• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On an Axiomatic about Functional Means

    2018-05-24 09:18:08MustaphaRassouliMohamedCherguiandAbdellahAlla
    Analysis in Theory and Applications 2018年1期

    Mustapha Rassouli,Mohamed Chergui and Abdellah Alla

    1Department of Mathematics,Science Faculty,Taibah University,Al Madinah Al Munawwarah,P.O.Box 30097,Zip Code 41477,Saudi Arabia

    2Department of Mathematics,Science Faculty,Moulay Ismail University,Meknes,Morocco

    3Department of Mathematics,LaREAMA Lab,Centre Rgionaldes Mtiers del’Education et de la Formation(CRMEF),Kenitra,Morocco

    4Department of Mathematics,Mohammed V University,Faculty of Sciences,LAMA-ANLIMAD,Rabat,Morocco

    1 Introduction

    For over the last centuries,the mean-theory has been the subject of intensive research.Scalar and operator means arise in various contexts and have multiple applications in theoretical point of view as well as in practical purposes.

    In recent few years,extension of operator means from the case that the variables are positive linear operators to the case that the variables are convex functionals has been investigated by many authors.Such extensions were introduced in the sense that ifm(T,S)is an operator mean between two positive linear operatorTandSthen its extension F(f,g)for two functional variablesfandgsatisfies the following connection-relationship

    Here the notationfTrefers to the convex quadratic function generated by the positive linear operatorTacting on a Hilbert spaceHi.e.,fT(x)=(1/2)hTx,xi for allx∈H.

    In the aim to recall some standard examples of functional means,we need some notation.LetHbe a complex Hilbert space andf:H?→R∪{?∞,∞}be a(convex)functional.We denote byf?the conjugate offdefined through

    The arithmetic and harmonic functional means off,g:H?→R∪{∞}were introduced in[1,9,10]as follows

    The geometric functional mean offandg,denoted here by G(f,g),was firstly introduced in[1]as the point-wise limit of an iterative process descending from the arithmetic and harmonic functional means.Since then some papers were written about G(f,g)in other points of view,see[4,8–10].Throughout this paper,we adopt as definition of G(f,g)the following one,see[9]for instance:

    which,under convenient assumptions onfandg,is equivalent to that introduced in[1].

    The above three functional means satisfy the next double inequality,see[9,10]

    The logarithmic functional mean offandgwas defined by the author in[10]via the following relation:

    The logarithmic functional mean L(f,g)interpolates H(f,g)and A(f,g)in the sense that,see[10]

    As far as we know,there is no inequality stated in the literature about comparison between G(f,g)and L(f,g).

    For further details about the above functional means, and more other functional means,we indicate the references[4,8–10].We also refer the reader to[6]for some interesting discussion about the geometric functional mean as well as the construction of a parameterized algorithm extending that of G(f,g).

    The fundamental goal of the present paper is to introduce a general definition for means involving(convex)functional argumentsfandg.In the case wherefandgare both quadratic functions generated by positive operators,we immediately obtain in a simple way the operator version of the present functional approach.

    2 Basic notions and some results

    We first recall some basic notions about convex analysis that will be needed later.For more details,we refer the reader to[2,3,7,12]for instance.

    LetHbe a complex Hilbert space andf:H→=R∪{?∞,∞}be a functional(in short,we writef∈).The(extended)spaceof such functionals is equipped with the following partial order(so-called the point-wise order)

    where we extend the structure of R to R∪{?∞,∞}by setting

    Since our involved functionals can take infinite values then the equalityf?f=0 does not always hold,since∞?∞=∞.For the same reason,the two inequalitiesf≤gandf?g≤0 are not always equivalent.

    We say thatfis proper iffdoes not take the value?∞and is not identically equal to the value∞.The effective domain domfoff:H?→:=R∪{∞}is given by domf={x∈H,f(x)<∞}and its conjugatef?is defined through(1.1).As it is well-known,f??:=(f?)?≤f,f?is always convex lower semi-continuous and,f≤gimpliesg?≤f?,for all functionalsf,g∈H.We denote by Γ0(H)the cone of all convex lower semicontinuous proper functionals.It is well known thatf∈Γ0(H)if and only iff??=f.

    Let B(H)be the space of bounded linear operators defined fromHinto itself.As usual,a self-adjoint operatorT∈B(H)is positive(denotedT≥0)if hTx,xi≥0 for allx∈H.The set of all(self-adjoint)positive invertible operatorsT∈B(H)(in shortT>0)will be denoted by B+?(H).ForT,S∈B(H),we writeT≤Sif and only ifTandSare self-adjoint andS?T≥0.

    With this,we state the following example which is of interest.

    Example 2.1.LetT,Sbe two positive linear operators ofHandfT,fStheir generated quadratic functionals,i.e.,fT(x)=(1/2)hTx,xifor everyx∈H.Then we have:

    (i)fT±fS=fT±Sand,fT=(≥≤)fSif and only ifT=(≥≤)S.

    (ii)domfT=HandfT∈Γ0(H).

    (iii)If moreoverTis invertible thenfor allx∈H.We then write

    Proposition 2.1.Letf:H?→R∪{∞}.Then there hold:

    (i)Iffis not identically equal to∞thenf?>?∞i.e.,f?does not take the value?∞.

    (ii)Iffis convex lower semi-continuous and not identically equal to ∞ then so isf?.That is,f∈Γ0(H)impliesf?∈Γ0(H).

    Proof.(i)By hypothesis,there isx0∈Hsuch thatf(x0)<∞.Otherwise,from(1.1)we deduce,for everyx?∈H,

    (ii)In factf?is always convex lower semi-continuous evenfis not.We have only to show thatf?is not identically equal to∞.For this,see(see[2],Proposition I.9,page 9)for instance,where the desired result is established by using the geometric version of the celebrate Hahn-Banach theorem.

    Before giving another result,we need more notations.We define

    Obviously,D+(H)andD+?(H)are two nonempty sub-cones of the product-cone Γ0(H)×Γ0(H),with the next implications

    Further,it is easy to see that(fT,fS)∈D+(H)∩D+?(H)for allT,S∈B+?(H).

    We now may state the following result.

    Proposition 2.2.(i)Letf,g∈D+(H).Then A(f,g)∈Γ0(H).

    (ii)Letf,g∈D+?(H).Then H(f,g)∈Γ0(H),G(f,g)∈Γ0(H)and L(f,g)∈Γ0(H).

    Proof.(i)Assume thatf,g∈D+(H).It is clear that A(f,g)is convex,lower semicontinuous and A(f,g)>?∞.Since domf∩domg6=? then there isx0∈Hsuch thatf(x0)<∞andg(x0)<∞.We then deduce A(f,g)(x0)<∞and the desired result follows.

    (ii)By the previous proposition,we havef?,g?∈Γ0(H)and by the above(i)we obtain A(f?,g?)∈Γ0(H).Again,by the same above proposition we deduce that H(f,g):=?A(f?,g?)??∈Γ0(H).

    The fact that G(f,g)∈Γ0(H)and L(f,g)∈Γ0(H)follow immediately from(1.4)and(1.6),respectively.The proof is so complete.

    Proposition 2.3.Letf,g,h,k:H?→R∪{∞}be four given functionals.Then we have:

    Furthermore,

    provided that(f,g),(f,h),(g,h)∈D+?(H),and

    provided that(f,g),(h,k),(f,h),(g,k)∈D+?(H).

    Proof.The proof of the first equality and that of the second one are simple and comes from the fact that A(f,g)has a linear affine character with respect to its variablesfandg.We will prove the third equality.Indeed,by definition of H we have

    Sincef,g∈Γ0(H)thenf?,g?∈Γ0(H),too.According to the previous we then deduce A(f?,g?)∈Γ0(H).Similarly,we prove that A(f?,h?)∈Γ0(H).It follows that

    With this,we can write

    which,with the above first equality,yields

    The fourth equality can be proved in a similar manner as the third one.

    Before stating another result,we introduce more notions as recited in the following:

    Definition 2.1.Let(fn)be a sequence of functionals defined fromHinto R∪{∞}:

    (i)We say that(fn)is point-wisely increasing(in shortp-increasing)if for alln,fn≤fn+1for the point-wise order.

    (ii)We say that(fn)is point-wisely convergent(in shortp-convergent)if there is a functionalf:H?→R∪{?∞,∞}such that limn↑∞fn(x)=f(x)for allx∈H.

    The following example,which illustrates the above definition,is of interest.

    Example 2.2.Letfn(x)=(1/2)hTnx,xi for allx∈H,where(Tn)is a sequence of self adjoint linear operators.Then:

    (i)(fn)isp-increasing(resp.p-decreasing)if and only if(Tn)is increasing(resp.decreasing)for the Lowner order.

    (ii)(fn)p-converges if and only if for allx∈H,limn↑∞hTnx,xi=f(x)for some functionalf.If moreover,fis with finite values then there exists a self-adjoint linear operatorTsuch thatf=fT.With this,(fn)p-converges tofif and only if(Tn)converges quadratically toT.Further,it is well-known that,ifTn≥Tthen,(Tn)converges quadratically toTif and only if(Tn)converges strongly(i.e.,in norm)toT.

    Now,we are in position to state our desired result recited as follows.

    Proposition 2.4.Let(fn)be ap-decreasing sequence of functionalsp-converging tof.

    Thenp-converges increasingly tof?.

    Proof.First,remark thatisp-increasing sinceisp-decreasing.The fact that(fn)p-converges decreasingly tofis equivalent tof=limwhere the infimum is taken here for the point-wise order.We wish to establish thatWe have,for allx?∈H,

    which is the desired result,so completes the proof of the proposition.

    3 Axiomatic theory about functional means

    This section displays an axiomatic study about functional means.We first recall the following,see[11].

    Definition 3.1.Let M:B+?(H)×B+?(H)?→B+?(H)be a binary map satisfying the following list of assertions:

    (o1)M(T,T)=Tfor allT∈B+?(H);

    (o2)M(T,S)=M(S,T)for allT,S∈B+?(H);

    (o3)M(λT,λS)=λM(T,S)for allT,S∈B+?(H)and every real numberλ>0;

    (o4)For allT1,T2,S1,S2∈B+?(H)such thatT1≤T2andS1≤S2we have M(T1,S1)≤M(T2,S2).In this case,we say that M is a monotone operator mean.

    The standard examples of monotone operator means are the following:and are known as the arithmetic,harmonic,geometric and logarithmic operator means,respectively.For further examples about monotone operator means(not needed here)we refer the reader to[11]and the related references cited therein.As pointed out in[11],monotone operator means operator means adopted here include those of Kubo-Andoones,[5].The above four operator means satisfy the following chain of inequalities

    In the scalar case(i.e.,dim H=1)they are,respectively,reduced to the so-called scalar means,namely

    for all real numbersa>0,b>0.

    Now,we are in position to state our adopted definition about functional means recited as follows.

    Definition 3.2.By functional mean we understand a binary map F between Γ0(H)-functionals satisfying the following requirements:

    (f1)F(f,f)=ffor allf∈Γ0(H);

    (f2)F(f,g)=F(g,f)for allf,g∈Γ0(H);

    (f3)F(t.f,t.g)=t.F(f,g)for allf,g∈Γ0(H)and each real numbert>0;

    (f4)F(f,g)is point-wisely increasing inf(and ing),that is for allf1,f2∈Γ0(H)such thatf1≤f2and everyg∈Γ0(H),we have F(f1,g)≤F(f2,g);(of)For allT,S∈B+?(H),we have

    where M is a monotone operator mean.In this case,we say that F is the M-functional mean.

    Obviously,the set of all functional means is a convex cone.Otherwise,it is easy to see that the class of functional means adopted here include that introduced by Fujii in[4].

    The standard examples of functionals means known in the literature are A(f,g),H(f,g),G(f,g)and L(f,g)previously defined.These are known as the arithmetic,harmonic,geometric and logarithmic functional means,respectively,since they satisfy(following the above requirement(of))

    for allT,S∈B+?(H),where A(T,S),H(T,S),G(T,S)and L(T,S)are defined by(3.1a),(3.1b),(3.1c)and(3.1d),respectively.

    The following remark is of interest.

    Remark 3.1.The assertions(f1)-(f4),for defining a functional mean,were put by analogy with(o1)-(o4),respectively.However,the assertion(of),giving a connection relationship between functional mean and its related operator mean,is here taken as primordial condition.This is in the aim to have nice properties and interesting examples of functional means.The following counter-example explains more precisely this latter situation.

    Example 3.1.Letf,g∈ Γ0(H)and consider the maps(f,g)7?→ inf(f,g)and(f,g)7?→sup(f,g),where the infimum and the supremum are taken for the point-wise order.It is easy to see that these two functional-maps satisfy the requirements(f1)-(f4).However,they do not satisfy(of)in general,because the algebra B(H)is not totaly ordered whendim H≥ 2.In another way,(f,g)7?→ inf(f,g)and(f,g)7?→ sup(f,g)are in general not functional means.

    Now,the following result may be stated.

    Proposition 3.1.Let F be a functional mean.Then the following functional-inequalities

    hold true for all(f,g)∈D+(H).

    Proof.Let(f,g)∈D+(H).It is not hard to see that?inf(f,g)???and sup(f,g)belong to Γ0(H).Now,writing

    we then deduce,by(f4)and(f1),the desired result after a simple manipulation.

    As it is well-known,even iff,g∈Γ0(H)are convex,inf(f,g)is not convex in general,and so

    We now end this section by stating the following result.

    Proposition 3.2.Let Fnbe a sequence of functional means.Assume that,for allf,g∈Γ0(H),we have

    where the limit is taken for the point-wise convergence.Then F is a functional mean.

    Proof.It is easy to verify that,if Fnsatisfies(f1)-(f4)for eachn,then so is F.Only the requirement(of)needs some detail.

    So,let us prove that F(fT,fS)=fM(T,S),for some monotone operator mean M.By virtue of our assumption we can write for all integern,Fn(fT,fS)=fMn(T,S)with Mnis a monotone operator mean.Since(Fn(fT,fS))is point-wisely convergent we can then put limfMn(T,S)=f(T,S).Now,according to Example 2.2(ii)we can statef(T,S)=fM(T,S)and consequently F(fT,fS)=fM(T,S).We now need to show that M is a monotone operator mean,i.e.,M satisfies the assertions(o1)-(o4)of Definition 3.1.This can be checked in an elementary way.We omit the details which are very simple.

    References

    [1]M.Atteia and M.Ra?ssouli,Self dual operators on convex functionals,geometric mean and square root of convex functionals,J.Convex Anal.,8(1)(2001),223–240.

    [2]H.Brzis,Analyse Fonctionnelle,Theory et Applications,Masson,1986.

    [3]I.Ekeland and R.Temam,Convex Analysis and Variational Problems,SIAM,1999.

    [4]J.I.Fujii,Kubo-Ando theory of convex functional means,Sci.Math.Japon.,7(2002),299–311.

    [5]F.Kubo and T.Ando,Means of positive linear operators,Math.Ann.246(1980),205–224.

    [6]S.Kum and Y.Lim,A geometric mean of parameteized arithmetic and harmonic means of convex functions,Abstract Appl.Anal.,(2012),836804.

    [7]P.J.Laurent,Approximation et Optimisation,Hermann,1972.

    [8]M.Rassouli and M.Chergui,Arithmetico-geometric and geometrico-harmonic means of two convex functionals,Sci.Math.Japonicae,55(3)(2002),485–492.

    [9]M.Rassouli and H.Bouziane,Arithmetico-geometrico-harmonic functional mean in convex analysis,Ann.Sci.Math.Quebec,30(1)(2006),79–107.

    [10]M.Rassouli,Logarithmic functional mean in convex analysis,J.Ineq.Pure Appl.Math.,10(4)(2009).

    [11]M.Rassouli,Stable and stabilizable means involving linear operator arguments,Linear and Multilinear Algebra,62(9)(2014),1153–1168.

    [12]E.Zeidler,Nonlinear Functional Analysis and Its Applications III,Springer-Verlag,1984.

    99热网站在线观看| 人妻少妇偷人精品九色| 国内揄拍国产精品人妻在线| 又黄又爽又刺激的免费视频.| 亚洲欧洲日产国产| 亚洲电影在线观看av| 黄色欧美视频在线观看| 18禁在线无遮挡免费观看视频| 汤姆久久久久久久影院中文字幕 | 日本免费一区二区三区高清不卡| av黄色大香蕉| 一区二区三区乱码不卡18| 九草在线视频观看| 亚洲国产精品久久男人天堂| 欧美成人一区二区免费高清观看| 国产伦精品一区二区三区视频9| 久久久久久久久中文| 国产亚洲一区二区精品| 一个人免费在线观看电影| av免费观看日本| 色网站视频免费| 久久久久久久久久久丰满| 久久久国产成人免费| 欧美性猛交黑人性爽| 欧美精品一区二区大全| 看黄色毛片网站| 麻豆乱淫一区二区| 亚洲欧美日韩卡通动漫| 久久久久久久久大av| 日本免费一区二区三区高清不卡| 中文资源天堂在线| 晚上一个人看的免费电影| 国产黄片视频在线免费观看| 成人国产麻豆网| 精品国内亚洲2022精品成人| 少妇人妻精品综合一区二区| 九九久久精品国产亚洲av麻豆| 午夜免费男女啪啪视频观看| 国产精品久久视频播放| 在线免费观看的www视频| 久久热精品热| 在线播放无遮挡| 九九爱精品视频在线观看| 毛片一级片免费看久久久久| 日韩欧美三级三区| 久久久午夜欧美精品| 岛国毛片在线播放| 99久久成人亚洲精品观看| 欧美性猛交黑人性爽| 久久精品夜夜夜夜夜久久蜜豆| 欧美区成人在线视频| 久久久久免费精品人妻一区二区| 亚洲精品一区蜜桃| 中文字幕制服av| 97热精品久久久久久| 久久久精品94久久精品| 2021天堂中文幕一二区在线观| 国产精品99久久久久久久久| 精品人妻一区二区三区麻豆| 99热全是精品| 深爱激情五月婷婷| 男人舔女人下体高潮全视频| 日本黄大片高清| 波多野结衣巨乳人妻| 最近的中文字幕免费完整| 国产精品女同一区二区软件| 久久久成人免费电影| 久久热精品热| 一个人看的www免费观看视频| 久久久久久久久中文| 欧美另类亚洲清纯唯美| 亚洲欧美日韩高清专用| 亚洲av一区综合| 91av网一区二区| 国产成人精品久久久久久| 久久这里有精品视频免费| 免费黄色在线免费观看| 一个人观看的视频www高清免费观看| 床上黄色一级片| 91aial.com中文字幕在线观看| 人人妻人人看人人澡| 亚洲一区高清亚洲精品| 一区二区三区乱码不卡18| 视频中文字幕在线观看| 亚洲自偷自拍三级| 国产不卡一卡二| 又粗又爽又猛毛片免费看| 国产精品国产高清国产av| 午夜免费男女啪啪视频观看| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 国产成人a区在线观看| 精品无人区乱码1区二区| 免费搜索国产男女视频| 国产精品女同一区二区软件| 亚洲伊人久久精品综合 | 久久99蜜桃精品久久| 网址你懂的国产日韩在线| 国产精品野战在线观看| 尤物成人国产欧美一区二区三区| 在线免费十八禁| 男插女下体视频免费在线播放| 综合色丁香网| 国产一区二区在线av高清观看| 深夜a级毛片| 高清午夜精品一区二区三区| 欧美人与善性xxx| 日韩一区二区视频免费看| 免费黄网站久久成人精品| 午夜爱爱视频在线播放| av卡一久久| 天美传媒精品一区二区| 成年女人永久免费观看视频| 日日撸夜夜添| 国产真实伦视频高清在线观看| 全区人妻精品视频| 亚洲无线观看免费| 精品久久久噜噜| 高清在线视频一区二区三区 | 青春草国产在线视频| 日韩强制内射视频| 成人三级黄色视频| 男的添女的下面高潮视频| 色网站视频免费| 国产伦一二天堂av在线观看| 午夜激情欧美在线| 免费看美女性在线毛片视频| 国产精品一区二区三区四区久久| 少妇丰满av| 日日啪夜夜撸| 亚洲中文字幕一区二区三区有码在线看| 国产黄片美女视频| 看十八女毛片水多多多| 波多野结衣巨乳人妻| 中文字幕免费在线视频6| 99久国产av精品国产电影| 精品免费久久久久久久清纯| 一级毛片电影观看 | 久久人人爽人人爽人人片va| 激情 狠狠 欧美| 成人午夜高清在线视频| 久久久精品94久久精品| 精品久久久久久电影网 | 国产高清有码在线观看视频| 一边亲一边摸免费视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品aⅴ在线观看| 亚洲欧美精品自产自拍| av福利片在线观看| 赤兔流量卡办理| 九九爱精品视频在线观看| 嘟嘟电影网在线观看| 99久国产av精品| 午夜激情欧美在线| 一区二区三区乱码不卡18| 深爱激情五月婷婷| 又粗又硬又长又爽又黄的视频| 日日撸夜夜添| 久久亚洲精品不卡| 美女大奶头视频| 婷婷色综合大香蕉| 国内揄拍国产精品人妻在线| 午夜a级毛片| 亚洲精品自拍成人| 白带黄色成豆腐渣| 97超碰精品成人国产| 亚洲国产精品国产精品| 99热精品在线国产| 18+在线观看网站| 91狼人影院| 日韩在线高清观看一区二区三区| 国产精品麻豆人妻色哟哟久久 | 亚洲欧美精品综合久久99| 男人狂女人下面高潮的视频| 男人狂女人下面高潮的视频| 99久国产av精品| 真实男女啪啪啪动态图| 久久人妻av系列| 久久久久性生活片| 久久久国产成人免费| 三级国产精品片| 在线免费观看不下载黄p国产| 免费黄色在线免费观看| 青春草国产在线视频| 亚洲精品456在线播放app| 国产在线一区二区三区精 | 国产白丝娇喘喷水9色精品| 亚洲成人av在线免费| 大话2 男鬼变身卡| 午夜福利在线在线| 婷婷色综合大香蕉| 男人舔女人下体高潮全视频| 亚洲精品日韩av片在线观看| 久久久久精品久久久久真实原创| 日韩制服骚丝袜av| 久久人人爽人人爽人人片va| 99九九线精品视频在线观看视频| 一级二级三级毛片免费看| 91在线精品国自产拍蜜月| 禁无遮挡网站| 桃色一区二区三区在线观看| 免费黄网站久久成人精品| 大又大粗又爽又黄少妇毛片口| 久久这里有精品视频免费| kizo精华| 伦理电影大哥的女人| 99视频精品全部免费 在线| 男女啪啪激烈高潮av片| 国产极品天堂在线| 哪个播放器可以免费观看大片| 小说图片视频综合网站| 久久99热这里只频精品6学生 | 少妇裸体淫交视频免费看高清| 亚洲精品影视一区二区三区av| 汤姆久久久久久久影院中文字幕 | 亚洲国产精品专区欧美| 亚洲成人中文字幕在线播放| 国产av在哪里看| 免费播放大片免费观看视频在线观看 | 亚洲av男天堂| 亚洲18禁久久av| 中国国产av一级| 成人漫画全彩无遮挡| 亚洲aⅴ乱码一区二区在线播放| 亚洲综合精品二区| 亚洲国产精品成人久久小说| 最近2019中文字幕mv第一页| 建设人人有责人人尽责人人享有的 | 亚洲国产精品合色在线| 不卡视频在线观看欧美| 插逼视频在线观看| 久久精品人妻少妇| 亚洲成人中文字幕在线播放| 亚洲怡红院男人天堂| 国产欧美另类精品又又久久亚洲欧美| 久久久精品94久久精品| 岛国在线免费视频观看| 久久久国产成人免费| 亚洲精品456在线播放app| 欧美成人午夜免费资源| 国产成人a区在线观看| 欧美高清成人免费视频www| 一级黄色大片毛片| 在线观看av片永久免费下载| 神马国产精品三级电影在线观看| 国产精品福利在线免费观看| 在线免费观看的www视频| 18禁在线播放成人免费| 97热精品久久久久久| 干丝袜人妻中文字幕| 国产大屁股一区二区在线视频| 99热精品在线国产| 波野结衣二区三区在线| 亚洲成人精品中文字幕电影| 亚洲精品色激情综合| 女人十人毛片免费观看3o分钟| 简卡轻食公司| 99久久人妻综合| 搞女人的毛片| 亚洲国产高清在线一区二区三| 国产av在哪里看| 美女黄网站色视频| 国产精品女同一区二区软件| 精品欧美国产一区二区三| 精品99又大又爽又粗少妇毛片| 欧美变态另类bdsm刘玥| 日本黄色视频三级网站网址| eeuss影院久久| 中文字幕熟女人妻在线| 日韩高清综合在线| 中文字幕制服av| 午夜免费男女啪啪视频观看| 最近中文字幕2019免费版| av播播在线观看一区| 国产成人福利小说| 国产成人福利小说| 国产高清有码在线观看视频| 国产精品久久久久久精品电影小说 | 2021天堂中文幕一二区在线观| 日日撸夜夜添| 亚洲最大成人av| 国产淫片久久久久久久久| 91精品国产九色| 日韩一区二区视频免费看| 成年女人看的毛片在线观看| 精品国产三级普通话版| 美女xxoo啪啪120秒动态图| 亚洲成人久久爱视频| 国产大屁股一区二区在线视频| 国产精品一区二区三区四区免费观看| 国产爱豆传媒在线观看| 成人国产麻豆网| 欧美性猛交╳xxx乱大交人| 最近2019中文字幕mv第一页| 国产日韩欧美在线精品| 伦精品一区二区三区| 亚洲性久久影院| .国产精品久久| 国产三级在线视频| 国产亚洲91精品色在线| 69av精品久久久久久| 午夜免费激情av| 麻豆精品久久久久久蜜桃| 国产极品天堂在线| 亚洲熟妇中文字幕五十中出| 国产黄a三级三级三级人| 六月丁香七月| 麻豆精品久久久久久蜜桃| 中文字幕免费在线视频6| 熟妇人妻久久中文字幕3abv| 久久久久久久久久久免费av| 国产av在哪里看| 国产 一区精品| 长腿黑丝高跟| 青春草亚洲视频在线观看| 99久久精品国产国产毛片| 99在线视频只有这里精品首页| 亚洲久久久久久中文字幕| 干丝袜人妻中文字幕| 天堂影院成人在线观看| 女人久久www免费人成看片 | 99久久中文字幕三级久久日本| 美女国产视频在线观看| 天堂√8在线中文| 一区二区三区免费毛片| 成人av在线播放网站| 国产日韩欧美在线精品| 午夜视频国产福利| 久久久久久九九精品二区国产| 国内揄拍国产精品人妻在线| 久久久精品94久久精品| 毛片一级片免费看久久久久| 国产单亲对白刺激| 天堂网av新在线| 国产精品一区二区在线观看99 | 91在线精品国自产拍蜜月| 麻豆精品久久久久久蜜桃| 三级国产精品片| 天堂av国产一区二区熟女人妻| .国产精品久久| 免费播放大片免费观看视频在线观看 | 国产午夜精品一二区理论片| 国语自产精品视频在线第100页| 国产极品精品免费视频能看的| 在线观看一区二区三区| 国产成人福利小说| 99久久精品国产国产毛片| 99在线视频只有这里精品首页| 久久午夜福利片| 禁无遮挡网站| 丝袜喷水一区| 大香蕉久久网| 黄片wwwwww| 日韩强制内射视频| 日韩 亚洲 欧美在线| 国产精品伦人一区二区| 少妇的逼水好多| 欧美精品一区二区大全| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件| 丰满少妇做爰视频| 免费黄网站久久成人精品| 波多野结衣巨乳人妻| 亚洲激情五月婷婷啪啪| 亚洲国产精品sss在线观看| 日本免费a在线| 麻豆精品久久久久久蜜桃| videos熟女内射| 欧美精品一区二区大全| 一边亲一边摸免费视频| 成人特级av手机在线观看| 精品一区二区三区视频在线| 午夜福利成人在线免费观看| 人人妻人人澡人人爽人人夜夜 | 亚洲国产欧洲综合997久久,| 少妇裸体淫交视频免费看高清| 国产亚洲一区二区精品| 十八禁国产超污无遮挡网站| 色综合色国产| 日韩中字成人| 激情 狠狠 欧美| 干丝袜人妻中文字幕| 免费一级毛片在线播放高清视频| 色哟哟·www| 精品一区二区三区视频在线| 国产精品久久电影中文字幕| 亚洲欧美日韩东京热| 汤姆久久久久久久影院中文字幕 | 亚洲美女搞黄在线观看| 美女被艹到高潮喷水动态| 日本黄大片高清| 久久精品久久久久久噜噜老黄 | 国内精品宾馆在线| 十八禁国产超污无遮挡网站| 高清视频免费观看一区二区 | 免费一级毛片在线播放高清视频| 91久久精品电影网| 五月伊人婷婷丁香| 欧美性猛交╳xxx乱大交人| 亚洲av免费高清在线观看| 联通29元200g的流量卡| 最近中文字幕2019免费版| 国产伦精品一区二区三区视频9| 丝袜美腿在线中文| 99久久成人亚洲精品观看| 色网站视频免费| 最新中文字幕久久久久| 毛片一级片免费看久久久久| 亚洲国产精品成人综合色| 99热这里只有精品一区| 高清视频免费观看一区二区 | 中文字幕免费在线视频6| 97超碰精品成人国产| 麻豆久久精品国产亚洲av| 国产一区亚洲一区在线观看| 成人av在线播放网站| 亚洲久久久久久中文字幕| h日本视频在线播放| 国产真实伦视频高清在线观看| 色播亚洲综合网| 午夜激情福利司机影院| 亚洲在线观看片| 日本黄色视频三级网站网址| 成年女人永久免费观看视频| 男人的好看免费观看在线视频| 国产v大片淫在线免费观看| 久久久a久久爽久久v久久| 国产免费一级a男人的天堂| 久久久久久久久大av| 国产av不卡久久| 一级黄片播放器| 日韩在线高清观看一区二区三区| 91午夜精品亚洲一区二区三区| 18禁在线播放成人免费| 亚洲人与动物交配视频| 亚洲国产日韩欧美精品在线观看| 日韩欧美 国产精品| 九九热线精品视视频播放| 久99久视频精品免费| 欧美日本视频| 男女啪啪激烈高潮av片| 我要搜黄色片| 极品教师在线视频| 小说图片视频综合网站| 国产精品国产三级国产av玫瑰| 亚洲成人久久爱视频| 可以在线观看毛片的网站| 亚洲av中文av极速乱| 亚洲自偷自拍三级| 桃色一区二区三区在线观看| 日韩成人伦理影院| 我的女老师完整版在线观看| 精品久久久久久久末码| 国产精品国产三级国产av玫瑰| 日本五十路高清| 少妇裸体淫交视频免费看高清| 欧美3d第一页| 插逼视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 一级毛片aaaaaa免费看小| 欧美三级亚洲精品| 欧美性猛交╳xxx乱大交人| 中文字幕精品亚洲无线码一区| 免费看光身美女| 少妇被粗大猛烈的视频| 亚洲欧美日韩高清专用| 中文字幕久久专区| 男人舔奶头视频| 深爱激情五月婷婷| 国产亚洲av片在线观看秒播厂 | 色视频www国产| 日韩在线高清观看一区二区三区| 亚洲精品成人久久久久久| 国产黄色小视频在线观看| videos熟女内射| 亚洲国产精品合色在线| 美女国产视频在线观看| 亚洲精品乱久久久久久| 国产一区二区在线av高清观看| 精品一区二区免费观看| 亚洲成人av在线免费| 高清视频免费观看一区二区 | 国产免费一级a男人的天堂| 国产亚洲5aaaaa淫片| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 国产精品人妻久久久久久| 国产三级中文精品| 国产成年人精品一区二区| 成人鲁丝片一二三区免费| 一个人看视频在线观看www免费| av国产免费在线观看| 免费看美女性在线毛片视频| 日本一本二区三区精品| 国产女主播在线喷水免费视频网站 | 又爽又黄无遮挡网站| 欧美激情国产日韩精品一区| 亚州av有码| 性色avwww在线观看| 久久久久免费精品人妻一区二区| 99久久中文字幕三级久久日本| 最后的刺客免费高清国语| kizo精华| 91av网一区二区| 2021少妇久久久久久久久久久| 国产探花在线观看一区二区| 久久亚洲精品不卡| 久久99热6这里只有精品| 大香蕉久久网| 国产精品爽爽va在线观看网站| 麻豆av噜噜一区二区三区| 日本黄色视频三级网站网址| 国产精品日韩av在线免费观看| 中文字幕亚洲精品专区| 小说图片视频综合网站| 偷拍熟女少妇极品色| 欧美高清性xxxxhd video| 欧美日本亚洲视频在线播放| 91精品伊人久久大香线蕉| 国产激情偷乱视频一区二区| 国产一级毛片七仙女欲春2| 26uuu在线亚洲综合色| 国产精品一区www在线观看| 熟妇人妻久久中文字幕3abv| 免费不卡的大黄色大毛片视频在线观看 | 美女黄网站色视频| 久久草成人影院| 中文字幕av成人在线电影| 视频中文字幕在线观看| 免费人成在线观看视频色| 国产午夜精品久久久久久一区二区三区| 国产亚洲精品久久久com| 日韩成人伦理影院| 亚洲国产欧美人成| 国产色爽女视频免费观看| 22中文网久久字幕| 狠狠狠狠99中文字幕| 亚洲精品456在线播放app| 最近中文字幕2019免费版| 日本免费a在线| 午夜免费男女啪啪视频观看| 爱豆传媒免费全集在线观看| 中文字幕精品亚洲无线码一区| 熟女电影av网| 听说在线观看完整版免费高清| 国产日韩欧美在线精品| 人人妻人人澡欧美一区二区| 能在线免费观看的黄片| 色综合色国产| 欧美一区二区亚洲| 在线播放国产精品三级| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 亚洲18禁久久av| 免费看日本二区| 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 亚洲成人av在线免费| 久久久精品94久久精品| 乱码一卡2卡4卡精品| 久久婷婷人人爽人人干人人爱| 国产片特级美女逼逼视频| 99视频精品全部免费 在线| 丰满乱子伦码专区| 美女被艹到高潮喷水动态| 久久精品久久久久久噜噜老黄 | 最近最新中文字幕大全电影3| 日日啪夜夜撸| 99国产精品一区二区蜜桃av| 国产精品乱码一区二三区的特点| 欧美性猛交╳xxx乱大交人| 99久久成人亚洲精品观看| 哪个播放器可以免费观看大片| 午夜福利在线观看吧| 三级男女做爰猛烈吃奶摸视频| 欧美激情在线99| 国内精品一区二区在线观看| 精品免费久久久久久久清纯| 麻豆成人av视频| 黑人高潮一二区| 久久久a久久爽久久v久久| 国产精品久久久久久精品电影| 中文字幕精品亚洲无线码一区| 日本免费一区二区三区高清不卡| 一本久久精品| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久大精品| 丝袜喷水一区| 亚洲av成人av| 亚洲在线自拍视频| av免费观看日本| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美精品v在线| 一本久久精品| 人体艺术视频欧美日本| 亚洲av一区综合| 亚洲性久久影院| 免费观看人在逋| 大又大粗又爽又黄少妇毛片口| 长腿黑丝高跟| 欧美潮喷喷水| 国产成人免费观看mmmm| 日本一本二区三区精品| 色吧在线观看| 亚洲av电影不卡..在线观看| 久久亚洲精品不卡| 免费黄网站久久成人精品| 国产精品无大码| 久久草成人影院| 亚洲精品,欧美精品| 国产69精品久久久久777片| 亚洲最大成人中文| 亚洲av熟女| 日韩成人伦理影院|