• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碲化汞晶格熱導(dǎo)反常壓應(yīng)變效應(yīng)的第一性原理研究

    2018-05-28 09:04:35姜恩來歐陽滔
    關(guān)鍵詞:恩來第一性湘潭

    姜恩來, 歐陽滔

    (湘潭大學(xué) 物理與光電工程學(xué)院,湖南 湘潭 411105)

    Effectively engineering the lattice thermal conductivity (hereafter denotedasκp) of materials is the key in current thermal science community, such as thermoelectric application[1-4]. Among the numerous methods, applying pressure[5-20]is regarded as one of the most worthwhile processes to modify the thermal transport property of materials, due to its robust tunability and flexibility to realize. Previous experiments reported thatκpof most bulk structures and weak interaction systems increases under pressure[5-8].Using density functional theory (DFT) calculations or Green-Kubo molecular dynamics (GK-MD) method, the similar trend has been demonstrated theoretically in iron[9], solid argon[10], diamond[11], silicon[12], cubic boron nitride[13], and also for some nanostructures[14,15]. A universal conclusion seems to be drawn that, the pressure always has a positive effect on theκpespecially for the bulk systems, owning to the enhancement of phonon group velocity (stiffness) and weakening of phonon-phonon scattering. In this paper, however, based on first-principles calculations,we observe a surprising decrease in theκpwith pressure for bulk II-VI mercury telluride (HgTe) system, which is a very promising thermoelectric material[16]. The abnormal phenomenon originates from the unexpected increase in anharmonic phonon scattering upon compression. The finding overthrows our common understanding thatκpincreases with pressure and extends the capability of conventional treatments on advancing the energy conversion performance of thermoelectric materials.

    We first validated our calculation by comparing the phonon dispersion curves of HgTe under different pressures, which is done by solving the eigenvalues of the dynamical matrix constructed from the harmonic force constants. The results are shown in Fig.1. The phonon dispersion of HgTe under zero-pressure is in good agreement with previous theoretical studies and experimental measurements[23-24]. For example, the phonon frequency of the transverse optic (TO) mode atΓpoint is 3.47 THz and the experimental value is 3.54 THz[24], confirming the accuracy of the calculated force constants. It should be noted that the real space supercell method[25]cannot give the LO-TO splitting directly. Here the Born effective charges and dielectric constants are taken into account in the calculations. For better description of the thermal transport property of HgTe, this modification is used in the later on discussions. In order to check the validity of local density approximation, we run additional calculations using the Perdew, Burke, Ernzerhof generalized gradient approximation (PBE-GGA)[26]. We found that the phonon spectrum based on the PBE-GGA cannot describe the phonon spectrum very well (The results is not shown here). Therefore, we used the LDA throughout this work, which is also preferred in previous study[23]. Previous work reports that the spin-orbit interaction has weak influence on the phonon spectrum of HgTe[23]. However, we did not find noticeable change in the phonon dispersion curves when the spin-orbit interaction was switched on. Therefore, the spin-orbit interaction is not taken into consideration in this work. Upon compression, it can be seen that the low frequency transverse acoustic (TA) phonons change barely and even become soften aroundXandKpoints. As pressure increases, the longitudinal acoustic (LA) phonons and the optical phonons gradually shift to higher frequencies, similar to that observed in most of bulk materials, such as solid argon and diamond[10-11]. From phonon dispersion curves, one might intuitively expect thatκpof HgTe will also increase with pressure increasing. However, as we will see shortly, this is not the case.

    We further validated our calculation by comparingκpof HgTe at zero pressure with experiments. In this paper, diamond is taken as an example for comparison because it possesses similar crystal structure with zinc blende HgTe. Moreover, diamond is a representative of many other materials with the same positive pressure-κprelationship[11]. Therefore, we can also compare our results with these data and check the reliability of our work. Theκpof diamond at room temperature is calculated to be 2 033 W/mK, which agrees reasonably with previous theoretical and experimental results[11]. For HgTe, at room temperature our calculation result is 10.46 W/mK, while the experimental value is only about 2.14 W/mK[27]. It looks like our ab initio results overestimates theκpof HgTe, but this is understandable considering that, the impurity scattering in the sample plays critical role as compared with the intrinsic phonon-phonon scattering. As described in previous study[27], the experimental samples contain hole impurities. Then, we considered the impurity scattering by incorporating a Rayleigh-type term[28]to the intrinsic phonon-phonon relaxation time by using the Matthiessen rule[29]. By taking an average hole concentration of 1.0 × 1017cm-3, the calculated thermal conductivity of HgTe matches very well with the experimental data.

    Theκpof HgTe as a function of pressure is plotted in Fig.2. For comparison we also show the results of bulk diamond. We first notice that, theκpof diamond increases remarkably with pressure. These results are in good agreement with previous PBTE simulations[11]. At 60 GPa, the thermal conductivity of diamond increases by about 48%, very close to the value of 52% reported in Ref. 11. Theκpis doubled when the pressure is increased to 120 GPa. The enhancement inκpof diamond under pressure is attributed to the reduction of phonon-phonon scattering rates and the stiffening of phonon modes, due to the shift of phonon branches to high frequency under pressure[11].

    A striking result in Fig.2 is the anomalous response ofκpof HgTe to pressure, which is sharply opposed to the case of diamond, despite the similarity of their cubic crystal structures. Theκpof HgTe decreases dramatically with pressure increasing. Up to 1.5 GPa, which is the phase transition point of HgTe (beyond that the zinc blende phase transits into cinnabar phase), the room temperatureκpis reduced by 67%. This trend is alien to that found previously for other bulk materials[11-13], where theκpincreases largely with pressure increasing. To the best of our knowledge, the abnormal trend for HgTe has not been reported for bulk materials so far.

    We also calculated the Young’s modulus (EY) and shear modulus (G) of diamond and HgTe and compared the two cases in the inset of Fig.2. The calculatedEYandGfor diamond at zero pressure are 1 287 GPa and 577 GPa, respectively, while these values are 58.3 GPa and 22.3 GPa for HgTe, which agree very well with previous experimental data[30]. By applying pressure, bothEYandGof diamond increases in a conformable manner. However, for HgTe the trend of pressure dependentEYandGis bifurcate:EYincreases as pressure increases, whileGdecreases with pressure. Considering the anomalous pressure-dependentκp, we speculate that there might exist some relationship betweenκpandGof HgTe. This will be explained later.

    Phonon scattering in a solid material is determined by its intrinsical harmonicity, whose magnitude can be qualitatively characterized by the Grüneisen parameters (γλ)[11,22]:

    To correlate the anomalous phenomena with the atomic structure of HgTe, in Fig.5 we show the electron localization function (ELF)[32]of the ground state HgTe. We also calculated ELF for diamond for comparison. From the distribution of ELF, it is clearly seen that the electrons in diamond are mainly localized between two carbon atoms due to the nature of covalent bonding [Fig.5(a)]. In contrast, the electrons in HgTe present a fully different distribution: the electrons are mainly distributed around the Te atoms, instead of localizing between Hg and Te atoms [see Fig.5(b)]. It is because of this different distribution of ELF, the atoms in HgTe can slide with each other more easily than that in diamond, where the covalent bond has strong directivity and thus atom slide hardly occurs. This scenario is also supported by their opposing pressure dependentGas shown in the inset of Fig.2. On the one hand, the slide motion between Hg and Te atoms renders the lowGin HgTe; on the other hand, it hinders the phonon propagation and induces strong anharmonic scattering especially for the low energy acoustic phonons, which is the main reason for the lowκpof HgTe. TheGof HgTe decreases as the pressure increases, while it increases considerably with pressure for diamond. That is to say, the slide motion in HgTe becomes more intense and easier at high pressures. In this case, the anharmonic effect is enhanced in HgTe upon compression. As a result, bothGandκpof HgTe decreases with pressure increasing. It should be noted that the enhanced anharmonicity in HgTe under pressure is also supported by the previous experimental study[31]that thermal expansion of HgTe has positive to negative transition above room temperature when the pressure rises, meaning that the mode dependent Grüneisen parameters are mostly negative under compression. Based on our current study, we speculate that the negative pressure dependentκpis usually accompanied by lowG.

    Before closing, it is worth pointing out that a similar observation of negative pressure dependence of thermal conductivity has been published very recently[33]. The authors attribute the anomalous thermal phenomenon to the different intrinsic scattering processes due to the large different mass ratio. However, in our work the mass difference between Hg and Te is very small and thus the negative pressure dependence of thermal conductivity in the HgTe cannot be explained by the mechanism presented in Ref. 33. Therefore, our results provide another new perspective to understand this anomalous thermal phenomenon and further clarify the relationship between negative Grüneisen parameters and lattice thermal conductivity[34].

    In summary, we have presented the pressure effect on the phonon transport of bulk HgTe form Boltzmann transport equation based on first-principles calculations. In contrast to the increase ofκpobserved in many bulk materials, we uncover an anomalous decrease ofκpof HgTe with pressure. We identify the primary mechanism as the enhancement of negative Grüneisen parameters of TA modes, which results in the negative thermal expansion of HgTe at low temperatures and plays critical role in the lowκpdue to the phonon anharmonicity. Further, the unexpected phenomenon is associated with the unique electron distribution in HgTe inducing low shear modulus, which is directly associated with the aforementioned TA modes and gives rise to strong phonon-phonon scattering. Under pressure, this intrinsic effect further weakens the shear modulus and enhances the anharmonic phonon scattering in HgTe, and thus drivesκpto even lower values. This study provides new physical insights into the effect of pressure on the phonon transport of bulk materials and offers an effective way to decouple the electrical and phononic transport in thermoelectrics in terms of improving their energy conversion performance. Considering the small pressure (below 2 GPa) studied here, this anomalous pressure dependent thermal conductivity of HgTe could be demonstrated with current experimental techniques.

    參考文獻(xiàn)

    [1] HUANG Y, DUAN X F, CUI Y, et al. Logic gates and computation from assembled nanowire building Blocks [J]. Science, 2001, 294: 1313.

    [2] HUANG X M H,ZORMAN C A, MEHREGANY M, et al. Nanoelectromechanical systems:nanodevice motion at microwave frequencies[J]. Nature,2003, 421: 496.

    [3] CHEN G, DRESSELHAUS M S, DRESSELHAUS G, et al. Recent developments in thermoelectric materials [J]. Int Mater Rev,2003, 48: 45.

    [4] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Adv Mater,2007,19: 1043-1053.

    [5] BRIDGEMAN P W. The thermal conductivity and compressibility of several rocks under high pressure [J]. Am J Sci,1924, 7: 81.

    [7] HSIEH W P, CHEN B, LI J, et al.Pressure tuning of the thermal conductivity of the layered muscovite crystal [J].Phys Rev B,2009, 80: 180302.

    [8] HSIEH W P, LYONS A S, POP E, et al.Pressure tuning of the thermal conductance of weak interfaces [J]. Phys Rev B,2011, 84: 184107.

    [9] POZZO M, DAVIES C, GUBBINS D, et al. Thermal and electrical conductivity of iron at Earth’s core conditions [J]. Nature,2012, 485: 355.

    [10] PARRISH K D, JAIN A, LARKIN J M,et al. Origins of thermal conductivity changes in strained crystals [J]. Phys Rev B,2014, 90: 235201.

    [11] BROIDO D A, LINDSAY L,WARD A. Thermal conductivity of diamond under extreme pressure:a first-principles study [J]. Phys Rev B,2012, 86: 115203.

    [12] LI X,MAUTE K, DUNN M L, et al. Strain effects on the thermal conductivity of nanostructures [J]. Phys Rev B,2010, 81: 245318.

    [13] MUKHOPADHYAY S,STEWART D A. Polar effects on the thermal conductivity of cubic boron nitride under pressure [J]. Phys Rev Lett,2014, 113:025901.

    [14] ABRAMSON A A, TIEN C L,MAJUMDAR A J. Interface and strain effects on the thermal conductivity of heterostructures: a molecular dynamics study [J]. Heat Transfer,2002, 124: 963.

    [15] CHEN J, WALTHER J H,KOUMOUTSAKOS P. Strain engineering of kapitza resistance in few-layer graphene [J]. Nano Lett,2014, 14: 819.

    [16] DEVILLANOVA F A,MONT W W D. Handbook of chalcogen chemistry:new perspectives in sulfur, selenium and tellurium [M].Cambridge:Royal Society of Chemistry,2013.

    [17] RADESCU S, MUJICA A, LóPEZ-SOLANO J, et al. Theoretical study of pressure-driven phase transitions in HgSe and HgTe [J]. Phys Rev B,2011, 83: 094107.

    [18] KRESSE G,FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys Rev B,1996, 54: 11169.

    [19] BL?CHL P E. Projector augmented-wave method [J]. Phys Rev B,1994, 50: 17953.

    [20] KRESSE G,JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys Rev B,1999, 59: 1758.

    [21] CEPERLEY D M,ALDER B J. Ground state of the electron gas by a stochastic method [J]. Phys Rev Lett, 1980, 45: 566.

    [22] HUANG T,RUOFF A L. Pressure-induced phase transitions of HgTe [J]. Phys Status Solidi A,1983, 77: K193.

    [23] LI W,CARRETE J, KATCHO N A,et al. ShengBTE: a solver of the boltzmann transport equation for phonons [J]. Comput Phys Commun,2014, 185: 1747.

    [24] RADESCU S, MUJJCA A,NEEDS R J. Soft-phonon instability in zincblende HgSe and HgTe under moderate pressure: Ab initio pseudopotential calculations [J]. Phys Rev B,2009, 80: 144110.

    [25] MADELUNG O. Data in science and technology: semiconductors other than group IV elements and III-V compounds [M].Berlin:Springer-Verlag,1992.

    [26] TOTO A, OBA F,TANAKA I. First-principles calculations of theferroelastic transition between rutile-type and CaCl2-type SiO2at high pressures [J]. Phys Rev B,2008, 78: 134106.

    [27] PERDEW J P, BURKE K,ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys Rev Lett,1996, 77: 3865.

    [28] WHITSETT C R,NELSON D A. Lattice thermal conductivity of p-Type mercury telluride [J]. Phys Rev B,1972, 5: 3125.

    [29] KLEMENS P G. The scattering of low-frequency lattice waves by static imperfections [J]. Proceeding of the Physical Society. Section A,1955, 68: 1113.

    [30] FENG T L,RUAN X L.Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectrics and thermal management: a review [J]. J Nanomater,2014(3):1-25.

    [31] SPEAR,DISMUKES. Synthetic diamond-emerging CVD science and technology [M].New York:Wiley,1994.

    [32] BESSON J M, GRIMA P, GAUTHIER M, et al. Pretransitional behavior in zincblende HgTe under high pressure and temperature [J]. Phys Stat Solidi B,1996, 198: 419.

    [33] SILVI B, SAVIN A. Classification of chemical bonds based on topological analysis of electron localization functions [J]. Nature,1994, 371: 683.

    [34] LINDSAY L,BROIDO D A, CARRETE J, et al. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds [J]. Phys Rev B,2015, 91: 121202.

    [35] SLACK G A,ANDERSSON P. Pressure and temperature effects on the thermal conductivity of CuCl [J]. Phys Rev B,1982, 26: 1873.

    猜你喜歡
    恩來第一性湘潭
    Extraordinary mechanical performance in charged carbyne
    Rapid identification of volatile organic compounds and their isomers in the atmosphere
    少先隊(duì)活動(dòng)(2021年9期)2021-11-05 07:31:10
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計(jì)算
    湘潭是個(gè)好地方
    湘潭紅色文化軟實(shí)力的提升研究
    活力(2019年21期)2019-04-01 12:16:10
    湘潭大學(xué)藝術(shù)學(xué)院作品選
    流行色(2017年12期)2017-10-26 03:08:22
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計(jì)算
    缺陷和硫摻雜黑磷的第一性原理計(jì)算
    巨乳人妻的诱惑在线观看| 91精品国产国语对白视频| 免费久久久久久久精品成人欧美视频| 亚洲国产中文字幕在线视频| 亚洲欧洲精品一区二区精品久久久| 久久午夜综合久久蜜桃| 99精品在免费线老司机午夜| 精品高清国产在线一区| 看片在线看免费视频| 老司机深夜福利视频在线观看| 侵犯人妻中文字幕一二三四区| 免费在线观看影片大全网站| 久久人人精品亚洲av| 黄片小视频在线播放| 黄色视频不卡| 免费女性裸体啪啪无遮挡网站| 亚洲五月天丁香| 国产欧美日韩一区二区精品| 97超级碰碰碰精品色视频在线观看| svipshipincom国产片| 中文字幕久久专区| 国产成人欧美| 村上凉子中文字幕在线| 欧美在线黄色| 久久国产乱子伦精品免费另类| 亚洲伊人色综图| 国产在线观看jvid| 制服人妻中文乱码| 成人亚洲精品av一区二区| 怎么达到女性高潮| 又黄又粗又硬又大视频| 美女国产高潮福利片在线看| 国产午夜福利久久久久久| 久久人人97超碰香蕉20202| 男女下面进入的视频免费午夜 | 久久香蕉精品热| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久精品电影 | 亚洲aⅴ乱码一区二区在线播放 | 999久久久国产精品视频| 亚洲久久久国产精品| 成人亚洲精品一区在线观看| 老鸭窝网址在线观看| 色综合站精品国产| www.www免费av| 久久这里只有精品19| 中文字幕最新亚洲高清| 9191精品国产免费久久| 丁香六月欧美| 99国产精品一区二区三区| 亚洲熟女毛片儿| 午夜福利高清视频| 男女做爰动态图高潮gif福利片 | 琪琪午夜伦伦电影理论片6080| 国产精品九九99| 性色av乱码一区二区三区2| 午夜免费激情av| e午夜精品久久久久久久| 国产高清videossex| 日日爽夜夜爽网站| 麻豆成人av在线观看| 好男人电影高清在线观看| 国产高清激情床上av| 亚洲中文av在线| 日韩av在线大香蕉| 一进一出抽搐动态| 在线播放国产精品三级| 色综合婷婷激情| 国语自产精品视频在线第100页| 色哟哟哟哟哟哟| 好男人电影高清在线观看| 日韩欧美一区视频在线观看| 成人免费观看视频高清| 丝袜人妻中文字幕| 国产精品秋霞免费鲁丝片| xxx96com| 久久久久国产精品人妻aⅴ院| 久久人人97超碰香蕉20202| 十八禁网站免费在线| 亚洲欧美一区二区三区黑人| 欧美另类亚洲清纯唯美| 亚洲自偷自拍图片 自拍| 亚洲国产看品久久| 这个男人来自地球电影免费观看| 久久 成人 亚洲| 成人国产一区最新在线观看| 91成年电影在线观看| 精品一区二区三区四区五区乱码| 精品国产国语对白av| 亚洲精品一区av在线观看| 久久人妻福利社区极品人妻图片| 久久伊人香网站| 久久国产精品影院| 国产精品九九99| 性少妇av在线| 一级a爱视频在线免费观看| av视频免费观看在线观看| 久久天躁狠狠躁夜夜2o2o| 老司机午夜福利在线观看视频| 亚洲精品国产一区二区精华液| 亚洲无线在线观看| 亚洲av成人av| 每晚都被弄得嗷嗷叫到高潮| 大型黄色视频在线免费观看| 夜夜夜夜夜久久久久| 人人妻人人爽人人添夜夜欢视频| 亚洲性夜色夜夜综合| 无遮挡黄片免费观看| 亚洲成av片中文字幕在线观看| 欧美成人性av电影在线观看| x7x7x7水蜜桃| 黄片播放在线免费| 欧美日韩瑟瑟在线播放| 纯流量卡能插随身wifi吗| 日韩欧美一区视频在线观看| 极品教师在线免费播放| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机福利观看| 久久精品国产综合久久久| 亚洲 欧美 日韩 在线 免费| 美女午夜性视频免费| 黄色视频,在线免费观看| 精品熟女少妇八av免费久了| 久久人妻av系列| 长腿黑丝高跟| 中文字幕av电影在线播放| 国产1区2区3区精品| 99国产精品一区二区三区| 此物有八面人人有两片| 亚洲第一青青草原| 久久精品91无色码中文字幕| 国产区一区二久久| 99精品在免费线老司机午夜| 日本黄色视频三级网站网址| 在线观看一区二区三区| 久久久国产精品麻豆| 欧美色视频一区免费| 色尼玛亚洲综合影院| 女性被躁到高潮视频| 波多野结衣av一区二区av| 啦啦啦 在线观看视频| 亚洲五月婷婷丁香| 校园春色视频在线观看| 精品国产国语对白av| 国产高清视频在线播放一区| 黄片小视频在线播放| 一级,二级,三级黄色视频| 桃色一区二区三区在线观看| 9191精品国产免费久久| 亚洲国产精品sss在线观看| 亚洲黑人精品在线| 日韩大尺度精品在线看网址 | 久久午夜亚洲精品久久| 欧美一级a爱片免费观看看 | 亚洲精品一区av在线观看| 亚洲黑人精品在线| 日日摸夜夜添夜夜添小说| 午夜影院日韩av| 欧美日韩亚洲综合一区二区三区_| 97超级碰碰碰精品色视频在线观看| 国产熟女xx| 久久久国产欧美日韩av| 欧美日韩黄片免| 国产一区二区三区视频了| 黑人巨大精品欧美一区二区mp4| 如日韩欧美国产精品一区二区三区| av视频在线观看入口| 91九色精品人成在线观看| 激情在线观看视频在线高清| 国产av在哪里看| 99热只有精品国产| 色在线成人网| 欧美激情 高清一区二区三区| av在线天堂中文字幕| 啪啪无遮挡十八禁网站| 一卡2卡三卡四卡精品乱码亚洲| 亚洲专区字幕在线| 神马国产精品三级电影在线观看 | 日韩欧美免费精品| 国内精品久久久久久久电影| 一级毛片高清免费大全| 久久久久久久久中文| 亚洲一区中文字幕在线| 精品国产超薄肉色丝袜足j| 午夜福利欧美成人| 国产精品自产拍在线观看55亚洲| x7x7x7水蜜桃| 人妻丰满熟妇av一区二区三区| 看黄色毛片网站| 在线观看66精品国产| 成人三级黄色视频| 国产一区二区三区综合在线观看| 亚洲五月天丁香| 校园春色视频在线观看| 美国免费a级毛片| 99久久久亚洲精品蜜臀av| 国产精品久久久av美女十八| 欧美在线一区亚洲| av片东京热男人的天堂| 国产在线精品亚洲第一网站| 久久午夜综合久久蜜桃| 999精品在线视频| 在线永久观看黄色视频| 一区二区日韩欧美中文字幕| 亚洲av第一区精品v没综合| 亚洲av美国av| 欧美成人午夜精品| 91成人精品电影| 香蕉丝袜av| 欧美丝袜亚洲另类 | 久久国产精品人妻蜜桃| 成年版毛片免费区| 人人妻,人人澡人人爽秒播| 19禁男女啪啪无遮挡网站| 嫁个100分男人电影在线观看| 亚洲第一电影网av| 精品福利观看| 两个人免费观看高清视频| 男人的好看免费观看在线视频 | 午夜福利免费观看在线| 精品欧美国产一区二区三| 丰满人妻熟妇乱又伦精品不卡| 成人国产综合亚洲| 啦啦啦免费观看视频1| 亚洲性夜色夜夜综合| 两性夫妻黄色片| 成人欧美大片| 欧美亚洲日本最大视频资源| 十八禁网站免费在线| 操出白浆在线播放| 黄色毛片三级朝国网站| 99久久久亚洲精品蜜臀av| 欧美日本中文国产一区发布| 嫁个100分男人电影在线观看| 色综合欧美亚洲国产小说| 欧美激情久久久久久爽电影 | 亚洲av电影不卡..在线观看| 黑人操中国人逼视频| 精品一区二区三区视频在线观看免费| 亚洲伊人色综图| 亚洲狠狠婷婷综合久久图片| 女人精品久久久久毛片| 午夜福利影视在线免费观看| 国产一区二区三区视频了| 国产一区二区三区在线臀色熟女| e午夜精品久久久久久久| 中文字幕av电影在线播放| 免费在线观看日本一区| 妹子高潮喷水视频| 亚洲熟妇中文字幕五十中出| 一区在线观看完整版| 男男h啪啪无遮挡| 999久久久国产精品视频| 国产一区二区激情短视频| 黄色片一级片一级黄色片| 精品久久久久久久人妻蜜臀av | 国产精品日韩av在线免费观看 | 国产三级在线视频| 午夜福利免费观看在线| 老司机午夜十八禁免费视频| 麻豆一二三区av精品| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区综合在线观看| 精品熟女少妇八av免费久了| 亚洲av成人一区二区三| 国产av在哪里看| 男女之事视频高清在线观看| 美女扒开内裤让男人捅视频| 精品福利观看| 他把我摸到了高潮在线观看| 欧美在线一区亚洲| 亚洲欧洲精品一区二区精品久久久| 精品少妇一区二区三区视频日本电影| 欧美老熟妇乱子伦牲交| 日韩av在线大香蕉| 欧美成人免费av一区二区三区| 国产亚洲精品av在线| 成人三级黄色视频| 成在线人永久免费视频| 久久这里只有精品19| 啦啦啦韩国在线观看视频| 亚洲精品中文字幕在线视频| 国产av一区二区精品久久| 欧美成人一区二区免费高清观看 | 亚洲中文字幕日韩| 亚洲,欧美精品.| 波多野结衣一区麻豆| 亚洲精品av麻豆狂野| 久久久久亚洲av毛片大全| 久久久久久国产a免费观看| 国产极品粉嫩免费观看在线| 热re99久久国产66热| 国产午夜福利久久久久久| 国产一区二区在线av高清观看| 99久久国产精品久久久| 9色porny在线观看| 欧美 亚洲 国产 日韩一| 1024香蕉在线观看| 久99久视频精品免费| 亚洲最大成人中文| 宅男免费午夜| 在线观看日韩欧美| 精品欧美一区二区三区在线| 精品久久久久久久人妻蜜臀av | 午夜亚洲福利在线播放| 国产成人啪精品午夜网站| 不卡一级毛片| 黑丝袜美女国产一区| 后天国语完整版免费观看| 好男人在线观看高清免费视频 | 亚洲五月色婷婷综合| 久久久水蜜桃国产精品网| 在线观看日韩欧美| 欧美精品啪啪一区二区三区| 黄片小视频在线播放| 久久久久久亚洲精品国产蜜桃av| 九色亚洲精品在线播放| 黄色视频不卡| 国产欧美日韩一区二区精品| 9191精品国产免费久久| 此物有八面人人有两片| 黄色视频,在线免费观看| 一边摸一边抽搐一进一小说| 黄色视频不卡| 老鸭窝网址在线观看| 国产亚洲欧美98| 亚洲最大成人中文| 一进一出好大好爽视频| 国产成人av教育| 久久精品亚洲精品国产色婷小说| 一边摸一边抽搐一进一出视频| 两个人免费观看高清视频| 久久久久久久精品吃奶| 国产精品野战在线观看| 国产不卡一卡二| 国产熟女午夜一区二区三区| 亚洲国产欧美网| 久久狼人影院| 高清毛片免费观看视频网站| 久久青草综合色| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品成人综合色| 9色porny在线观看| 日韩欧美国产一区二区入口| 国产成人精品无人区| 国产精品一区二区免费欧美| 国产精品久久久久久亚洲av鲁大| 亚洲七黄色美女视频| 级片在线观看| 纯流量卡能插随身wifi吗| 日日干狠狠操夜夜爽| 精品国内亚洲2022精品成人| 中文字幕人成人乱码亚洲影| 欧美日韩福利视频一区二区| www日本在线高清视频| 欧美日本中文国产一区发布| 国产亚洲欧美精品永久| 嫩草影视91久久| 十八禁人妻一区二区| 一本大道久久a久久精品| 一二三四社区在线视频社区8| 成人国语在线视频| 成人av一区二区三区在线看| 国产精品 国内视频| 国产精品亚洲美女久久久| 韩国av一区二区三区四区| 久久亚洲精品不卡| 91麻豆精品激情在线观看国产| av福利片在线| 妹子高潮喷水视频| 又大又爽又粗| 亚洲午夜精品一区,二区,三区| 国产精品自产拍在线观看55亚洲| 国产aⅴ精品一区二区三区波| 日韩成人在线观看一区二区三区| 最近最新免费中文字幕在线| 午夜福利影视在线免费观看| 国产精品九九99| 国产人伦9x9x在线观看| 国产在线观看jvid| 精品一区二区三区四区五区乱码| 亚洲人成网站在线播放欧美日韩| 亚洲人成77777在线视频| 脱女人内裤的视频| 亚洲片人在线观看| 99久久精品国产亚洲精品| 动漫黄色视频在线观看| 男女之事视频高清在线观看| 午夜日韩欧美国产| 国产成年人精品一区二区| 法律面前人人平等表现在哪些方面| 91字幕亚洲| 国产精华一区二区三区| 老司机在亚洲福利影院| 91成年电影在线观看| 黄片播放在线免费| 欧美在线黄色| 在线观看免费午夜福利视频| 欧美精品亚洲一区二区| 亚洲性夜色夜夜综合| 国产99久久九九免费精品| 精品一品国产午夜福利视频| x7x7x7水蜜桃| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 99久久99久久久精品蜜桃| 天堂√8在线中文| 精品久久蜜臀av无| 亚洲av成人不卡在线观看播放网| 十八禁人妻一区二区| 曰老女人黄片| 国产av精品麻豆| 中文字幕av电影在线播放| 1024香蕉在线观看| 大码成人一级视频| av中文乱码字幕在线| 国产精华一区二区三区| 手机成人av网站| 午夜福利免费观看在线| 50天的宝宝边吃奶边哭怎么回事| 在线永久观看黄色视频| 亚洲av电影不卡..在线观看| 国产av在哪里看| bbb黄色大片| 亚洲精品在线美女| 又黄又爽又免费观看的视频| 亚洲中文av在线| 久久热在线av| 亚洲全国av大片| 日韩高清综合在线| 手机成人av网站| 亚洲中文av在线| 亚洲人成伊人成综合网2020| 久久国产精品影院| 久久久久久久久久久久大奶| 国产成人精品久久二区二区免费| 国产一卡二卡三卡精品| www国产在线视频色| 纯流量卡能插随身wifi吗| 嫁个100分男人电影在线观看| 欧美成人午夜精品| 老鸭窝网址在线观看| 亚洲国产精品合色在线| 国产精品自产拍在线观看55亚洲| 国产成人av激情在线播放| 美女免费视频网站| 国产成人一区二区三区免费视频网站| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区免费欧美| 国产又爽黄色视频| 人妻久久中文字幕网| 男女下面进入的视频免费午夜 | 欧美日韩乱码在线| 丝袜美足系列| 黄片小视频在线播放| 免费久久久久久久精品成人欧美视频| 亚洲国产看品久久| 精品熟女少妇八av免费久了| 亚洲中文字幕一区二区三区有码在线看 | 又黄又爽又免费观看的视频| 51午夜福利影视在线观看| 一本大道久久a久久精品| 丝袜美腿诱惑在线| 国产熟女xx| 久久人妻福利社区极品人妻图片| 国产亚洲精品综合一区在线观看 | 精品人妻1区二区| 精品无人区乱码1区二区| 精品少妇一区二区三区视频日本电影| 日韩高清综合在线| 国产精品98久久久久久宅男小说| 91av网站免费观看| 中文字幕av电影在线播放| 在线永久观看黄色视频| 伦理电影免费视频| 在线观看66精品国产| 天天添夜夜摸| 在线观看舔阴道视频| 日韩视频一区二区在线观看| 在线观看舔阴道视频| 丝袜美腿诱惑在线| 一本综合久久免费| 欧美日韩亚洲综合一区二区三区_| 丝袜美足系列| 欧美黑人欧美精品刺激| 丰满人妻熟妇乱又伦精品不卡| 丁香欧美五月| 亚洲色图 男人天堂 中文字幕| 欧美日韩瑟瑟在线播放| 天堂√8在线中文| 久久热在线av| 国产真人三级小视频在线观看| 三级毛片av免费| 9热在线视频观看99| 狠狠狠狠99中文字幕| 精品久久久精品久久久| 久久久久久大精品| 一级毛片高清免费大全| 99国产精品免费福利视频| 国产aⅴ精品一区二区三区波| 午夜免费观看网址| www.www免费av| 又紧又爽又黄一区二区| av超薄肉色丝袜交足视频| 精品福利观看| 一个人观看的视频www高清免费观看 | 禁无遮挡网站| 亚洲欧美日韩另类电影网站| 电影成人av| 成人永久免费在线观看视频| 国产精品av久久久久免费| 两个人看的免费小视频| 色综合亚洲欧美另类图片| 国产人伦9x9x在线观看| 丰满的人妻完整版| 亚洲第一电影网av| 国产亚洲精品第一综合不卡| 国产麻豆69| 午夜激情av网站| 后天国语完整版免费观看| 亚洲欧美日韩无卡精品| 久久人人爽av亚洲精品天堂| 欧美日韩乱码在线| 亚洲精品在线美女| 少妇的丰满在线观看| 在线观看一区二区三区| 一级毛片精品| 久久久久久久精品吃奶| 国产精品免费视频内射| 中国美女看黄片| 麻豆成人av在线观看| 亚洲五月婷婷丁香| 黄网站色视频无遮挡免费观看| 久久久久九九精品影院| 亚洲国产欧美日韩在线播放| 18禁黄网站禁片午夜丰满| 欧美日本亚洲视频在线播放| 欧美黑人精品巨大| 亚洲精品国产一区二区精华液| 精品人妻在线不人妻| 国产精品免费一区二区三区在线| 淫妇啪啪啪对白视频| 久久久久久国产a免费观看| 色播在线永久视频| 久久中文字幕人妻熟女| 国产精品乱码一区二三区的特点 | 国产精品野战在线观看| 国内毛片毛片毛片毛片毛片| 欧美日本视频| 丝袜美腿诱惑在线| 亚洲av五月六月丁香网| a在线观看视频网站| 亚洲中文字幕一区二区三区有码在线看 | videosex国产| 国产免费男女视频| cao死你这个sao货| 成人特级黄色片久久久久久久| 成人手机av| 日本五十路高清| 99在线视频只有这里精品首页| www.自偷自拍.com| 成年女人毛片免费观看观看9| 午夜福利18| 桃色一区二区三区在线观看| 午夜福利18| 久久久国产成人精品二区| av电影中文网址| av在线天堂中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 制服人妻中文乱码| av在线播放免费不卡| 法律面前人人平等表现在哪些方面| av视频免费观看在线观看| 在线播放国产精品三级| 日韩欧美三级三区| 看黄色毛片网站| 日本免费a在线| 777久久人妻少妇嫩草av网站| 日韩大码丰满熟妇| 纯流量卡能插随身wifi吗| 欧美中文日本在线观看视频| 国产av一区二区精品久久| 大香蕉久久成人网| 两性午夜刺激爽爽歪歪视频在线观看 | 精品欧美国产一区二区三| 精品电影一区二区在线| 午夜老司机福利片| 美女大奶头视频| 亚洲天堂国产精品一区在线| 免费高清视频大片| 国产伦一二天堂av在线观看| 亚洲五月天丁香| 亚洲全国av大片| 熟女少妇亚洲综合色aaa.| 久久精品影院6| 又黄又粗又硬又大视频| 丝袜人妻中文字幕| av天堂在线播放| 国产激情久久老熟女| 99在线人妻在线中文字幕| 又黄又粗又硬又大视频| 这个男人来自地球电影免费观看| 曰老女人黄片| 女性生殖器流出的白浆| 又黄又粗又硬又大视频| 国产精品久久视频播放| 色哟哟哟哟哟哟| 极品人妻少妇av视频| 精品人妻在线不人妻| 国产成人av激情在线播放| 国产三级黄色录像| 欧美 亚洲 国产 日韩一| 国产精华一区二区三区| 久久欧美精品欧美久久欧美| 午夜成年电影在线免费观看|