• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Quasi-Chebyshevity Subsets of Unital Banach Algebras

    2018-05-24 09:18:20IranmaneshandSoleimany
    Analysis in Theory and Applications 2018年1期

    M.Iranmanesh and F.Soleimany

    Department of Mathematical Sciences,Shahrood University of Technology,P.O.Box 3619995161-316,Shahrood,Iran

    1 Introduction

    The subject of approximation theory is an old branch of analysis and has attracted the attention of several mathematicians during last years.This theory which has many important applications in mathematics and some other sciences has been studied by many authors,e.g.,[4,15].A basic problem in the theory is”Given a pointxand a setWin normed spaceX,determine a pointw0ofWwhich is at a minimum distance fromx”i.e.to findw0∈Wsuch that

    The set of all best approximations toxfromWis denoted by PW(x).Thus

    If eachx∈Xhas at least one best approximation inW,thenWis called a proximinal set andWis said to be non-proximinal if PW(x)=?for somex∈XW.A problem which has been intensively studied is to check whether a Banach spaceXdoes or does not contain bounded closed non-proximinal sets.The results in general Banach spaces can be found in[1,5,6].A subsetWof a Banach spaceXis called quasi-Chebyshev if PW(x)is a non-empty and compact set inXfor everyx∈X(see[10]).Some results on characterizations of quasi-Chebyshev subspaces in Banach spaces can be found in[9,10].In the paper,we introduce the problem exist non-quasi-Chebyshev and non-pseudo-Chebyshev sets in unital Banach algebras.All this works done by applying the related fixed point and approximation theory results.We give characterizations of quasi-Chebyshev subalgebras inC?-algebras in terms of substate function.The structure of this paper is as follows.In Section 2 we records some facts about Banach algebras,spectral properties ofC?-algebras A and HilbertC?-modules.In Section 3,we approach the question on the existence of non-quasi-Chebyshev sets in unital abelian Banach algebras by using the related fixed points and invariant approximation results.As a consequence,we obtain some results on the algebra of continuous functionsC(S),whereSis a compact set.We show that every closed bounded convex set in aC?-algebra A is quasi-Chebyshev if and only if A be finite dimensional.Similarly,we get some results for HilbertC?-modules.Best approximation and quasi-Chebyshev of subalgebra inC?-algebras,is discussed and characterized in Section 4.

    2 Preliminaries

    Let us start with some basic definitions,which will be used later.Consider A as a unital algebra with the unite.If A is a Banach space with respect to a norm which satisfies the multiplicative inequality

    then the pair(A,k·k)is called a normed algebra.A complete unital normed algebra is called unital Banach algebra.a∈A is said to be invertible if there is an elementbin A such thatab=ba=e.The fields of real and complex numbers are denoted by R and C,respectively.The symbolFdenotes a field that can be either R or C.The spectrum of an elementxof a unital algebra A overFis the set

    The spectral radius ofxis defined by

    A nonzero homomorphismτ:A→F,where A is a unital algebra overF,is called a character.We denote by ?(A)the set of all characters on A.If A is a unital abelian Banach algebra andx∈A,we define a continuous function bxby

    We callthe Gelfand transform ofx.We denote bythe set{:x∈A}.It is easy to see

    thatis self-adjoint if and only if for eachx∈A,there exists an elementy∈A such thatτ(x)=for eachτ∈?(A).If A is a unital abelian complex Banach algebra,?(A)6=?andσ(a)={τ(a):τ∈?(A)}for alla∈A.If A is a unital Banach algebra,then ?(A)is compact(see[11]).We follwed with the concept ofC?-algebras.An involution ?on an algebra A is a mappingx→x?from A onto A such that(λx+y)?=+y?,(xy)?=y?x?and(x?)?=x,for allx,y∈A andλ∈C.An involutive Banach algebra is called a Banach?-algebra.A Banach ?-algebra A is said to be aC?-algebra if kxx?k=kxk2,for eachx∈A.Clearly under the norm topology onB(H),the set of all bounded linear operators on a Hilbert spaceHis aC?-algebra relative to involutionT→T?,which is defined by

    Let A be an algebra then Mn(A)denotes the algebra of alln×n-matricesa=[aij]with entriesaijin A.If A is aC?-algebra,so Mn(A),where the involution is given byIf A and B be twoC?-algebras,we denote by A?B their algebraic tensor product.Note that for anyC?-algebra one can identify the space Mn(A)with the tensor product Mn(C)?A.

    A(right)HilbertC?-moduleVover aC?-algebra A is a linear space which is a right A-module equipped with an A-valued inner-producth·,·i:V×V→A that is sesquilinear,positive definite and respects the module action,i.e.,

    andVis complete with respect to the norm defined by kxk=khx,xik12,for eachx∈V.

    Lemma 2.1(see[3]).Let E be a C?-module over a C?-algebraA.Then E can be isometrically embedded in B(H,K),where H,K are Hilbert spaces.

    In the following,we recall some useful lemmas in fixed point theory that will be needed in the sequel.Let(X,·k)be a Banach space,A mappingT:E?X→Xis nonexpansive if kTx?Tyk≤kx?yk for eachx,y∈E.The fixed point set of mappingTis denoted by F(T)={x∈X:T(x)=x}.

    Lemma 2.2(see[14]).Let X be a Banach space,C a compact convex subset of X and T:C→C a continuous map.Then T has at least one fixed point in C.

    Definition 2.1(see[8]).LetKbe a convex subset of a Banach spaceX.A mapV:K→Xis called convex if

    Lemma 2.3(see[8]).Let K be a non-empty weakly compact convex subset of a Banach space X and let T:K→X be non-expansive and suppose I?T is convex on K.Then T has a fixed point.

    3 A non-quasi-Chebyshev sets of Banach algebras

    In this section,we consider closed,convex and bounded subsets of infinite dimensional unital Banach algebras and show with regard to the general conditions that these sets are not quasi-Chebyshev and pseudo-Chebyshev.

    Definition 3.1.A closed subsetWof a normed linear spaceXis called non-quasi-Chebyshev if it is not quasi-Chebyshev.

    Definition 3.2.LetUbe a closed subset of a normed linear spaceX.ThenUis calledω-quasi-Chebyshev if the set PU(x)is non-empty and weakly compact for allx∈XU.AndUisω-non-quasi-Chebyshev if it is notω-quasi-Chebyshev.

    Definition 3.3.LetXbe a Banach algebra,we sayXhas property(N)if ?(X)6=? and forx,y∈X,|τ(x)|≤|τ(y)|for eachτ∈?(X)implies that kxk≤kyk.

    Fupinwong and Dhompongsa studied the fixed-point property of unital commutative Banach algebras over a fieldF(see[7]).They obtained the following results.

    ConsiderXas an infinite-dimensional unital abelian Banach algebra,which has property(N)such thatbXis self-adjoint and

    then

    (1)there exists a sequence{xn}∈Xsuch that

    For eachn∈N,andis a sequence of non-empty pairwise disjoint subsets of ?(X).

    (2)Consider the mappingTnonXby

    and sets

    ThenTnhasn’t any fixed-point inEn.

    Theorem 3.1.Let X be an infinite dimensional unital abelian Banach algebra with property(N)such thatis self-adjoint and satisfying(3.1),then X contains a non-quasi-Chebyshev subset(Moreover,X contains a non-w-quasi-Chebyshev set).

    Proof.Assume on the contraryXand every of its closed subsets be quasi-Chebyshev(ωquasi-Chebyshev).LetTnandEndefined by(3.2)and(3.3).SinceXhas property(N)and|τ(xn)|≤1=τ(e)then kxnk≤1 forn∈N.Forx,y∈X,we have

    ThenTnis non-expansive onX.Forn∈N,Enis aTn-invariant convex set ofX,then forx∈X,PEn(x)is convex and by assumption is non-empty compact(weakly compact)set.We show that forx=0,PEn(0)isTn-invariant so.Lety∈PEn(0),furthery∈Enand thenTnyis inEnsinceTn(En)?En.AsTnis non-expansive,it follows that forg∈En,

    and thereforeTnyis in PEn(0).ThusTnmaps PEn(0)into itself.On the other hand,since the multiplication operation(a,b)→abis jointly continuous in Banach algebras.ThenTnis a continuous map.AsI?Tnis convex by applying Lemma 2.2 and Lemma 2.3 there existpn∈PEn(0)∩F(Tn)for eachn∈N.Thereforepn∈En∩F(Tn).But this is a contradiction by part(2)of the results of Fupinwong and Dhompongsa.

    Definition3.4.A closed subsetWof a normed linear spaceXis called pseudo-Chebyshev,if the set PW(x)be a non-empty and finite-dimensional subset ofXfor allx∈XW.

    A closed subsetWof a normed linear spaceXis non-pseudo-Chebyshev if it is not pseudo-Chebyshev.

    Theorem 3.2.Let X be an infinite dimensional unital abelian Banach algebra with property(N)such thatis self-adjoint and satisfying(3.1).Then X has an non-pseudo-Chebyshev subset.

    Proof.Assume on the contrary thatXand every of its closed subsets are pseudo-Chebyshev.LetTnandEnbe in such as(3.2)and(3.3).First we show thatEnis a bounded set for eachn∈N.Forx∈En,

    Since ?(X)is compact there is a characterτ0onXsuch that supτ∈?(X)|τ(x)|=|τ0(x)|.Thus

    HenceEnis bounded.Moreover,PEn(x)is bounded forx∈X.Since a closed,bounded and finite dimensional subset of a normed space is compact,so by Bolzano Weierstrass theorem PEn(x)is a compact set.Similar to the proof of Theorem 3.1 we can show a contradiction under this assumption.

    We denoted byCF(S)the Banach algebra of continuous functions from a topological spaceStoF,with the supremom norm.By results in[7],for eachx∈CF(S),σ(x)=x(S)and

    therefore ifx,y∈CF(S)and|x(s)|≤|y(s)|for eachs∈S,then kxk≤kyk.

    Corollary 3.1.LetSbe a compact Hausdorff topological space.IfCF(S)is infinite dimensional thenCF(S)has a closed convex non-quasi and a closed convex non-pseudo-Chebyshev subset.

    Proof.ClearlyCF(S)has property(N).By(3.4)we have inf{r(x):x∈X,kxk=1}=1>0.SinceCF(S)satisfies the conditions of Theorem3.1,will get thatCF(S)has a closed convex non-quasi-Chebyshev subset.

    Also as a consequence of Theorem 3.2,we conclude thatCF(S)has a closed convex non-pseudo-Chebyshev subset.

    In the following,we prove some results onC?-algebras.This will done by using Gelfand theorem.

    Theorem 3.3.LetAbe a C?-algebra,then dim(A)=∞if and only ifAhas a bounded nonquasi-Chebyshev subset.

    Proof.Ifdim(A)=∞then by a result of Ogasawara theorem(Theorem 1 in[12])A contains an infinite dimensional commutativeC?-subalgebra B.Then by Gelfand Theorem(see[11])B?C(?(A))hence as a consequence of Corollary 3.1,B has an non-quasi-Chebyshev subset This is true also for A.

    For the inverse letdim(A)<∞andWbe a closed and bounded subset of A.By Bolzano Weierstrass Theorem,Wis compact.Thus for eacha∈A,PW(a)is non-empty and compact,which make a contradiction.Thusdim(A)=∞.

    Theorem 3.4.LetAbe a C?-algebra then dim(A)=∞if and only ifAhas a non-pseudo-Chebyshev subset.

    Proof.The proof is similar to the that of Theorem 3.3.

    Corollary 3.2.LetEbe aC?-module over aC?-algebra A,thendim(E)=∞ if and only ifEhas an non-quasi-Chebyshev subset.

    Proof.By Lemma 2.1,Eis isometrically embedded inC?-subalgebraB(H,K),whereH,Kare Hilbert spaces.Now,it is a consequence of Theorem 3.3.

    Corollary 3.3.LetEbe aC?-module over aC?-algebra A thendim(E)=∞ if and only ifEhas a non-pseudo-Chebyshev subset.

    Proof.It is a consequence of Theorem 3.4.

    4 Characterizations of quasi-Chebyshev in C*-algebras

    In this section,wegive some characterizations of best approximations and quasi-Chebyshev subalgebras inC?-algebras.

    Definition 4.1.LetAbe a Banach space andBbe a proper closed subspace ofA.An elementZ∈Ais calledB-minimal if 0 is the best approximation toZinB.

    Definition 4.2.The mappingp:A→R is substate function if forh,g∈Aandα∈R+,

    i)kpk=1.

    ii)p(h+g)≥p(h)+p(g)andp(αh)=αp(h).

    iii)pbe a positive function i.e.,p(h)≥0,forh≥0.

    In Definition 4.2 ifPbe a linear function thenpis called a state.

    Let A be aC?-algebra,an elementx∈A is hermitian ifx=x?,we denote by Ah,the set of all hermitian element of A.in fact

    By the above assumptions,we have the following lemmas.

    Lemma 4.1(see[13]).LetAbe a unital C?-algebra,B a unital C?-subalgebra ofAand a∈Ah.If a is B-minimal,then there exists a state φ ofAsuch that φ(a2)=kak2and φ(ab+b?a)=0for all b∈B.

    Letx,ybe two elements of a normed linear spaceX,thenxis orthogonal toyin the Birkhoff-James sense[2]if kxk≤kx+λyk for allλ∈C.Ifxbe Birkhoff-James orthogonal toy,we writex⊥By.LetGbe a subset ofXandx∈X.Thenxis said to be orthogonal toG(x⊥BG)wheneverx⊥Bg,?g∈G.

    Lemma 4.2(see[2]).LetAbe a C?-algebra,a,b∈A.Then a⊥Bb if and only if there exists a state ? onAthat ?(a?a)=kak2and ?(a?b)=0.

    Lemma 4.3.Let M be a subalgebra of C?-algebraAand a∈Ah.If|PM(a)|≥1then there exist g0∈PM(a)is hermitian.

    Proof.Supposem0∈PM(a),we show the real part of representationis sightly element.We have form∈M,

    Hence

    Theorem 4.1.Let M be a subalgebra ofA,m0∈M and a∈AM.Then the following statements are equivalent.

    i)m0∈PM(a).

    ii)There exists a substate ? onAsuch that for m∈M

    Proof.i)→ii).Letm0∈PM(a)soa?m0⊥Bm,form∈Mthen by Lemma 4.2 there exists a state?msuch that?m((a?m0)?(a?m0))=ka?m0k2and?m(m?(a?m0))=0.

    Define?:A?→R,by?(h)=infm∈MRe ?m(h).We showthat it is a substate.Forα∈R+andh∈A

    and for eachh,k∈A we have

    Since?mis positive function and k?mk=1=?m(e)(see Corollary 3.3.4[11])then?is positive and k?k=1.Also

    and form∈M,we have

    This completes the proof of this part.

    ii)→i).Suppose that such a substate exists.By the Cauchy-Schwartz inequality form∈Mwe get,

    Hence ka?m0k≤ka?mk,i.e.,m0∈PM(a),which completes the proof.

    Theorem 4.2.Let M be a unital proximinal*-subalgebra ofA.Then the following statements are equivalent.

    i)M is a quasi-Chebyshev subalgebra.

    ii)There do not exist substate ? onA,x0∈Aand a sequence xn∈Awithout a convergent

    subsequence with x0?xn∈M(n=1,2,···)such that for m∈M,

    Proof.i)?ii)Suppose that(ii)does not hold,then there isψo(hù)n A,x0∈A and a sequencexn∈A without a convergent subsequence andx0?xn∈M,sataisfid conditions(4.3a),(4.3b).Putgn=x0?xnby Theorem 4.1,gn∈PM(x0),without a convergent subsequence,this is a contradiction.

    ii)?i).Assume if possible thatMis not quasi-Chebyshev in A.SinceMis proximinal in A,forx∈A,PM(x)6=?,leta∈A such thatgn∈PM(a)without a convergent subsequence.We assume thatais a hermitian element of A,also by Lemma 4.3,{gn}is hermitian(Ifa6=a?,then we can consider the Hermitian elementin M2(A).If this element has a best approximation in M2(M)then it is easy to see that it has a best approximation in M2(M)with the formwherem∈M).By applying Lemma 4.1 there exist state functionφnsuch that

    Now we define?(h)=infn∈NRe?n(h),similar to the proof of the pervious theorem we can show that it is a substate.Also fori,n∈N,φn((a?gi)2)=ka?gik2because

    On the other hand,we have

    Henceφn((a?gi)2)=ka?gik2.Therefore forn∈N we have

    ButHence

    which is a contraction by part(ii).

    Acknowledgements

    The authors are extremely grateful to the referees for their useful comments and suggestions.

    References

    [1]V.S.Balaganskii,Non-proximinal sets in spaces of continuous functions,Mat.Z.,60(1996),643–657.

    [2]T.Bhattacharyya and P.Grover,Chracactheriztion of birkoff-jams orthogonality,J.Math.Anal.Appl.,407(2)(2013),350–358.

    [3]D.P.Blecher,A nwe approach to HilbertC-modules,Math.Annl.,307(1997),253–290.

    [4]E.W.Cheney,Introduction to Approximation Theory,McGraw-Hill,New York,1966.

    [5]S.Cobzas,Non-proximinal sets in Banach spaces of continuous vector-valued functions,J.Math.Anal.Appl.,261(2001),527–542.

    [6]V.P.Fonf,On non-proximinal sets in spaces of continuous functions on compacta,Math.Z.,33(1983),549–558.

    [7]W.Fupinwong and S.Dhompongsa,The fixed point property of unital abelian Banach algebras,Fixed Point Theory A,(2010),Article ID 362829,13 pages.

    [8]L.P.Belluce and W.A.Kirk,Some fixed point theorems in metric and Banach spaces,Canad.Math.Bull.,12(1969),481–491.

    [9]D.Narayana and T.S.S.R.K.Rao,Some remarks on quasi-Chebyshev subspaces,J.Math.Anal.Appl.,321(1)(2006),193–197.

    [10]H.Mohebi,On quasi-Chebyshev subspaces of Banach spaces,J.Approx.Theory,107(2000),87–95.

    [11]G.J.Murphy,C?-Algebras and Operator Theory,Academic Press,Boston,Mass,USA,1990.

    [12]T.Ogasawara,Finite-dimensionality of certain Banach algebras,J.Sci.Hiroshima Univ.,Ser.A,17(3)(1954),359–364.

    [13]M.A.Rieffel,Leibniz seminorms and best approximation fromC?-subalgebras,Sci.China Math.,54(11)(2011),2259–2274.

    [14]J.Schauder,Der fixpunktsatz funktional raumen,Studia Math.,2(1930),171–180.

    [15]I.Singer,The Theory of Best Approximation and Functional Analysis,CBMS Reg.Confer.Ser.Appl.Math.,13,Soc.Industr.App.Math.,Philadelphia,1974.

    成人国产av品久久久| 欧美一区二区亚洲| 97超碰精品成人国产| 美女内射精品一级片tv| 丰满迷人的少妇在线观看| 黄片无遮挡物在线观看| 成人毛片a级毛片在线播放| 国产高潮美女av| 中国美白少妇内射xxxbb| 熟妇人妻不卡中文字幕| 国产精品国产三级国产专区5o| 亚洲欧美清纯卡通| 黄色怎么调成土黄色| 日本wwww免费看| 中文天堂在线官网| 免费大片黄手机在线观看| 久久久欧美国产精品| 国产精品久久久久久久久免| 五月天丁香电影| 久久久久久久久大av| 日韩精品有码人妻一区| 精品人妻偷拍中文字幕| h视频一区二区三区| 一级av片app| av不卡在线播放| 一二三四中文在线观看免费高清| 亚洲欧美成人综合另类久久久| 午夜福利高清视频| 亚洲最大成人中文| 我要看黄色一级片免费的| 欧美国产精品一级二级三级 | 能在线免费看毛片的网站| 国产熟女欧美一区二区| 久久精品熟女亚洲av麻豆精品| 99热这里只有是精品在线观看| 99久久综合免费| 九色成人免费人妻av| 精华霜和精华液先用哪个| 久久久久久久久久人人人人人人| 国产欧美日韩精品一区二区| 女的被弄到高潮叫床怎么办| 免费观看的影片在线观看| 深爱激情五月婷婷| 久久久久久伊人网av| 日韩欧美 国产精品| 亚洲欧美日韩东京热| 国产深夜福利视频在线观看| 国产亚洲精品久久久com| 18禁在线播放成人免费| 黑人高潮一二区| 精品国产三级普通话版| 国产爱豆传媒在线观看| 老司机影院毛片| 麻豆成人av视频| 午夜免费男女啪啪视频观看| 国产久久久一区二区三区| 欧美成人一区二区免费高清观看| 亚洲欧美日韩卡通动漫| 午夜免费鲁丝| 青春草亚洲视频在线观看| 麻豆国产97在线/欧美| 日本猛色少妇xxxxx猛交久久| 亚州av有码| 亚洲一级一片aⅴ在线观看| 成人国产av品久久久| 高清视频免费观看一区二区| av黄色大香蕉| 欧美变态另类bdsm刘玥| 伦精品一区二区三区| 亚洲经典国产精华液单| 午夜福利网站1000一区二区三区| 免费高清在线观看视频在线观看| 日韩制服骚丝袜av| 亚洲国产欧美在线一区| 18禁在线播放成人免费| 日本av手机在线免费观看| 久久久国产一区二区| 99热网站在线观看| 精品国产乱码久久久久久小说| 男女边摸边吃奶| 亚洲美女搞黄在线观看| 美女高潮的动态| 日韩 亚洲 欧美在线| 毛片女人毛片| 一本一本综合久久| 亚洲欧美清纯卡通| 国产成人a∨麻豆精品| 一级毛片久久久久久久久女| 久久久精品94久久精品| 色吧在线观看| 亚洲av欧美aⅴ国产| 日本黄色日本黄色录像| 成人亚洲精品一区在线观看 | 日韩欧美一区视频在线观看 | 亚洲精品国产色婷婷电影| 国产男女内射视频| 国产亚洲最大av| 男女国产视频网站| 国产精品三级大全| 99久久中文字幕三级久久日本| 国产欧美日韩精品一区二区| 91精品国产九色| 亚洲精品色激情综合| av网站免费在线观看视频| .国产精品久久| 久久久久久久久久成人| 国产淫语在线视频| 免费人成在线观看视频色| 99热这里只有是精品50| 国产午夜精品一二区理论片| 免费黄频网站在线观看国产| 一级爰片在线观看| 国产大屁股一区二区在线视频| 久久久久久久大尺度免费视频| 欧美极品一区二区三区四区| 女的被弄到高潮叫床怎么办| 热re99久久精品国产66热6| 在线免费十八禁| 国内精品宾馆在线| 欧美 日韩 精品 国产| 久久久久网色| 中文乱码字字幕精品一区二区三区| 乱系列少妇在线播放| 麻豆精品久久久久久蜜桃| 国产精品蜜桃在线观看| 欧美 日韩 精品 国产| 亚洲av在线观看美女高潮| 午夜精品国产一区二区电影| 热re99久久精品国产66热6| 欧美极品一区二区三区四区| 久久久久久久国产电影| 久久精品久久久久久久性| 热re99久久精品国产66热6| 男人狂女人下面高潮的视频| 国产精品久久久久久久久免| 亚洲人成网站在线播| 啦啦啦视频在线资源免费观看| 好男人视频免费观看在线| 久久人人爽av亚洲精品天堂 | 一区二区三区精品91| av福利片在线观看| 国产黄片美女视频| 高清午夜精品一区二区三区| 免费观看在线日韩| 永久网站在线| 成人毛片a级毛片在线播放| 男人舔奶头视频| 日本与韩国留学比较| 五月伊人婷婷丁香| 边亲边吃奶的免费视频| 国产亚洲欧美精品永久| 色网站视频免费| 全区人妻精品视频| 欧美三级亚洲精品| 边亲边吃奶的免费视频| av网站免费在线观看视频| 观看av在线不卡| 美女国产视频在线观看| 色哟哟·www| 欧美少妇被猛烈插入视频| 日韩强制内射视频| 久久青草综合色| 男人和女人高潮做爰伦理| 久久午夜福利片| 91久久精品国产一区二区成人| 深爱激情五月婷婷| 国产综合精华液| 久久国产亚洲av麻豆专区| 国产成人a∨麻豆精品| 欧美成人a在线观看| 亚洲欧美中文字幕日韩二区| a 毛片基地| 麻豆乱淫一区二区| 麻豆乱淫一区二区| 亚洲精品国产区一区二| 亚洲精品国产区一区二| 999久久久国产精品视频| 韩国精品一区二区三区| 18禁观看日本| 97在线人人人人妻| 免费在线观看完整版高清| 日韩,欧美,国产一区二区三区| 中文字幕人妻丝袜制服| 亚洲人成电影观看| 亚洲精品国产一区二区精华液| 日韩av免费高清视频| 精品一区在线观看国产| 久久热在线av| 丁香六月欧美| 国产精品99久久99久久久不卡| 成人国产一区最新在线观看 | 日韩大码丰满熟妇| 精品久久久久久电影网| 大片电影免费在线观看免费| 国产视频首页在线观看| 国产免费视频播放在线视频| 国产精品熟女久久久久浪| a级毛片黄视频| 97精品久久久久久久久久精品| 亚洲中文字幕日韩| 国产爽快片一区二区三区| 丝瓜视频免费看黄片| 国产高清视频在线播放一区 | 亚洲精品在线美女| 婷婷色av中文字幕| 亚洲av成人不卡在线观看播放网 | 国产高清国产精品国产三级| 午夜久久久在线观看| 久久久久国产一级毛片高清牌| 欧美日韩成人在线一区二区| 婷婷色麻豆天堂久久| 男女下面插进去视频免费观看| 一区二区三区精品91| 在线av久久热| 久久国产精品人妻蜜桃| av电影中文网址| 亚洲精品成人av观看孕妇| 晚上一个人看的免费电影| 精品一区二区三卡| 亚洲av美国av| 叶爱在线成人免费视频播放| 国产欧美亚洲国产| 90打野战视频偷拍视频| www.av在线官网国产| 亚洲人成网站在线观看播放| 人人妻人人澡人人爽人人夜夜| 国产成人精品久久久久久| 国产精品一国产av| 操美女的视频在线观看| 精品第一国产精品| netflix在线观看网站| 97精品久久久久久久久久精品| 妹子高潮喷水视频| 考比视频在线观看| 91麻豆精品激情在线观看国产 | 午夜老司机福利片| 熟女少妇亚洲综合色aaa.| 久久影院123| 国产免费一区二区三区四区乱码| 亚洲欧美中文字幕日韩二区| 97在线人人人人妻| 久久久久精品人妻al黑| 在线观看免费日韩欧美大片| 91国产中文字幕| 多毛熟女@视频| 欧美国产精品va在线观看不卡| 亚洲中文字幕日韩| 精品亚洲成a人片在线观看| 久热这里只有精品99| 在线观看国产h片| 亚洲国产精品一区三区| 美国免费a级毛片| 丝袜在线中文字幕| 国产xxxxx性猛交| 岛国毛片在线播放| 国产精品av久久久久免费| 亚洲国产av新网站| 丝袜美足系列| 晚上一个人看的免费电影| av天堂在线播放| 国产精品国产av在线观看| 九草在线视频观看| 麻豆av在线久日| 日韩一卡2卡3卡4卡2021年| 久久久久久久久免费视频了| 好男人视频免费观看在线| 亚洲精品日本国产第一区| 在线亚洲精品国产二区图片欧美| 赤兔流量卡办理| 肉色欧美久久久久久久蜜桃| 欧美精品一区二区免费开放| 国产高清videossex| 热99国产精品久久久久久7| 欧美日韩黄片免| 国产日韩欧美在线精品| 日韩欧美一区视频在线观看| 夫妻性生交免费视频一级片| 1024视频免费在线观看| 精品国产一区二区久久| 午夜久久久在线观看| 午夜福利视频精品| 久久国产精品影院| 亚洲人成网站在线观看播放| 亚洲人成电影观看| av网站在线播放免费| 欧美日韩国产mv在线观看视频| 国产精品国产三级国产专区5o| 国产又爽黄色视频| 看十八女毛片水多多多| 亚洲av国产av综合av卡| 成人国产av品久久久| 制服人妻中文乱码| 99九九在线精品视频| 女人爽到高潮嗷嗷叫在线视频| 欧美成人精品欧美一级黄| 在线观看免费视频网站a站| 日韩熟女老妇一区二区性免费视频| 免费看十八禁软件| 老司机午夜十八禁免费视频| 热re99久久国产66热| 老司机深夜福利视频在线观看 | 美女福利国产在线| 性色av一级| 午夜免费观看性视频| 你懂的网址亚洲精品在线观看| 一本—道久久a久久精品蜜桃钙片| 国精品久久久久久国模美| 纯流量卡能插随身wifi吗| 亚洲,欧美,日韩| 久久99精品国语久久久| 大码成人一级视频| 亚洲精品国产av成人精品| 嫩草影视91久久| 久热这里只有精品99| 久久精品国产亚洲av涩爱| 欧美精品人与动牲交sv欧美| 日本vs欧美在线观看视频| 18禁裸乳无遮挡动漫免费视频| 国产男女内射视频| 人人澡人人妻人| 在线观看免费高清a一片| 狠狠精品人妻久久久久久综合| 欧美黑人欧美精品刺激| 欧美成狂野欧美在线观看| www.精华液| 人妻人人澡人人爽人人| 久久久久久久大尺度免费视频| tube8黄色片| 老司机影院毛片| 亚洲av男天堂| 欧美性长视频在线观看| 在线观看一区二区三区激情| 国产男女超爽视频在线观看| 18禁黄网站禁片午夜丰满| 午夜久久久在线观看| av国产精品久久久久影院| 久久精品久久久久久久性| 亚洲精品一二三| 日韩人妻精品一区2区三区| www.熟女人妻精品国产| 老司机影院成人| 丝袜喷水一区| 肉色欧美久久久久久久蜜桃| 亚洲国产av影院在线观看| 在线观看免费高清a一片| 老司机靠b影院| 亚洲成色77777| 免费高清在线观看视频在线观看| 可以免费在线观看a视频的电影网站| 精品少妇内射三级| 亚洲专区国产一区二区| 美女中出高潮动态图| 国产亚洲精品久久久久5区| 国产精品一国产av| 国产一区二区 视频在线| 国产黄色视频一区二区在线观看| 国产一区有黄有色的免费视频| 人人妻人人澡人人爽人人夜夜| 日本午夜av视频| 精品欧美一区二区三区在线| 亚洲精品国产av成人精品| 亚洲精品一区蜜桃| 女性生殖器流出的白浆| 男人操女人黄网站| 国产男人的电影天堂91| 无限看片的www在线观看| 日本91视频免费播放| 国产三级黄色录像| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片电影观看| 亚洲欧美中文字幕日韩二区| 91麻豆精品激情在线观看国产 | 麻豆av在线久日| 午夜激情久久久久久久| 女性被躁到高潮视频| 午夜影院在线不卡| 亚洲欧美一区二区三区黑人| 一本色道久久久久久精品综合| 9热在线视频观看99| 人人妻人人爽人人添夜夜欢视频| 中文欧美无线码| 精品少妇久久久久久888优播| 999精品在线视频| 日韩熟女老妇一区二区性免费视频| av福利片在线| 亚洲国产欧美网| 国产一区有黄有色的免费视频| 亚洲av日韩在线播放| 国产精品 欧美亚洲| 久热爱精品视频在线9| 人妻 亚洲 视频| 精品福利永久在线观看| 国产精品免费大片| 亚洲熟女毛片儿| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| 日日爽夜夜爽网站| 国产欧美日韩一区二区三区在线| 国产三级黄色录像| 视频区图区小说| 9191精品国产免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲综合一区二区三区_| 国产精品欧美亚洲77777| 免费在线观看影片大全网站 | 人体艺术视频欧美日本| 女人精品久久久久毛片| 五月天丁香电影| 久久天堂一区二区三区四区| 在线观看免费日韩欧美大片| 国产在视频线精品| 宅男免费午夜| 亚洲精品自拍成人| av国产精品久久久久影院| 在线亚洲精品国产二区图片欧美| 成人免费观看视频高清| 亚洲国产av新网站| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 最近最新中文字幕大全免费视频 | 999久久久国产精品视频| 欧美日韩亚洲综合一区二区三区_| 亚洲欧洲日产国产| 777久久人妻少妇嫩草av网站| 亚洲久久久国产精品| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 九色亚洲精品在线播放| 亚洲成av片中文字幕在线观看| 国产极品粉嫩免费观看在线| av国产久精品久网站免费入址| 午夜福利乱码中文字幕| 日本午夜av视频| 免费在线观看视频国产中文字幕亚洲 | 香蕉丝袜av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美日韩另类电影网站| 午夜福利在线免费观看网站| 亚洲国产欧美在线一区| 久久久久久免费高清国产稀缺| 欧美日韩亚洲综合一区二区三区_| svipshipincom国产片| 999久久久国产精品视频| 国产福利在线免费观看视频| 黄色a级毛片大全视频| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| xxxhd国产人妻xxx| 嫩草影视91久久| 国产成人精品无人区| 国产日韩欧美亚洲二区| 麻豆国产av国片精品| av国产久精品久网站免费入址| 久久国产精品男人的天堂亚洲| 日韩大码丰满熟妇| 亚洲,一卡二卡三卡| 新久久久久国产一级毛片| 欧美精品一区二区大全| 久久人人爽av亚洲精品天堂| 亚洲图色成人| 亚洲国产精品一区二区三区在线| 激情五月婷婷亚洲| 三上悠亚av全集在线观看| 女人久久www免费人成看片| 成年女人毛片免费观看观看9 | 婷婷丁香在线五月| 婷婷成人精品国产| 亚洲av日韩在线播放| 国产精品国产av在线观看| 99精品久久久久人妻精品| 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 日本a在线网址| 亚洲av片天天在线观看| 国产欧美亚洲国产| 欧美大码av| 久久精品熟女亚洲av麻豆精品| 婷婷色综合大香蕉| 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| 男女高潮啪啪啪动态图| 亚洲成人免费av在线播放| 免费观看a级毛片全部| 日本av手机在线免费观看| 精品国产一区二区三区四区第35| 别揉我奶头~嗯~啊~动态视频 | 国产av国产精品国产| 黄片小视频在线播放| 欧美日韩亚洲国产一区二区在线观看 | 国产又爽黄色视频| 亚洲天堂av无毛| 一级毛片我不卡| 捣出白浆h1v1| 搡老乐熟女国产| 美女午夜性视频免费| 视频区图区小说| 秋霞在线观看毛片| 电影成人av| 亚洲欧美清纯卡通| 亚洲第一青青草原| 美女扒开内裤让男人捅视频| 极品少妇高潮喷水抽搐| 香蕉国产在线看| 久久精品亚洲熟妇少妇任你| 国产免费现黄频在线看| 激情五月婷婷亚洲| 午夜精品国产一区二区电影| 亚洲精品日韩在线中文字幕| 日日摸夜夜添夜夜爱| 久久天堂一区二区三区四区| 18禁裸乳无遮挡动漫免费视频| 精品国产超薄肉色丝袜足j| 51午夜福利影视在线观看| 啦啦啦在线免费观看视频4| 蜜桃在线观看..| 啦啦啦在线观看免费高清www| 欧美日韩亚洲高清精品| 亚洲精品日韩在线中文字幕| 国产在视频线精品| 亚洲中文av在线| 欧美精品av麻豆av| 国产又爽黄色视频| 久久这里只有精品19| 亚洲欧美激情在线| 国产女主播在线喷水免费视频网站| 99久久综合免费| 亚洲久久久国产精品| 男女边吃奶边做爰视频| 十八禁高潮呻吟视频| 99香蕉大伊视频| 亚洲专区国产一区二区| 大话2 男鬼变身卡| 国产免费视频播放在线视频| 久久狼人影院| 国产国语露脸激情在线看| 少妇 在线观看| 亚洲,欧美精品.| 亚洲av男天堂| 又紧又爽又黄一区二区| 国产伦人伦偷精品视频| 亚洲中文日韩欧美视频| 亚洲成人免费av在线播放| 男的添女的下面高潮视频| 免费在线观看视频国产中文字幕亚洲 | 国产精品国产三级专区第一集| 老司机深夜福利视频在线观看 | 熟女av电影| 亚洲精品国产一区二区精华液| 新久久久久国产一级毛片| 又大又黄又爽视频免费| 欧美 日韩 精品 国产| 美女高潮到喷水免费观看| 久久久久久久久免费视频了| 欧美日韩黄片免| 1024视频免费在线观看| 日本欧美国产在线视频| 99精国产麻豆久久婷婷| 少妇猛男粗大的猛烈进出视频| 一本一本久久a久久精品综合妖精| 黑人猛操日本美女一级片| 免费少妇av软件| 国产97色在线日韩免费| av天堂在线播放| 日韩制服骚丝袜av| 国产欧美日韩一区二区三区在线| 大香蕉久久成人网| 一边摸一边做爽爽视频免费| 国产精品久久久久久人妻精品电影 | 国产精品99久久99久久久不卡| 国产成人精品无人区| 男人爽女人下面视频在线观看| 国产伦人伦偷精品视频| 一本久久精品| 99精国产麻豆久久婷婷| 好男人视频免费观看在线| 欧美激情极品国产一区二区三区| 亚洲情色 制服丝袜| 国产午夜精品一二区理论片| 免费久久久久久久精品成人欧美视频| 亚洲国产毛片av蜜桃av| 桃花免费在线播放| 午夜免费成人在线视频| 久久久精品国产亚洲av高清涩受| 欧美 日韩 精品 国产| 后天国语完整版免费观看| 亚洲五月色婷婷综合| 国产亚洲精品久久久久5区| 午夜91福利影院| 亚洲人成77777在线视频| 91精品国产国语对白视频| 亚洲,欧美,日韩| 我的亚洲天堂| 99国产精品免费福利视频| 精品一区二区三区av网在线观看 | 久久久国产精品麻豆| 亚洲中文日韩欧美视频| 性高湖久久久久久久久免费观看| 国产av国产精品国产| 九草在线视频观看| 在线观看免费高清a一片| www.av在线官网国产| 久久99热这里只频精品6学生| 久久久国产精品麻豆| 超碰成人久久| 亚洲激情五月婷婷啪啪| 精品福利观看| 成人手机av| 成人国产一区最新在线观看 | 秋霞在线观看毛片| 男人操女人黄网站| 十八禁高潮呻吟视频| 欧美日韩亚洲国产一区二区在线观看 | 国产熟女午夜一区二区三区|