• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于抗差自適應(yīng)Kalman濾波的車輛定位新方法

    2018-05-31 03:10:24李歲勞時文濤秦永元
    中國慣性技術(shù)學(xué)報 2018年2期
    關(guān)鍵詞:抗差旋轉(zhuǎn)式時文

    賈 勇,李歲勞,時文濤,秦永元

    (1. 西北工業(yè)大學(xué) 自動化學(xué)院,西安 710129;2. 西安飛行自動控制研究所,西安 710065)

    With such advantages as independence, good invisibility and strong anti-interference, the inertial navigation system (INS) is widely used in the fields of aviation,aerospace, marine, land navigation and other fields.However, it has the shortage that the navigation error accumulates with time, in which the constant errors of the inertial sensors are the main error sources[1]. The rotation modulation technology has the characteristic of error self-compensation. By periodically rotating the inertial sensors, it can eliminate the influence of the constant errors of inertial sensors on the navigation accuracy to improve the performance of INS. The researches on laser gyroscope inertial navigation system and fiber optic gyroscope inertial navigation system based on rotation modulation technology have been widely made in many countries, and those systems have been applied in many high precision navigation fields[2-3].In recent years, with the increase of the accuracy of MEMS inertial sensors, MEMS-RMINS, which combines the rotation modulation technology with MEMS inertial sensors, has begun to attract the attention of many research institutions, and some research results have been applied to the actual work[4-10].

    In the existing researches of MEMS-RMINS with MEMS inertial sensors: Wang’s [7] discusses the system scheme and test results in detail; the error suppression effect under different rotating axes and parameter calibration results are analyzed in [8] and [9]; Du’s [10]combines MEMS rotation modulation inertial navigation system with GPS, and analyzes the navigation results when GPS works and fails. The above MEMS- RMINSs have the disadvantage that they are too expen- sive to be used in civilian areas. Moreover, [8]-[10] just place the MEMS inertial measurement unit (IMU) on the rotation mechanism which does not meet the requirement of miniaturization, and the navigation time is too long which makes the error extremely large. Because the road condition and the wheel state are complex in the actual work, the scheme of [6] which uses the wheel’s rotation to improve navigation accuracy is not suitable.

    Due to low positioning accuracy, the pure MEMSINS cannot be used alone for a long time. Therefore, the existing vehicle positioning systems are implemented on the basis of GPS/MEMS-INS integrated navigation or by introducing the kinematic constraint (KC)[10-11]. Because the GPS signal is easily disturbed and the KC condition is not strictly white noise, the method adopted by [10]-[11] is not perfect. At the same time, the robust adaptive Kalman filter is used to improve the positioning accuracy of the system[12-13], but is not used in MEMS-RMINS.

    Therefore, on the basis of the existing research, the low-cost and miniaturized MEMS-RMINS integrates with the KC to form a complete vehicle positioning method in this work by adopting the RAKF. Firstly,rotation modulation technology and kinematic constraint are introduced and analyzed; then, the new vehicle positionning method’s mathematical model, the whitening of colored noise, and RAKF algorithm are derived in detail;at the same time, combined with the experimental results,the detailed analysis of the vehicle positioning method is carried out; finally, this paper draws a conclusion.

    1 Rotation modulation technology

    As shown in Fig.1, MEMS rotation modulation inertial navigation system consists of MEMS-IMU,rotation mechanism (including rotation platform, DC torque motor, photoelectric encoder, and connecting piece)and control calculation system. The MEMS-IMU is fixed on the rotation mechanism, and the sensors error is compensated automatically as the rotation mechanism rotates periodically. In this system, MEMS-IMU uses ADIS16445 whose performance is shown in Tab.1.

    Fig.1 System structure of single-axis RMINS

    Tab.1 MEMS-IMU performance

    To facilitate the analysis of rotational modulation technology, the following definitions are given: s-frame is the rotation coordinate system; b-frame is the carrier coordinate system; n-frame (ENUframe) is the navigation coordinate system which is the local East-North-Upward (ENU) coordinate system; and i-frame is the inertial coordinate system.

    Supposing that s-frame coincides with b-frame in the initial time, the rotation mechanism rotates continuously in the vertical direction at constant angular speedω,then the transformation matrixat timetbetween s-frame and b-frame can be expressed as:

    Supposing that b-frame coincides with n-frame for simplicity to analysis problem, namely,it can be obtained through (1) that the error form of the gyroscope constant drift of MEMS-IMU in n-frame at timetis

    In (2), If there is no rotation modulation,and the integral result ofwhich grows linearly with time. After introducing the rotation modulation technology, the mean values ofare zero during every rotation period, so the mean value of the equivalent gyroscope drift error caused byis zero. The attitude no longer diverges with time which becomes periodic sine form, and the corresponding positionning accuracy is improved greatly. This is the basic principle and function of rotation modulation technology.

    Aiming at the MEMS rotation modulation inertial navigation system, the angle modulation algorithm is adopted to implement navigation calculation[3], and the corresponding differential equations are as follows:

    Due to the introduction of the rotation modulation technology, the corresponding error equations will also change accordingly. For actual MEMS rotation modulation inertial navigation system, there are gyroscope driftsaccelerometer biasesand angle error δθof photoelectric encoder, and on the other hand, there are error matrixμ,Ф,χ, δV, δPbetween the actual values and the ideal values. At the same time,have errors ofrespectively. When the angle modulation algorithm is used for navigation calculation, the error equations of attitude, velocity, and position can be obtained by (3)-(8):

    At the same time, the attitude error matrixФare as follows:

    Due to the introduction of new errorthe error equation is changed, and the state equation of the system is also changed.

    2 Kinematic constraint

    When the vehicle is running on the ground under the ideal condition of no sideslip and jolt, the speed direction of the vehicle is mainly along the front of the vehicle body,and the speeds of the vehicle in both lateral and vertical directions are usually zero. That is

    The velocity in b-framebVcan be obtained by the velocityin n-frame, attitude matrix matrixand attitude That is

    The actual situation is slightly different. When the vehicle is making a turn, there may be sideslip, vehicle vibration and so on, which will cause the speeds on thexaxis and thezaxis of the vehicle to be not as zero as the ideal condition. Fig.2 is the actual speeds of an experiment in b-frame.

    Fig.2 Actual speed values in b-frame

    It can be seen that the speed cannot be simply regarded as zero or white noise. Through the analysis of speeds,the velocity model is established as random walk noise.Since the Kalman filter needs to satisfy the condition that the system noise and the measurement noise are the Gauss white noise, the measurement equation of the system needs to be processed by whitening colored noise so that the Kalman filter can be carried out.

    3 Mathematical model of vehicle positioning

    3.1 Establishment of state equation

    On the one hand, the change of the speed and position in the height channel is not obvious and has little effect on the system, so the related components of this channel can be neglected; on the other hand, this system has the angular position errorThe state variable of the new method of RMINS is as follows:

    In (14),Xis a 13-dimensional error state matrix,are position errors;are velocity errors;are attitude errors;is the angle measurement error of photoelectric encoder;are gyroscope’s drifts;are accelerometer’s biases.

    The state equation of the system is as follows:

    In (15)-(16),wis the process noise, assumed to be uncorrelated and zero-mean white noise;is a zero matrix;

    3.2 Establishment of measurement equation

    The measurement equation is established by using the kinematic constraint characteristic. It can be obtained from

    In (17)-(20),is the velocity error matrix in b-frame;is the value ofin thei-throw andj-th column.

    It can be obtained from [10] and (13) that

    can be regarded as one-order Markov process matrix, andξis the zero mean white noise matrix;~N(0,0.28) and

    By ignoring the height channel, it can be obtained from (13) and (17)-(21) that

    The measurement equation is as follows:

    In (23),the measurement matrixis as follows:

    The discretization expressions of the equation (15),(23) and (21) are as follows:

    4 Robust adaptive Kalman filter

    The equation (23) does not satisfy the Kalman filter condition, so it is necessary to whiten the colored noise.At the same time, this system has the unmodeled error,the system measurement information is abnormal, and a priori information is limited for the above positioning method which may cause the system to diverge when the Kalman filter is carried out. Therefore, it is necessary to suppress the error in order to improve the positioning accuracy. The robust adaptive Kalman filter can restrain the dynamic model error and the measurement anomaly simultaneously.

    4.1 Whitening of colored noise

    In (29)-(31),are all uncorrelated and zero-mean white noise[14], and their variances areandrespectively.Supposing that

    Therefore, the measurement equation can be written as

    In (35),is the zero-mean white noise and its variance is

    After the equation transformation, (33) and (35)satisfy the condition of Kalman filter.

    4.2 Robust factor model

    The determination of robust factor is based on the principle of equivalent weight, the robust factor is constructed by weight function, and the weight of observed value is reduced to reduce the share of abnormal observation in parameter estimation. In order to overcome the deficiency of discriminant condition of prior value and make full use of the current observation information, the discriminant condition based on Huber weight function is improved:

    In (37),is the robust equivalent weight matrix of the observed value

    When the number of the observed quantities is less than that of state parameters and the observed quantities may be abnormal, the improved calculation ofis as follows:

    In (39),is the i component of the predicted residualis the sum of the diagonal matrix of the covariance matrixand

    In (40),is the state prediction covariance matrix.

    4.3 Adaptive factor model

    Since the number of the selected observed quantities is less than that of state parameters, the adaptive factor is constructed here based on the predicted residual

    As shown in (38), if the measurement value is reliable,reflects the reliability ofis the state information of system model, andreflects the error of system model. Using the predictive residualas the variable, the discriminant statistic of the state model error is constructed as follows:

    According to the equation (41), the adaptive factor based on the three segment function model is further constructed as follows[13]:

    In (42),

    It can be obtained from (41) and (42) thatwill decrease whenwill decrease to zero when

    After completing the construction of the above robust factor and adaptive factor, the robust adaptive Kalman filter can be carried out on the basis of the knownand covariance matrixAt time k,andcan be obtained, and then the state estimation value of time k can be obtained by the following recursive equation:

    5 Experimental results

    As shown in Fig.3, the dynamic vehicle experiment was carried out in the area of East Gate of Northwestern Polytechnical University, and the route is repeated for the purpose of comparison. Fig.4 is the comparison of positioning error before and after rotation modulation.

    It can be obtained from Fig.3 and Fig.4 that, after the introduction of rotation modulation, the positioning precision of the MEMS-RMINS is increased signifycantly for 100 s navigation time; the maximum position error of the East and North is reduced to 20.6 m and 38.6 m from 106.2 m and 273.6 m respectively. At the same time,it can also be seen that, because of the low accuracy of the selected MEMS-IMU devices, it can only work for 100 s under the requirement of a certain precision without other auxiliary information.

    Fig.3 Comparison of different systems

    Fig.4 Comparison on position errors

    Because of the existence of error sources, the positioning accuracy of MEMS-RMINS is still a large number, and the positioning error will be further increased with time. Therefore, other information needs to be introduced to suppress the growth of MEMS-RMINS’s error. In this work, the kinematic constraint and robust adaptive Kalman filter are introduced to improve the positioning accuracy.

    The experimental results of those three schemes which include the MEMS-RMINS, the RMINS/KC+KF,and the RMINS/KC+RAKF are shown in Fig.5-Fig.7 for 150 s navigation time. In Fig.5 and Fig.6, the positions of the East and the North are all relative to the starting point.In Fig.7, the position error of the East and the North is all relative to the GPS outputs. It can be seen from these figures that, as time goes on, the error of MEMS-RMINS will continuously diverge, and the error can be effectively suppressed after the introduction of KC and KF or RAKF.

    Fig.5 Comparison on east positions of different schemes

    Fig.6 Comparison on north positions of different schemes

    Fig.7 Comparison on position errors of different schemes

    Based on the position of the GPS outputs, the maximum errors of the East and the North and the standard deviation are compared in different schemes, and the comparison results are shown in Tab.2. In order to better make comparison, the results of RMINS/GPS integrated navigation are also listed.

    Tab.2 Comparison of experimental results

    As can be seen from Tab.2 that, after the introduction of the KC and KF, the maximum error is reduced, in which the maximum position error of the North is reduced from 135.8 m to 24.5 m and the standard deviation is nearly 30% of the MEMS-RMINS’s, showing that the error is suppressed effectively. However, due to the influence of model errors and observation anomaly, the maximum value of the east position error increases, and the standard deviation is relatively large. Therefore, this work uses the RAKF to further improve positioning accuracy.

    After the introduction of the RAKF, the maximum errors of the East and North are reduced, and the standard deviation of the RAKF is further reduced which is 73.3% of the KF’s. On the one hand, after introducing the kinematic constraint and using RAKF, the working time of the system is decreased to the 150 s from the original 100 s, and the positioning accuracy is improved;On the other hand, compared with KF, the maximum error or the mean square error is reduced by introducing the RAKF which changes the filter gain matrix and the mean square error matrix of the system by dynamically adjusting the robust factor and the adaptive factor. The experimental results show that RAKF has better robustness and adaptability.

    6 Conclusions

    It can be seen that the new method of vehicle positioning is feasible and can achieve very good positioning accuracy. It can work longer and has a higher accuracy.At the same time, it can draw the following conclusions:

    1) In this work, a complete vehicle positioning method is presented, including MEMS-RMINS based on rotation modulation technology and the KC. This method uses MEMS-RMINS, the KC, and RAKF to achieve the real-time and high-precision positioning, and the standard deviation of this method reach meter’s level.

    2) The velocity calculation results of b-frame show that the lateral and vertical velocities cannot be simply considered as white noise. The Kalman filter condition can be satisfied by establishing a more appropriate model and processing the state equation and measurement equation properly. The experimental results prove the correctness of the proposed method.

    3) The experimental results show the correctness of the theoretical analysis and the feasibility of the practical application. With the advantages of the high positioning accuracy, good reliability and stable accuracy, this method has high application value.

    It can see that the positioning error is still large.Therefore, in the following research, the positioning accuracy of the vehicle positioning method can be further improved by improving the filter method or using other auxiliary technologies.

    [1] Groves P D. Principles of GNSS, inertial, and multisensor integrated navigation systems[M]. 2nd edition. London:Artech House, 2013.

    [2] Liu F, Wang W, Wang L, et al. Error analyses and calibration methods with accelerometers for optical angle encoders in rotational inertial navigation systems[J]. Applied Optics, 2013, 52(32): 7724-7731.

    [3] 孫堯, 王庭軍, 高延濱, 等. 旋轉(zhuǎn)式捷聯(lián)慣導(dǎo)系統(tǒng)解算結(jié)構(gòu)[J]. 中國慣性技術(shù)學(xué)報, 2013, 21(1): 10-15.

    Sun Y, Wang T J, Gao Y B, et al. Computation structure of rotating strapdown INS[J]. Journal of Chinese Inertial Technology, 2013, 21(1): 10-15.

    [4] Jia Y, Li S L, Qin Y Y, et al. Error analysis and compensation of MEMS rotation modulation inertial navigation system[J]. IEEE Sensors Journal, 2018, 16(24): 2023-2030.

    [5] Jia Y, Li S L, Xu Y F. Analysis and compensation of rotating shaft fluctuation on rotation inertial navigation system[C]//IEEE Chinese Guidance, Navigation and Control Conference (IEEE CGNCC2016). 2016: 609-613.

    [6] Collin J. MEMS IMU carouseling for ground vehicles[J].IEEE Transactions on Vehicular Technology, 2015, 64(6):2242-2251.

    [7] Wang X Y, Wang W, Wang L. Rotation modulation for strap-down inertial navigation system based on MEMS sensors[J]. Journal of Northeastern University, 2014, 35(4):494-498.

    [8] Sun W, Wang D X, Xu L W. MEMS-based rotary strapdown inertial navigation system[J]. Measurement, 2013,46(8): 2585-2596.

    [9] Du S, Sun W, Gao Y. MEMS IMU error mitigation using rotation modulation technique[J]. Sensors, 2016, 16(12):494-498.

    [10] Du S, Sun W, Gao Y. Integration of GNSS and MEMS-based rotary ins for bridging GNSS outages[C]// China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III. Lecture Notes in Electrical Engineering,vol. 342. Springer, Berlin, Heidelberg, 2015.

    [11] Won D, Ahn J, Sung S, et al. Performance improvement of inertial navigation system by using magnetometer with vehicle dynamic constraints[J]. Journal of Sensors, 2015,vol.2015: (1-11).

    [12] Yan W L, Bastos L, Xu T H, et al. Image-aided platform orientation determination with a GNSS/low-cost IMU system using robust adaptive Kalman filter[J]. GPS Solutions,2018, 22(1): 1-12.

    [13] Zhang Q J, Zhao L D, Zhao L, et al. An improved robust adaptive Kalman filter for GNSS precise point positioning[J]. IEEE Sensors Journal, 2018: 99(1-9).

    [14] Qin Y Y, Zhang H Y, Wang S H, et al. Kalman Filter and integrated navigation principle[M]. Xi’an, China:Northwestern Polytechnic University Press, 2012.

    猜你喜歡
    抗差旋轉(zhuǎn)式時文
    痛風(fēng)的多組學(xué)研究進(jìn)展
    遺傳(2023年8期)2023-08-25 07:00:20
    談時文閱讀在小學(xué)寫作教學(xué)中的應(yīng)用
    改善單頻PPP參數(shù)收斂速度的抗差估計方法
    靈活運(yùn)用時文閱讀,有效提高學(xué)生的讀寫能力
    地形簡化對DEM不確定性的抗差性研究
    基于抗差最小均方估計的輸電線路參數(shù)辨識
    旋轉(zhuǎn)式脫泡消泡法/混凝協(xié)同處理造紙廢水
    基于頻率步進(jìn)信號的旋轉(zhuǎn)式合成孔徑雷達(dá)成像方法
    PG65型高速旋轉(zhuǎn)式壓片機(jī)
    PG65型高速旋轉(zhuǎn)式壓片機(jī)
    免费播放大片免费观看视频在线观看 | 欧美日本视频| 美女被艹到高潮喷水动态| 国产精品电影一区二区三区| 成人综合一区亚洲| 天堂影院成人在线观看| 国产高清三级在线| 老师上课跳d突然被开到最大视频| 欧美高清性xxxxhd video| 在线免费观看不下载黄p国产| 亚洲综合精品二区| 日韩欧美精品免费久久| 亚洲欧美清纯卡通| 男人和女人高潮做爰伦理| 成人av在线播放网站| 国产精品一区www在线观看| 精品欧美国产一区二区三| 能在线免费观看的黄片| 久久久久性生活片| 一级av片app| 内地一区二区视频在线| 精品久久久久久久久久久久久| 国产成人精品一,二区| 久久这里有精品视频免费| 免费av观看视频| 免费看光身美女| 白带黄色成豆腐渣| 在线a可以看的网站| 成年女人看的毛片在线观看| 我的老师免费观看完整版| 日韩人妻高清精品专区| 日韩人妻高清精品专区| 日本五十路高清| 亚洲国产精品sss在线观看| 亚洲美女视频黄频| 日韩大片免费观看网站 | 国产人妻一区二区三区在| 一级黄片播放器| 久久精品国产99精品国产亚洲性色| 伊人久久精品亚洲午夜| 人妻制服诱惑在线中文字幕| 国产黄片美女视频| 你懂的网址亚洲精品在线观看 | 好男人在线观看高清免费视频| 人妻少妇偷人精品九色| 国产在视频线精品| 国产精华一区二区三区| 午夜免费激情av| 亚洲欧美中文字幕日韩二区| 久99久视频精品免费| 日韩一区二区三区影片| 国产视频内射| 午夜精品国产一区二区电影 | 97人妻精品一区二区三区麻豆| 婷婷六月久久综合丁香| 最近最新中文字幕免费大全7| 亚洲一级一片aⅴ在线观看| 床上黄色一级片| 一级毛片久久久久久久久女| 91精品伊人久久大香线蕉| 一本一本综合久久| 人妻系列 视频| 亚洲国产精品久久男人天堂| 黄色欧美视频在线观看| 日韩在线高清观看一区二区三区| 国内精品一区二区在线观看| 成年女人看的毛片在线观看| 汤姆久久久久久久影院中文字幕 | 久久热精品热| av免费观看日本| av免费在线看不卡| 欧美性猛交黑人性爽| 亚洲欧美日韩卡通动漫| 午夜精品在线福利| 欧美xxxx性猛交bbbb| 蜜桃亚洲精品一区二区三区| 午夜精品国产一区二区电影 | 亚洲伊人久久精品综合 | 99热全是精品| 99热这里只有精品一区| 国产精品麻豆人妻色哟哟久久 | .国产精品久久| av在线蜜桃| 亚洲欧美日韩无卡精品| 国产精品国产三级国产av玫瑰| 狂野欧美激情性xxxx在线观看| 亚洲精品影视一区二区三区av| 精品人妻熟女av久视频| 久久久久久久国产电影| 精品久久久噜噜| 久久亚洲国产成人精品v| 欧美区成人在线视频| 国产乱人视频| 精华霜和精华液先用哪个| 免费电影在线观看免费观看| 欧美性猛交黑人性爽| 欧美成人a在线观看| 简卡轻食公司| 国产精品久久电影中文字幕| 亚洲三级黄色毛片| 两性午夜刺激爽爽歪歪视频在线观看| 女人久久www免费人成看片 | av女优亚洲男人天堂| 国产一级毛片在线| 欧美极品一区二区三区四区| 高清毛片免费看| 欧美97在线视频| 国产毛片a区久久久久| 久久久精品94久久精品| 国产成年人精品一区二区| 又粗又硬又长又爽又黄的视频| 欧美一区二区亚洲| 日韩高清综合在线| 在线免费观看不下载黄p国产| 色尼玛亚洲综合影院| 18+在线观看网站| 亚洲av二区三区四区| 边亲边吃奶的免费视频| 精品人妻偷拍中文字幕| 国内揄拍国产精品人妻在线| 久久精品综合一区二区三区| 久久精品久久精品一区二区三区| 国产精品熟女久久久久浪| 国产黄色视频一区二区在线观看 | 在线观看一区二区三区| 亚洲熟妇中文字幕五十中出| 国国产精品蜜臀av免费| 久久99热这里只频精品6学生 | 国产免费又黄又爽又色| 亚洲最大成人中文| 午夜福利网站1000一区二区三区| 国产午夜精品久久久久久一区二区三区| 日日撸夜夜添| 99九九线精品视频在线观看视频| 亚洲av免费高清在线观看| 老司机福利观看| 可以在线观看毛片的网站| 精品久久久久久久久久久久久| 中国美白少妇内射xxxbb| 午夜日本视频在线| 五月玫瑰六月丁香| 亚洲欧美日韩卡通动漫| 午夜激情欧美在线| 尤物成人国产欧美一区二区三区| 国产精品人妻久久久久久| 国产老妇女一区| 久久99蜜桃精品久久| 国产成人免费观看mmmm| 亚洲国产欧美人成| 性插视频无遮挡在线免费观看| 99热6这里只有精品| 国产亚洲av片在线观看秒播厂 | 一级爰片在线观看| 黄色一级大片看看| 午夜日本视频在线| 国产成人91sexporn| 噜噜噜噜噜久久久久久91| 午夜老司机福利剧场| 如何舔出高潮| 波多野结衣巨乳人妻| 高清午夜精品一区二区三区| 亚洲乱码一区二区免费版| 国产精品一区二区三区四区久久| 岛国在线免费视频观看| 国产美女午夜福利| 国产亚洲av片在线观看秒播厂 | 国产探花在线观看一区二区| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久久电影| av国产免费在线观看| 91久久精品国产一区二区三区| 国产精品熟女久久久久浪| 久久久久久久久久久丰满| 不卡视频在线观看欧美| 午夜日本视频在线| 亚洲精品乱久久久久久| 99九九线精品视频在线观看视频| 国产在视频线精品| 国产精品久久电影中文字幕| av在线亚洲专区| ponron亚洲| 在线免费观看的www视频| av视频在线观看入口| 色视频www国产| 99热精品在线国产| 国产精品一区二区三区四区免费观看| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影| 午夜亚洲福利在线播放| 能在线免费观看的黄片| 99热这里只有是精品50| 久久久久久久久久久免费av| 亚洲国产精品sss在线观看| 男女国产视频网站| 一级毛片我不卡| 亚洲国产成人一精品久久久| 麻豆成人av视频| 国产精品国产三级专区第一集| 99在线人妻在线中文字幕| 亚洲精品国产av成人精品| 亚洲美女搞黄在线观看| 熟妇人妻久久中文字幕3abv| 又粗又爽又猛毛片免费看| 日日撸夜夜添| 一个人观看的视频www高清免费观看| 国产单亲对白刺激| 尾随美女入室| 22中文网久久字幕| 亚洲国产欧洲综合997久久,| videossex国产| 成年av动漫网址| 精品少妇黑人巨大在线播放 | 欧美3d第一页| 亚洲精华国产精华液的使用体验| 亚洲av日韩在线播放| 高清日韩中文字幕在线| 国产免费视频播放在线视频 | 国产69精品久久久久777片| 国产在线男女| 22中文网久久字幕| 变态另类丝袜制服| 亚洲av免费高清在线观看| 乱码一卡2卡4卡精品| 白带黄色成豆腐渣| 国产三级在线视频| 国产一区二区亚洲精品在线观看| 久久久久网色| 国产综合懂色| 九九在线视频观看精品| 精品国产三级普通话版| 久久6这里有精品| 国产精品蜜桃在线观看| 国产精品99久久久久久久久| 午夜日本视频在线| 一级毛片电影观看 | 欧美日韩国产亚洲二区| 欧美又色又爽又黄视频| 淫秽高清视频在线观看| 一级黄片播放器| 亚洲国产日韩欧美精品在线观看| 国产极品天堂在线| 国产精品爽爽va在线观看网站| 最近的中文字幕免费完整| 一级毛片aaaaaa免费看小| 国产免费一级a男人的天堂| 久久精品影院6| av女优亚洲男人天堂| 青春草视频在线免费观看| 边亲边吃奶的免费视频| 精品久久国产蜜桃| 国产麻豆成人av免费视频| 午夜视频国产福利| 欧美又色又爽又黄视频| 欧美性感艳星| 久久久国产成人精品二区| 特级一级黄色大片| 三级国产精品欧美在线观看| 搡女人真爽免费视频火全软件| 我要搜黄色片| 久久人人爽人人片av| 在线播放无遮挡| av播播在线观看一区| 国产黄色小视频在线观看| 特大巨黑吊av在线直播| 看十八女毛片水多多多| 精品久久久久久电影网 | 在线a可以看的网站| 国产精品一及| 天天躁日日操中文字幕| 国产v大片淫在线免费观看| 内射极品少妇av片p| 97人妻精品一区二区三区麻豆| av视频在线观看入口| 99久久人妻综合| 小说图片视频综合网站| 亚洲伊人久久精品综合 | 秋霞伦理黄片| 蜜臀久久99精品久久宅男| 在线观看美女被高潮喷水网站| 老司机福利观看| 夫妻性生交免费视频一级片| 99久久中文字幕三级久久日本| 2021少妇久久久久久久久久久| 久久精品熟女亚洲av麻豆精品 | 日本免费在线观看一区| 国产精品人妻久久久影院| 午夜爱爱视频在线播放| 亚洲国产日韩欧美精品在线观看| 久久国产乱子免费精品| 六月丁香七月| 国产成人a区在线观看| 久久热精品热| 综合色丁香网| 国产精品一二三区在线看| 欧美潮喷喷水| 亚洲精品乱码久久久久久按摩| 日韩强制内射视频| 男人狂女人下面高潮的视频| 精品酒店卫生间| 亚洲av男天堂| 久久久国产成人免费| 成人午夜精彩视频在线观看| 亚洲欧美精品专区久久| 狠狠狠狠99中文字幕| 亚洲精品乱码久久久v下载方式| 插逼视频在线观看| 少妇的逼好多水| 一级黄片播放器| 久久久久国产网址| 日韩大片免费观看网站 | 国产亚洲精品av在线| www日本黄色视频网| 亚洲va在线va天堂va国产| 啦啦啦韩国在线观看视频| 日日啪夜夜撸| 国产免费视频播放在线视频 | 久久久久久久久中文| av免费观看日本| 一区二区三区免费毛片| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 精品免费久久久久久久清纯| av黄色大香蕉| 22中文网久久字幕| 日本爱情动作片www.在线观看| 99久久成人亚洲精品观看| 纵有疾风起免费观看全集完整版 | 最近最新中文字幕免费大全7| 国产成人aa在线观看| 亚洲在久久综合| 99热网站在线观看| 大香蕉97超碰在线| 欧美97在线视频| 国产精品国产三级专区第一集| 久久6这里有精品| 黄色欧美视频在线观看| 自拍偷自拍亚洲精品老妇| 亚洲精品影视一区二区三区av| 国产色婷婷99| 黄片无遮挡物在线观看| 97热精品久久久久久| 麻豆一二三区av精品| 亚洲乱码一区二区免费版| 女人十人毛片免费观看3o分钟| videos熟女内射| 男人舔奶头视频| 天天躁日日操中文字幕| 啦啦啦韩国在线观看视频| 中文欧美无线码| 97热精品久久久久久| 亚洲av中文字字幕乱码综合| 中文欧美无线码| 成人无遮挡网站| 看黄色毛片网站| 九九久久精品国产亚洲av麻豆| 乱系列少妇在线播放| 精品酒店卫生间| 床上黄色一级片| 午夜福利成人在线免费观看| av在线蜜桃| av视频在线观看入口| 免费人成在线观看视频色| 哪个播放器可以免费观看大片| 亚洲精品国产av成人精品| 亚洲精华国产精华液的使用体验| 婷婷六月久久综合丁香| 水蜜桃什么品种好| 国产黄片美女视频| 国国产精品蜜臀av免费| 九九爱精品视频在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲av熟女| 美女被艹到高潮喷水动态| 免费播放大片免费观看视频在线观看 | 中文乱码字字幕精品一区二区三区 | av在线老鸭窝| 91aial.com中文字幕在线观看| 99久久精品国产国产毛片| 特级一级黄色大片| 亚洲18禁久久av| 晚上一个人看的免费电影| 中文天堂在线官网| 美女内射精品一级片tv| 亚洲欧美成人精品一区二区| 美女黄网站色视频| 干丝袜人妻中文字幕| 国产午夜福利久久久久久| 日本免费a在线| 级片在线观看| 久久精品人妻少妇| 69人妻影院| 一级毛片aaaaaa免费看小| 久久久久精品久久久久真实原创| 国产精品一区www在线观看| 免费电影在线观看免费观看| 久久国内精品自在自线图片| 国产伦一二天堂av在线观看| 日韩欧美三级三区| 婷婷色av中文字幕| 夜夜看夜夜爽夜夜摸| 狂野欧美激情性xxxx在线观看| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 午夜福利在线观看吧| 亚洲精华国产精华液的使用体验| 我的女老师完整版在线观看| 麻豆av噜噜一区二区三区| 身体一侧抽搐| 久久韩国三级中文字幕| 日韩在线高清观看一区二区三区| 日韩欧美三级三区| 欧美成人精品欧美一级黄| 国产女主播在线喷水免费视频网站 | 草草在线视频免费看| 国产视频内射| 寂寞人妻少妇视频99o| 亚洲aⅴ乱码一区二区在线播放| 久久精品熟女亚洲av麻豆精品 | 久久久久久九九精品二区国产| 六月丁香七月| 亚洲,欧美,日韩| 有码 亚洲区| 乱码一卡2卡4卡精品| 日韩中字成人| 精品无人区乱码1区二区| av.在线天堂| 综合色丁香网| 免费一级毛片在线播放高清视频| 日本wwww免费看| 久久精品国产99精品国产亚洲性色| 日本-黄色视频高清免费观看| 两个人视频免费观看高清| 少妇的逼水好多| 亚洲一级一片aⅴ在线观看| 午夜福利成人在线免费观看| 亚洲精品久久久久久婷婷小说 | 精品久久久久久久人妻蜜臀av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美高清成人免费视频www| 成人毛片60女人毛片免费| 精品久久久久久久末码| 久久精品国产鲁丝片午夜精品| 国产精品一区二区性色av| 午夜福利在线观看吧| 久久鲁丝午夜福利片| 狂野欧美激情性xxxx在线观看| 黄色欧美视频在线观看| 精品一区二区免费观看| 特大巨黑吊av在线直播| 人人妻人人澡欧美一区二区| 国产片特级美女逼逼视频| 熟女电影av网| 免费搜索国产男女视频| 两性午夜刺激爽爽歪歪视频在线观看| 高清日韩中文字幕在线| 精品无人区乱码1区二区| av在线蜜桃| 久久久久九九精品影院| 成年版毛片免费区| 日韩成人av中文字幕在线观看| 亚洲av中文字字幕乱码综合| 亚洲精品色激情综合| 色尼玛亚洲综合影院| eeuss影院久久| 桃色一区二区三区在线观看| 午夜福利高清视频| 日本一二三区视频观看| 久久精品国产亚洲av涩爱| 国产精品人妻久久久影院| 91精品国产九色| 久久99精品国语久久久| 亚洲成人久久爱视频| 亚洲av日韩在线播放| 亚洲综合精品二区| 欧美最新免费一区二区三区| 岛国在线免费视频观看| 欧美人与善性xxx| 激情 狠狠 欧美| 午夜视频国产福利| 精品久久久久久久久av| 国产成人a区在线观看| 高清日韩中文字幕在线| 内地一区二区视频在线| 久久国产乱子免费精品| 三级毛片av免费| ponron亚洲| 国产片特级美女逼逼视频| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 大香蕉久久网| 欧美激情在线99| 免费看光身美女| 精品免费久久久久久久清纯| 在线播放无遮挡| 噜噜噜噜噜久久久久久91| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久影院| av在线老鸭窝| 色综合亚洲欧美另类图片| 极品教师在线视频| 亚洲欧美精品专区久久| 国产视频内射| 亚洲精品乱码久久久久久按摩| 久久国内精品自在自线图片| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 99久久精品一区二区三区| 亚洲国产欧美在线一区| 国产亚洲av片在线观看秒播厂 | 男的添女的下面高潮视频| 午夜福利视频1000在线观看| 亚洲成色77777| 国产精品久久久久久av不卡| 国产成人一区二区在线| 激情 狠狠 欧美| 国产成人午夜福利电影在线观看| 一边亲一边摸免费视频| 国产又黄又爽又无遮挡在线| 男人舔女人下体高潮全视频| 午夜福利成人在线免费观看| 最新中文字幕久久久久| 中文字幕免费在线视频6| 免费播放大片免费观看视频在线观看 | 中文字幕免费在线视频6| 色噜噜av男人的天堂激情| 精品久久久久久成人av| 亚洲av成人精品一二三区| 亚洲美女搞黄在线观看| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲av天美| 九九久久精品国产亚洲av麻豆| 色尼玛亚洲综合影院| 国产成人91sexporn| 国产大屁股一区二区在线视频| 亚洲av男天堂| 国产色爽女视频免费观看| 精品午夜福利在线看| 中文在线观看免费www的网站| 高清日韩中文字幕在线| 国产成人a区在线观看| 99在线人妻在线中文字幕| 成人午夜精彩视频在线观看| 91久久精品国产一区二区三区| 国产精品不卡视频一区二区| 免费大片18禁| 两性午夜刺激爽爽歪歪视频在线观看| 久久6这里有精品| .国产精品久久| 国产老妇伦熟女老妇高清| 大话2 男鬼变身卡| 久久久久网色| 人妻夜夜爽99麻豆av| 老司机影院成人| 国产免费一级a男人的天堂| 欧美xxxx性猛交bbbb| 又粗又爽又猛毛片免费看| 人妻系列 视频| 国产一区二区三区av在线| 极品教师在线视频| 国产伦精品一区二区三区视频9| 亚洲天堂国产精品一区在线| 亚洲国产欧美在线一区| 看片在线看免费视频| 听说在线观看完整版免费高清| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频 | 成人二区视频| 色噜噜av男人的天堂激情| 亚洲精品一区蜜桃| 亚洲一级一片aⅴ在线观看| 国产淫语在线视频| 舔av片在线| 两性午夜刺激爽爽歪歪视频在线观看| 卡戴珊不雅视频在线播放| 全区人妻精品视频| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 欧美成人精品欧美一级黄| 精品久久久久久电影网 | 亚洲国产欧美在线一区| 国产午夜精品一二区理论片| 视频中文字幕在线观看| 色综合色国产| 国产精华一区二区三区| 中文字幕av成人在线电影| 国产亚洲一区二区精品| 亚洲欧美成人综合另类久久久 | 日韩欧美三级三区| 看片在线看免费视频| 综合色丁香网| 欧美最新免费一区二区三区| 亚洲欧美日韩高清专用| 蜜臀久久99精品久久宅男| 久久久久久久国产电影| 日韩三级伦理在线观看| 国产精品人妻久久久久久| av在线播放精品| 你懂的网址亚洲精品在线观看 | 国产三级中文精品| 晚上一个人看的免费电影| 99热网站在线观看| 国产精品野战在线观看| 最近中文字幕高清免费大全6| 小说图片视频综合网站| 久99久视频精品免费| 精品人妻视频免费看| 中文在线观看免费www的网站| 成年女人永久免费观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 丰满少妇做爰视频| 日韩欧美 国产精品| 蜜桃亚洲精品一区二区三区| 丰满人妻一区二区三区视频av| a级一级毛片免费在线观看| 深爱激情五月婷婷|