for different material properties are needed in further works.

    Table 3Number of monitoring points in numerical simulation.

    Fig.11.Comparison between monitoring and modeled results.

    Conflict of interest

    We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Acknowledgements

    Many institutions and scholars are contributing to this research project and special thanks are given to Conservation Technology of Cultural Relics,Zhejiang Province,China.The financial support provided by the National Natural Science Foundation of China(Grant No.51578272),the State Administration of Cultural Heritage“Research Program for Outstanding Youth"(Grant No.2014224),the National Key Technology R&D Program of China during the Twelfth Five-year Plan Period(Grant No.2013BAK08B11),and the Project on Basic Research of Gansu Province’s Innovation Group(Grant No.145RJIF336)are highly acknowledged.Finally,the insightful comments and suggestions from the anonymous reviewers are sincerely appreciated.

    Calabresi G.Le r?le des ingénieurs géotechniciens dans la sauvegarde des monuments et des sites historiques.In:Proceedings of the 18th international conference on soil Mechanics and geotechnical engineering.Paris:French Society for Soil Mechanics and Geotechnical Engineering(CFMS);2013.p.71-83(in France).

    Charnov AA.100 years of site maintenance and repair:conservation of earthen archaeological sites in the American southwest.Journal of Architectural Conservation 2011;17(2):59-75.

    Corfield M.Archaeological sites:conservation and management.Journal of the Institute of Conservation 2014;37:197-207.

    Ehrenhard JE.Stabilization and restoration at Russell cave.Cultural Resources Management 1994;17(1):28-30.

    Finno RJ,Atmatzidis DK,Perkins SB.Observed performance of a deep excavation in clay.Journal of Geotechnical Engineering 1989;115(8):1045-64.

    Hashash YMA,Whittle AJ.Ground movement prediction for deep excavations in soft clay.Journal of Geotechnical Engineering 1996;122(6):474-86.

    Hashash YMA,Marulanda C,Ghaboussi J,Jung S.Novel approach to integration of numerical modeling and fi eld observations for deep excavations.Journal of Geotechnical and Geoenvironmental Engineering 2006;132(8):1019-31.

    Hashash YMA,Osouli A,Marulanda C.Central artery/tunnel project excavation induced ground deformations.Journal of Geotechnical and Geoenvironmental Engineering 2008;134(9):1399-406.

    Hsieh PG,Ou CY.Shape of ground surface settlement profiles caused by excavation.Canadian Geotechnical Journal 1998;35(6):1004-17.

    ICCOMOS-China.Principles for the conservation of heritage sites in China.Los Angeles,CA,USA:The Getty Conservation Institute;2015.

    Itasca Consulting Group.Fast Lagrangian analysis of continua in three dimensions.America:Itasca Consulting Group;2007.

    Jen LC.The design and performance of deep excavations in clay.PhD Thesis.Massachusetts Institute of Technology;2005.

    Kung GT,Juang CH,Hsiao EC,Hashash YM.Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays.Journal of Geotechnical and Geoenvironmental Engineering 2007;133(6):731-47.

    Lee FH,Yong KY,Quan KCN,Chee KT.Effect of corners in strutted excavations: field monitoring and case histories.Journal of Geotechnical and Geoenvironmental Engineering 1998;124(4):339-49.

    Ou CY,Hsieh PG,Chiou DC.Characteristics of ground surface settlement during excavation.Canadian Geotechnical Journal 1993;30(5):758-67.

    Rotroff SI.Archaeologists on conservation:how codes of archaeological ethics and professional standards treat conservation.Journal of the American Institute for Conservation 2001;40(2):137-46.

    Salgado R.The engineering of foundations.McGraw-Hill;2008.

    Seo MW,Olson SM,Yang KS,Kim MM.Sequential analysis of ground movements at three deep excavation sites with mixed ground profiles.Journal of Geotechnical and Geoenvironmental Engineering 2009;136(5):656-68.

    Tan Y,Li MW.Measured performance of a 26 m deep top-down excavation in downtown Shanghai.Canadian Geotechnical Journal 2011;48(5):704-19.

    Tan Y,Wei B.Observed behaviors of a long and deep excavation constructed by cutand-cover technique in Shanghai soft clay.Journal of Geotechnical and Geoenvironmental Engineering 2012;138(1):69-88.

    Tan Y,Wang DL.Foundation pit excavated by the central-island technique in Shanghai soft clay.II:top-down construction of the peripheral rectangular pit.Journal of Geotechnical and Geoenvironmental Engineering 2013;139(11):1894-910.

    Wang JH,Xu ZH,Wang WD.Wall and ground movements due to deep excavations in Shanghai soft soils.Journal of Geotechnical and Geoenvironmental Engineering 2010;136(7):985-94.

    Wang SP,Chen YH.The geological condition and the main geotechnical problems of the Hangzhou No.1 Subway.Zhejiang Construction 2010;27(2):12-5(in Chinese).

    Wang ZW,Ng CW,Liu GB.Characteristics of wall de fl ections and ground surface settlements in Shanghai.Canadian Geotechnical Journal 2005;42(5):1243-54.

    Xu RQ,Deng YW,Xu B,Lai JP,Zhan XG,Xu LY,Lu JY.Quantitative analysis of soft porosity based on SEM clay three-dimensional image information.Journal of Earth Sciences and Environment 2015;37(3):104-10(in Chinese).

    Youssef MA,Andrew JW.Ground movement prediction for deep excavations in soft clay.Journal of Geotechnical Engineering 1996;122(6):474-86.

    Youssef MA,Richard JF.Ground development of new integrated tools for predicting,monitoring,and controlling ground movements due to excavations.Practice Periodical on Structural Design and Construction 2008;13(1):4-10.

    a级毛片a级免费在线| 国产精品伦人一区二区| 看黄色毛片网站| 变态另类成人亚洲欧美熟女| 深夜a级毛片| 国产精品av视频在线免费观看| 国产精品,欧美在线| av免费在线看不卡| 日本av手机在线免费观看| 国产精品嫩草影院av在线观看| 久久久久久久久久久丰满| 欧美+日韩+精品| 亚洲精品日韩在线中文字幕 | 午夜视频国产福利| 此物有八面人人有两片| 欧美性猛交黑人性爽| 老司机影院成人| 亚洲图色成人| 永久网站在线| 一边亲一边摸免费视频| 国产黄色视频一区二区在线观看 | av在线蜜桃| 亚州av有码| 插阴视频在线观看视频| 亚洲在线观看片| 黄色一级大片看看| 日韩制服骚丝袜av| 禁无遮挡网站| 成人一区二区视频在线观看| 国产乱人视频| 国产精品女同一区二区软件| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 久久精品久久久久久噜噜老黄 | 人妻久久中文字幕网| 特级一级黄色大片| 午夜a级毛片| 亚洲av熟女| 91精品国产九色| 久久久久久久久久成人| avwww免费| 女人十人毛片免费观看3o分钟| 国产69精品久久久久777片| 亚洲欧美成人精品一区二区| 日本色播在线视频| 美女内射精品一级片tv| 十八禁国产超污无遮挡网站| 国内精品美女久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦在线观看视频一区| 国产极品天堂在线| 最近视频中文字幕2019在线8| 日韩 亚洲 欧美在线| 一级毛片aaaaaa免费看小| 麻豆久久精品国产亚洲av| avwww免费| 亚洲一级一片aⅴ在线观看| 国产精品av视频在线免费观看| 亚洲欧洲国产日韩| 精品久久国产蜜桃| 综合色丁香网| 在线免费十八禁| 啦啦啦韩国在线观看视频| 我的老师免费观看完整版| 亚洲在线观看片| 小说图片视频综合网站| 免费av毛片视频| 嫩草影院入口| 精品久久久噜噜| 我的老师免费观看完整版| 精品久久久久久久久av| 麻豆av噜噜一区二区三区| 亚洲性久久影院| 久久人人精品亚洲av| or卡值多少钱| 桃色一区二区三区在线观看| 成年版毛片免费区| 亚洲av免费在线观看| 99久国产av精品国产电影| 亚洲av成人精品一区久久| 亚洲中文字幕一区二区三区有码在线看| 91狼人影院| 亚洲成人精品中文字幕电影| 毛片一级片免费看久久久久| 十八禁国产超污无遮挡网站| 久久久午夜欧美精品| av在线天堂中文字幕| 国产麻豆成人av免费视频| 在线国产一区二区在线| 男人舔女人下体高潮全视频| 亚洲欧美清纯卡通| 18+在线观看网站| 精品熟女少妇av免费看| 国国产精品蜜臀av免费| 久久精品国产99精品国产亚洲性色| 国产精品乱码一区二三区的特点| 91av网一区二区| 久久6这里有精品| 高清毛片免费看| 一级黄色大片毛片| 国产国拍精品亚洲av在线观看| 亚洲最大成人手机在线| 精品久久久噜噜| 日韩人妻高清精品专区| 狠狠狠狠99中文字幕| 亚洲人成网站在线播| 精品不卡国产一区二区三区| 国产一区二区激情短视频| 久久人人爽人人片av| 熟妇人妻久久中文字幕3abv| 国内揄拍国产精品人妻在线| 精品一区二区三区视频在线| 小蜜桃在线观看免费完整版高清| 只有这里有精品99| 午夜福利在线观看吧| 国产大屁股一区二区在线视频| 成年女人看的毛片在线观看| 国产视频首页在线观看| 午夜福利成人在线免费观看| av天堂中文字幕网| 久久久久久久午夜电影| 极品教师在线视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲综合色惰| 亚洲欧美日韩高清专用| 久久久久久久久中文| 日韩精品青青久久久久久| 亚洲av一区综合| 欧美另类亚洲清纯唯美| av在线蜜桃| 久久久精品欧美日韩精品| 性欧美人与动物交配| 国产毛片a区久久久久| 日韩制服骚丝袜av| 成人av在线播放网站| 国产成人午夜福利电影在线观看| 成人三级黄色视频| 毛片女人毛片| 91狼人影院| 国产精品av视频在线免费观看| 国内精品宾馆在线| 国产探花极品一区二区| av又黄又爽大尺度在线免费看 | 99久国产av精品| 国产高清不卡午夜福利| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 别揉我奶头 嗯啊视频| 永久网站在线| av视频在线观看入口| 最近最新中文字幕大全电影3| 国产女主播在线喷水免费视频网站 | 美女脱内裤让男人舔精品视频 | 日本一本二区三区精品| 国产三级中文精品| 一边摸一边抽搐一进一小说| 中国美白少妇内射xxxbb| 精品国产三级普通话版| 最近2019中文字幕mv第一页| 久久精品国产亚洲av涩爱 | 成人一区二区视频在线观看| 热99在线观看视频| 最近2019中文字幕mv第一页| 变态另类成人亚洲欧美熟女| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 天堂中文最新版在线下载 | 一级毛片aaaaaa免费看小| 国产精品无大码| 午夜老司机福利剧场| 成人一区二区视频在线观看| 免费观看a级毛片全部| 日韩高清综合在线| 欧美+日韩+精品| 高清日韩中文字幕在线| 麻豆av噜噜一区二区三区| av福利片在线观看| 美女xxoo啪啪120秒动态图| 亚洲国产精品久久男人天堂| 欧美+亚洲+日韩+国产| 91久久精品国产一区二区成人| 久久人妻av系列| 久久欧美精品欧美久久欧美| 能在线免费看毛片的网站| 国产欧美日韩精品一区二区| 国产蜜桃级精品一区二区三区| 国产精品久久久久久精品电影小说 | 国产黄片美女视频| 国产精品日韩av在线免费观看| 特大巨黑吊av在线直播| 中文字幕av成人在线电影| 欧美激情在线99| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 久久精品国产亚洲网站| 麻豆成人av视频| 国产真实伦视频高清在线观看| 中文精品一卡2卡3卡4更新| 国产亚洲精品久久久com| 午夜久久久久精精品| 久久久a久久爽久久v久久| 天堂影院成人在线观看| 国产亚洲精品av在线| 日本黄大片高清| 国产一区亚洲一区在线观看| 成人二区视频| 欧美三级亚洲精品| 欧美在线一区亚洲| 少妇被粗大猛烈的视频| 国产美女午夜福利| 夜夜看夜夜爽夜夜摸| 国产一区二区三区在线臀色熟女| 精品久久久噜噜| 18禁黄网站禁片免费观看直播| 禁无遮挡网站| 亚洲av二区三区四区| 一级毛片电影观看 | 国产高清三级在线| 男女下面进入的视频免费午夜| 麻豆成人午夜福利视频| 在线观看免费视频日本深夜| 99国产精品一区二区蜜桃av| 亚洲国产日韩欧美精品在线观看| 日韩欧美三级三区| 欧美3d第一页| 午夜福利在线观看免费完整高清在 | 乱码一卡2卡4卡精品| 亚洲精品久久久久久婷婷小说 | 国产美女午夜福利| 波野结衣二区三区在线| 亚洲av第一区精品v没综合| 精品国内亚洲2022精品成人| 久久中文看片网| 一级av片app| 国产精品一区二区性色av| 亚洲av熟女| 亚洲人成网站在线观看播放| av又黄又爽大尺度在线免费看 | 久久久精品大字幕| 久久精品国产清高在天天线| 亚洲av不卡在线观看| 91久久精品电影网| 男人的好看免费观看在线视频| 欧美+日韩+精品| 又粗又硬又长又爽又黄的视频 | 久久99蜜桃精品久久| 国产亚洲av嫩草精品影院| 精品少妇黑人巨大在线播放 | 国产美女午夜福利| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 日韩欧美在线乱码| 99在线人妻在线中文字幕| 欧美另类亚洲清纯唯美| 日本色播在线视频| 啦啦啦啦在线视频资源| 国产乱人视频| 亚洲国产色片| 精品熟女少妇av免费看| 欧美性猛交黑人性爽| 一本一本综合久久| a级毛片a级免费在线| 干丝袜人妻中文字幕| av天堂中文字幕网| 99热只有精品国产| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 精品人妻偷拍中文字幕| 18禁在线播放成人免费| 99久国产av精品| 一个人看的www免费观看视频| 久久精品国产亚洲av香蕉五月| 久久韩国三级中文字幕| 国产大屁股一区二区在线视频| 免费观看在线日韩| 国产精品三级大全| 麻豆精品久久久久久蜜桃| 亚洲在久久综合| 久久精品夜夜夜夜夜久久蜜豆| 能在线免费看毛片的网站| 精品国内亚洲2022精品成人| 国产精品久久久久久精品电影| 欧美3d第一页| 亚洲精品日韩在线中文字幕 | 亚洲中文字幕日韩| videossex国产| 成人高潮视频无遮挡免费网站| 国国产精品蜜臀av免费| 国产精品野战在线观看| 哪里可以看免费的av片| 99热这里只有是精品50| 丰满人妻一区二区三区视频av| 极品教师在线视频| 亚洲精品成人久久久久久| 99热6这里只有精品| 永久网站在线| 能在线免费看毛片的网站| 婷婷亚洲欧美| 亚洲国产精品成人综合色| 91精品一卡2卡3卡4卡| 哪里可以看免费的av片| 联通29元200g的流量卡| 国产av不卡久久| 精品人妻一区二区三区麻豆| 日韩欧美一区二区三区在线观看| 免费黄网站久久成人精品| 人人妻人人澡欧美一区二区| 亚洲成a人片在线一区二区| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 精品一区二区三区人妻视频| 亚洲欧美日韩高清专用| 1000部很黄的大片| 成人性生交大片免费视频hd| 久久久久久九九精品二区国产| 99久久精品国产国产毛片| 国产老妇女一区| 欧美成人a在线观看| 人妻制服诱惑在线中文字幕| 国产黄片视频在线免费观看| 不卡视频在线观看欧美| 精品免费久久久久久久清纯| 国产伦理片在线播放av一区 | 久久久a久久爽久久v久久| 草草在线视频免费看| 中出人妻视频一区二区| 少妇被粗大猛烈的视频| 欧美高清性xxxxhd video| 亚洲国产精品sss在线观看| 午夜激情福利司机影院| 日本五十路高清| 51国产日韩欧美| 22中文网久久字幕| 乱系列少妇在线播放| 悠悠久久av| 日本欧美国产在线视频| 边亲边吃奶的免费视频| 能在线免费观看的黄片| 男人舔奶头视频| 熟女人妻精品中文字幕| 亚洲精品日韩在线中文字幕 | 午夜a级毛片| 特大巨黑吊av在线直播| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美精品综合久久99| 中文欧美无线码| 麻豆乱淫一区二区| 国产亚洲5aaaaa淫片| 少妇熟女欧美另类| 欧美日本亚洲视频在线播放| 女人被狂操c到高潮| 国产午夜精品久久久久久一区二区三区| 一区二区三区四区激情视频 | 一本久久中文字幕| 日本黄大片高清| 男插女下体视频免费在线播放| 熟女电影av网| 99久国产av精品国产电影| 美女脱内裤让男人舔精品视频 | 亚洲最大成人中文| 久久韩国三级中文字幕| 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| 国产精品.久久久| 夜夜爽天天搞| 成年版毛片免费区| 亚洲五月天丁香| 在线a可以看的网站| 国模一区二区三区四区视频| 免费观看在线日韩| 午夜爱爱视频在线播放| 国产av在哪里看| 国产黄色视频一区二区在线观看 | 亚洲国产精品成人综合色| 国产精品久久电影中文字幕| 婷婷精品国产亚洲av| 日韩强制内射视频| 午夜精品国产一区二区电影 | 日日摸夜夜添夜夜添av毛片| 日韩欧美一区二区三区在线观看| 久久久久性生活片| 免费av不卡在线播放| 淫秽高清视频在线观看| 女的被弄到高潮叫床怎么办| 国产精品综合久久久久久久免费| 嫩草影院新地址| 国产激情偷乱视频一区二区| 少妇丰满av| 中文字幕精品亚洲无线码一区| 国产老妇女一区| 亚洲av第一区精品v没综合| 国产精品电影一区二区三区| 日韩制服骚丝袜av| 免费在线观看成人毛片| 身体一侧抽搐| 一个人观看的视频www高清免费观看| 午夜视频国产福利| 亚洲熟妇中文字幕五十中出| 波多野结衣巨乳人妻| 乱人视频在线观看| 黄色一级大片看看| 插阴视频在线观看视频| 国产爱豆传媒在线观看| 欧美丝袜亚洲另类| eeuss影院久久| 午夜精品国产一区二区电影 | 91精品国产九色| 国产不卡一卡二| 免费黄网站久久成人精品| 国产精品久久久久久精品电影| 真实男女啪啪啪动态图| 精品久久久久久久久av| 国产伦在线观看视频一区| av在线播放精品| 波野结衣二区三区在线| 1024手机看黄色片| 此物有八面人人有两片| 精品日产1卡2卡| 精品一区二区免费观看| 精品国内亚洲2022精品成人| 99九九线精品视频在线观看视频| 色综合色国产| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 午夜激情欧美在线| www日本黄色视频网| 久久久久久久久久久丰满| 亚洲自偷自拍三级| kizo精华| 91久久精品国产一区二区成人| 欧美日韩综合久久久久久| 在现免费观看毛片| 此物有八面人人有两片| 成人亚洲精品av一区二区| 99久久精品热视频| 联通29元200g的流量卡| 免费看美女性在线毛片视频| 欧美最新免费一区二区三区| 久久久色成人| 午夜福利在线在线| 免费黄网站久久成人精品| 99热只有精品国产| 免费av观看视频| 超碰av人人做人人爽久久| 人妻制服诱惑在线中文字幕| 美女cb高潮喷水在线观看| 精品人妻偷拍中文字幕| 国产精品蜜桃在线观看 | 嘟嘟电影网在线观看| 九九久久精品国产亚洲av麻豆| 亚洲在线观看片| 综合色av麻豆| 国产毛片a区久久久久| 男插女下体视频免费在线播放| 22中文网久久字幕| 国产精品蜜桃在线观看 | 最好的美女福利视频网| 亚洲成a人片在线一区二区| 97人妻精品一区二区三区麻豆| 久久99热6这里只有精品| av免费观看日本| 亚洲第一电影网av| 亚洲国产欧美人成| 一个人看视频在线观看www免费| 综合色丁香网| 全区人妻精品视频| 亚洲欧美中文字幕日韩二区| 悠悠久久av| 乱系列少妇在线播放| 国产 一区精品| 色尼玛亚洲综合影院| 99在线人妻在线中文字幕| 欧美日韩国产亚洲二区| 一区二区三区免费毛片| 国产女主播在线喷水免费视频网站 | 有码 亚洲区| 内射极品少妇av片p| 一区二区三区免费毛片| 男的添女的下面高潮视频| 免费看日本二区| 91麻豆精品激情在线观看国产| 99热精品在线国产| 91在线精品国自产拍蜜月| 你懂的网址亚洲精品在线观看 | 国产精品人妻久久久久久| 欧美日韩乱码在线| 亚洲国产高清在线一区二区三| 秋霞在线观看毛片| 婷婷六月久久综合丁香| 看片在线看免费视频| 国产黄色小视频在线观看| 欧美区成人在线视频| 久久精品夜色国产| 搡女人真爽免费视频火全软件| 精品国内亚洲2022精品成人| 狠狠狠狠99中文字幕| 国产午夜福利久久久久久| 99热这里只有是精品在线观看| 精品一区二区免费观看| 中文字幕av在线有码专区| 91在线精品国自产拍蜜月| 亚洲第一区二区三区不卡| 日韩一区二区三区影片| 久久精品国产清高在天天线| 免费av观看视频| 亚洲高清免费不卡视频| 男人舔奶头视频| 亚洲不卡免费看| 哪里可以看免费的av片| 黄色配什么色好看| 亚洲欧美中文字幕日韩二区| 国产不卡一卡二| 联通29元200g的流量卡| 女人十人毛片免费观看3o分钟| 国产精品一区二区性色av| 国产单亲对白刺激| 国产男人的电影天堂91| 国产精品乱码一区二三区的特点| 日韩亚洲欧美综合| 精品久久久久久久久亚洲| 又黄又爽又刺激的免费视频.| 狂野欧美激情性xxxx在线观看| 欧美最新免费一区二区三区| 非洲黑人性xxxx精品又粗又长| 午夜a级毛片| 免费一级毛片在线播放高清视频| 夜夜爽天天搞| 国产三级中文精品| 级片在线观看| 18禁在线播放成人免费| 欧美日韩一区二区视频在线观看视频在线 | 午夜视频国产福利| 午夜福利在线观看吧| 久久久午夜欧美精品| 精品久久久久久久久久久久久| 噜噜噜噜噜久久久久久91| av天堂中文字幕网| 亚洲成a人片在线一区二区| 99久久中文字幕三级久久日本| 色5月婷婷丁香| 国产亚洲av嫩草精品影院| 日韩欧美精品v在线| 亚洲人成网站高清观看| 69人妻影院| av在线蜜桃| 欧美极品一区二区三区四区| 深夜精品福利| 国产探花极品一区二区| 亚洲国产色片| 亚洲美女视频黄频| 91精品一卡2卡3卡4卡| 最近手机中文字幕大全| 美女大奶头视频| 国内精品久久久久精免费| 亚洲七黄色美女视频| 成人毛片a级毛片在线播放| 国产精品久久电影中文字幕| 国产精品爽爽va在线观看网站| 人体艺术视频欧美日本| 国产69精品久久久久777片| 五月玫瑰六月丁香| 岛国毛片在线播放| 精品人妻熟女av久视频| 国产成人91sexporn| 日韩在线高清观看一区二区三区| 国产精华一区二区三区| 婷婷色综合大香蕉| 国产av麻豆久久久久久久| 亚洲婷婷狠狠爱综合网| 蜜臀久久99精品久久宅男| 国产高清三级在线| 成人午夜高清在线视频| 亚洲精品亚洲一区二区| 丝袜喷水一区| 亚洲av熟女| 亚洲精品日韩在线中文字幕 | 噜噜噜噜噜久久久久久91| 成人特级黄色片久久久久久久| 啦啦啦啦在线视频资源| 99在线人妻在线中文字幕| 婷婷精品国产亚洲av| 久久99热6这里只有精品| 国产精品人妻久久久影院| 黄色一级大片看看| 99热6这里只有精品| 亚州av有码| 亚洲无线观看免费| 91久久精品国产一区二区成人| 日本黄色视频三级网站网址| 久久久久九九精品影院| 男的添女的下面高潮视频| 晚上一个人看的免费电影| 国产成年人精品一区二区| 日日摸夜夜添夜夜添av毛片| 中国美女看黄片| 亚洲欧美精品自产自拍| 久久久色成人| 国产亚洲5aaaaa淫片| 别揉我奶头 嗯啊视频| 国产男人的电影天堂91| 日韩成人伦理影院| 国产精品久久久久久av不卡| 亚洲电影在线观看av| 一本一本综合久久| 99国产极品粉嫩在线观看| 久久99热6这里只有精品| avwww免费| 欧美潮喷喷水| 日韩高清综合在线| 婷婷色综合大香蕉| 亚洲欧美成人精品一区二区| 欧美色视频一区免费| 99久久精品热视频|