• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energetic processes regulating the strength of MJO circulation over the Maritime Continent during two types of El Ni?o

    2018-05-24 01:41:40HSUPangChiFUZhenanXIAOTing

    HSU Pang-Chi, FU Zhen an XIAO Ting

    aKey Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China;

    bJoint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science & Technology, Nanjing,China; cCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science &Technology, Nanjing, China; dGuangzhou Meteorological Observatory, Guangzhou, China

    1. Introduction

    The MJO (Madden and Julian 1971) is the dominant mode of intraseasonal variability over the tropics. Its convection-circulation coupled signals are of a planetary scale and propagate eastward along the equator. During its journey, the MJO interacts with different weather and climate systems, such as tropical cyclones (Camargo, Wheeler,and Sobel 2009; Maloney and Dickinson 2003), extreme rainfall events (Mao, Sun, and Wu 2010; Yang 2010; Hsu,Lee, and Ha 2016), monsoon activity (Lee et al. 2013), and ENSO (Slingo et al. 1999; Kessler 2001; Hendon, Wheeler,and Zhang 2007), in fluencing the evolution and amplitude of these weather and climate systems. Advancing our understanding of MJO variation at different timescales and mean flow-MJO-eddies scale interactions can bridge the gap between weather forecasting and climate prediction(Waliser 2006), which is key to developing a seamless prediction system (Palmer et al. 2008).

    The interannual variation of MJO activity is generally linked to the changes in equatorial SST at the interannual timescale. Earlier studies (Slingo et al. 1999; Kessler 2001;Hendon, Wheeler, and Zhang 2007) focused on the interaction between the MJO and conventional ENSO, which has the maximum SST warming over the eastern equatorial Pacific (referred to as eastern Pacific El Ni?o, or EP El Ni?o).Accompanied by the eastward shift of anomalous SST warming, the strengthened MJO signals tend to extend farther east toward the eastern Pacific, while weakened MJO activity appears over the western Pacific, during EP El Ni?o years (Hendon, Zhang, and Glick 1999; Kessler 2001). Since the beginning of the twenty- first century, a new type of El Ni?o with a significant SST warming over the central Pacific(referred to as CP El Ni?o) has been observed frequently.CP El Ni?o induces a different modulating effect on MJO activity compared to EP El Ni?o (Gushchina and Dewitte 2012; Feng et al. 2015; Yuan, Li, and Ling 2015; Chen, Ling,and Li 2016; Hsu and Xiao 2017). The suppressed MJO over the western Pacific and Maritime Continent during CP El Ni?o events is of less significance than that during EP El Ni?o years. Some studies have suggested that the difference in the MJO over the western Pacific/Maritime Continent could be related to the suppressed effect of the Walker circulation and the anticyclonic circulation anomaly near the Philippine Sea during different types of El Ni?o events (Feng et al. 2015; Yuan, Li, and Ling 2015; Chen,Ling, and Li 2016).

    Although possible relationships between the anomalous mean flow and MJO associated with each type of El Ni?o have been indicated (Feng et al. 2015; Yuan, Li, and Ling 2015; Chen, Ling, and Li 2016), the detailed processes and relative contributions of these anomalous circulations to the changes in the MJO need to be investigated. In addition to large-scale circulations, synoptic-scale variability is also vigorous over the Maritime Continent (Chang, Harr,and Chen 2005) and may have in fluences on MJO activity through upscaled feedback. In this study, we examine the main source of increased MJO kinetic energy (KE) during CP El Ni?o events based on a newly proposed MJO KE budget equation derivation. We also quantitatively discuss how scale interactions among low-frequency background flow, the MJO, and high-frequency disturbances modulate the MJO strength during different types of El Ni?o.

    2. Methodology

    To identify the deep convection associated with MJO and high-frequency disturbances, we use daily OLR on a 2.5 × 2.5° grid from NOAA (Liebmann 1996). The changes in dynamic and thermodynamic conditions and their in fluences on the MJO are examined using daily-averaged fields of horizontal wind (u,v), verticalp-velocity (ω), temperature (T), and geopotential (?) from ERA-Interim (Dee et al. 2011). These fields have a resolution of 1.5 × 1.5 and 19 levels from 1000 to 100 hPa with 50-hPa intervals. All data cover the period 1979–2014.

    To reduce data uncertainty, the average of monthly SST data derived from HadISST1 (Rayner et al. 2003) and ERSST.v3 (Smith et al. 2008) are used to categorize the two different types of El Ni?o. Using the method proposed by Yeh et al.(2009) and others (e.g. McPhaden, Lee, and McClurg 2011;Ren and Jin 2011), the CP and EP cases are classified based on the amplitude of SST anomalies over the Ni?o3 (5°S–5°N,90°–150°W) region and the Ni?o4 (5°S–5°N, 160°E–150°W)region. Those El Ni?o events with a larger Ni?o3 than Ni?o4(larger Ni?o4 than Ni?o3) warming during boreal winter are considered as EP El Ni?o (CP El Ni?o) events. Four EP El Ni?o events (1982/83, 1986/87, 1991/92, and 1997/98) and five CP El Ni?o events (1994/95, 2002/03, 2004/05, 2006/07,and 2009/10) are selected for the study period.

    To quantitatively examine the physical processes modulating the MJO activity during the two types of El Ni?o,the MJO KE budget is derived and then diagnosed. The conventional energy budget equation is derived by partitioning the meteorological variable into two parts –background mean flow and perturbation – to diagnose the energy conversion between the two (Oort 1964; Lau and Lau 1992; Maloney and Dickinson 2003; Hsu and Chih-Hua 2009). To understand the scale interactions of MJO with both the mean flow and high-frequency disturbances, we decompose a variable into three parts in the time domain, including the low-frequency mean flow (>90 days), MJO (20–90 days), and high-frequency disturbances (< 20 days), as follows:

    where the overbar denotes the low-frequency component;the prime and asterisk denote the 20–90-day MJO and the high-frequency disturbances of shorter than 20 days,respectively. Here, we apply Lanczos band-pass filtering(Duchon 1979), 90-day low-pass and 20-day high-pass filtering to extract the MJO, low-frequency mean flow and high-frequency disturbances, respectively. This derivation strategy is similar to that used in Hsu, Li, and Tson (2011)and Tsou, Hsu, and Hsu (2014), although these studies focused on the KE sources of synoptic-scale eddies rather than the MJO.

    By multiplyingu′ andv′ on both sides of the MJO-filtered horizontal momentum equations, respectively,the MJO KE budget equation is obtained as

    3. Results

    Figures 1 and 2 show the changes in subseasonal variability (including 20–90-day MJO and high-frequency disturbances of less than 20 days), large-scale circulations, and SST patterns during the mature phase (autumn-winter)of the two types of El Ni?o events relative to their climatological conditions. When the SST warming maximizes at the eastern equatorial Pacific (Figure 1(a)), the ascending motion of the Walker circulation and trade winds are reduced significantly. A low-level divergence (Figure 1(a))associated with a downward anomaly of the Walker circulation (Figure 2(a)) can be observed over the Maritime Continent. An anticyclonic anomaly appears near the Philippine Sea (Wang, Wu, and Fu 2000). Along with the changes in background dynamic and thermodynamic conditions, both the atmospheric MJO (Figure 1(a)) and high-frequency eddies (Figure 2(a)) are weakened over the western Pacific and Maritime Continent during the EP El Ni?o events.

    Figure 1. Kinetic energy of 20–90-day MJO (shading; units: m2 s?2), monthly SST (contours; units: °C), and monthly 850-hPa wind (vectors;units: m s?1) anomalies during autumn-winter (September-February) of (a) EP and (b) CP El Ni?o events relative to their climatological states. The differences in these fields between CP and EP El Ni?o events (CP minus EP) are shown in (c). Stippling marks the regions with the changes in MJO KE exceeding the 90% con fidence level.

    As the warm SST anomaly shifts westward during CP El Ni?o events, the low-level divergence and anticyclonic anomalies associated with the descending anomaly of the Walker circulation are of less significance (Figures 1(b)and 2(b)), compared to those during EP El Ni?o events(Figures 1(a) and 2(a)). Thus, the differences in large-scale circulations between CP and EP El Ni?o events exhibit lowlevel convergence and cyclonic anomalies (Figure 1(c))associated with ascending anomalies over the Maritime Continent (Figure 2(c)). The amplitude of transient eddies at the intraseasonal and synoptic timescales vary obviously over the Maritime Continent during the two types of El Ni?o. The MJO has higher KE over the Maritime Continent during CP El Ni?o than during EP El Ni?o (Figure 1(b)and (c)), consistent with the findings of Chen, Ling, and Li (2016). Although the high-frequency variability tends to weaken over the Maritime Continent during both CP and EP El Ni?o events relative to the climatology (Figure 2(a) and (b)), the reduction in KE of high-frequency disturbances is less during CP El Ni?o events compared to that during EP El Ni?o events (Figure 2(c)).

    The results of Figures 1 and 2 are based on the seasonal average. To ensure the timing when the two types of El Ni?o exert differential in fluences on the MJO circulation, we analyze the temporal evolution of equatorial MJO KE (not shown). The significant increase in MJO KE during CP El Ni?o appears over the Maritime Continent from mid-September of the El Ni?o developing year to the following February. This con firms our composite analysis for the period of autumn-winter (September-February) is reasonable.

    To compare the amplitude and life cycle of MJO KE over the Maritime Continent between the two types of El Ni?o, enhanced MJO circulation events occurring over the region (10°S–10°N, 90°–150°E) with significant changes in MJO KE between the CP and EP El Ni?o events (Figure 1(c)) are selected and composited. An enhanced MJO circulation event is identified by the MJO KE over the key region of (10°S–10°N, 90°–150°E) exceeding one standard deviation. The date with maximum KE for each enhanced MJO event is de fined as Day 0. Figure 3(a) compares the KE evolution of composited active MJO events in CP and EP El Ni?o years. The enhanced MJO KE is obvious over the Maritime Continent during CP El Ni?o and larger than that during EP El Ni?o, in agreement with the result in Figure 1(c). From nine days before the MJO KE reaches its maximum, a positive tendency of MJO KE can be found for both CP and EP El Ni?o (not shown). The growth rate of MJO KE is larger during CP El Ni?o than during EP El Ni?o,accounting for the enhanced MJO KE over the Maritime Continent during CP El Ni?o (Figure 3(a)).

    Figure 2. Kinetic energy of less than 20-day eddies (shading; units: m2 s?2) and 500-hPa monthly vertical p-velocity (contours; units:Pa s?1) of (a) EP and (b) CP El Ni?o events relative to their climatological states. The differences in these fields between CP and EP El Ni?o events (CP minus EP) are shown in (c). Stippling marks the regions with the changes in eddy KE exceeding the 90% con fidence level. The thick solid and dashed contours denote the anomalies of 500-hPa vertical p-velocity at 0.2 and ?0.2 Pa s?1, respectively.

    To understand the key processes modulating the sources of MJO KE associated with the two types of El Ni?o,the column (1000–200 hPa) MJO KE budget (Equation (2))is diagnosed during Day ?9 to 0 (Figure 3(b)). The larger growth rate of MJO KE during CP El Ni?o is mainly from the barotropic energy conversion from mean flow to MJO (CKL-M) and the baroclinic energy conversion from the MJO available potential energy to KE (CE). The positive contribution of CKL-Mvia scale interaction between anomalous mean flow and MJO appears in the mid-to-lower troposphere(Figure 4(a)). However, the CE associated with the MJO circulation-convection coupled feedback plays an important role in maintaining the increased MJO KE during CP El Ni?o at the upper troposphere (Figure 4(b)). Although the MJO obtains more KE during CP El Ni?o, it provides more KE to high-frequency eddies through CKH-M(Figure 3(b)) in the meantime, supporting the enhanced high-frequency variability over the Maritime Continent (Figure 2(c)). The redistributions of MJO KE associated with the advection process and geopotential flux contribute negatively to the increased MJO KE during CP El Ni?o (Figure 3(b)).

    Figure 3 (a) Differences in composited MJO kinetic energy (blue curve; units: m2 s?2) and its tendency (red curve; 10?6 m2 s?3) over the Maritime Continent (10°S?10°N, 90°?150°E) between CP and EP El Ni?o events. Day 0 represents the date when the MJO kinetic energy reaches its maximum for each event. (b) MJO kinetic energy budget terms integrated between 1000 and 200 hPa over the Maritime Continent during Day ?9 to 0 for EP (blue bars) and CP (red bars) El Ni?o events and their differences (black bars). Units: kg s?3. (c) As in(b) except for individual terms of CKL-M.

    The individual terms of CKL-Mare then compared to identify the major contributors (Figure 3(c)). The MJO eddy momentum working on background zonal flow conto zonal wind convergence and cyclonic anomalies show a large contribution at the lower troposphere, while the third term associated with vertical wind shear maximizes around 400 hPa where the zonal wind changes its sign(not shown). During CP El Ni?o, the descending anomaly of the Walker circulation and low-level divergence anomaly over the Maritime Continent are weaker compared to those during EP El Ni?o (Figure 2(a) and (b)). Meanwhile,the Philippine Sea anticyclonic anomaly tends to be weakened during CP El Ni?o (Figure 1(c)), similar to the findings of Yuan, Yang, and Zhang (2012). These large-scale anomalies associated with the westward shift of the equatorial SST warming pattern (i.e. CP El Ni?o) generate enhanced barotropic energy conversion from the mean flow to MJO KE as they work with MJO eddy momentum fluxes.

    Figure 4. Vertical pro files of (a) CKL-M and (b) CE over the Maritime Continent (10°S–10°N, 90°–150°E) averaged over the period of Day?9 to 0, when the MJO kinetic energy shows positive tendency in Figure 3, for MJO cases during CP El Ni?o (red curve), EP El Ni?o (blue curve), and their differences (black curve). Units: 10?5 m2 s?3.

    4. Summary

    The distinct impacts of CP and EP El Ni?o events on western Pacific MJO activity have been documented previously(Gushchina and Dewitte 2012; Feng et al. 2015; Yuan, Li,and Ling 2015; Chen, Ling, and Li 2016; Hsu and Xiao 2017).However, the physical mechanisms responsible for the differences in MJO associated with the two types of El Ni?o have not been fully understood. Particularly, the western Pacific/Maritime Continent is the region that undergoes vigorous multi-scale variability. How and to what extent the changes in background mean flow and high-frequency disturbances in fluence the MJO during the CP and EP El Ni?o need further elucidation.

    In this study, we derive a new MJO KE budget equation, in which the low-frequency background mean flow-MJO interaction and high-frequency disturbances-MJO interaction are formulated, to quantitatively examine the physical processes modulating the MJO activity during different El Ni?o events. The results show that both the barotropic energy conversion from background mean flow to MJO KE (CKL-M) and baroclinic energy conversion from MJO available potential energy to KE (CE) contribute positively to the enhanced MJO KE over the Maritime Continent during the mature phase of CP El Ni?o. Among the three-dimensional large-scale circulation anomalies during CP El Ni?o, the low-level convergence and cyclonic anomalies related to a weakened descending branch (or an upward anomaly) of the Walker circulation over the Maritime Continent and the reduced Philippine anticyclonic anomaly play crucial roles in favoring the KE conversion from mean flow to MJO. Different from the positive contribution of CKL-Moccurring at the mid-to-lower troposphere, the enhanced CE is the major contributor to the strengthened MJO KE at the upper troposphere during CP El Ni?o. Based on the diagnosis of interaction between MJO and high-frequency disturbances (CKH-M), we find that the high-frequency variability over the Maritime Continent is enhanced during CP El Ni?o because it obtains more KE from the MJO.

    Understanding the multi-scale interaction is a key step for developing seamless prediction (Waliser 2006; Palmer et al. 2008), while the quantitative diagnosis of scale interactions is still challenging. The new MJO KE budget equation proposed in this study can help to diagnose how and to what extent the MJO interacts with the mean flow and with the high-frequency disturbances. The energy source of the MJO is also examined quantitatively using the MJO KE budget equation. Specifically, we use this diagnostic approach to explain the modulation of the MJO by different types of El Ni?o. We plan to carry out more studies related to MJO dynamics and scale interactions based on the diagnosis of the MJO KE budget equation.

    Acknowledgments

    The authors would like to thank the anonymous reviewers for their help in improving the manuscript.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was supported by the National Natural Science Foundation of China [grant number 41375100]; the National Basic Research Program of China [973 Program, grant number 2015CB453200]; and the Natural Science Foundation of Jiangsu Province [grant number BK20140046].

    References

    Camargo, S. J., M. C. Wheeler, and A. H. Sobel. 2009. “Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index.”Journal of the Atmospheric Sciences66 (10):3061–3074.

    Chang, C.-P., P. A. Harr, and H. J. Chen. 2005. “Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter.”Monthly Weather Review133 (3): 489–503.

    Chen, X., J. Ling, and C. Y. Li. 2016. “Evolution of the Madden–Julian oscillation in two types of El Ni?o.”Journal of Climate29 (5): 1919–1934.

    Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S.Kobayashi, U. Andrae, et al. 2011. “The ERA-Interim reanalysis:con figuration and performance of the data assimilation system.”Quarterly Journal of the Royal Meteorological Society137 (656): 553–597.

    Duchon, C. E. 1979. “Lanczos filtering in one and two dimensions.”Journal of Applied Meteorology18 (8): 1016–1022.

    Feng, J., P. Liu, W. Chen, and X. C. Wang. 2015. “Contrasting Madden–Julian Oscillation activity during various stages of EP and CP El Ni?os.”Atmospheric Science Letters16 (1): 32–37.

    Gushchina, D., and B. Dewitte. 2012. “Intraseasonal tropical atmospheric variability associated with the two flavors of El Ni?o.”Monthly Weather Review140 (11): 3669–3681.

    Hendon, H. H., C. Zhang, and J. D. Glick. 1999. “Interannual variation of the Madden–Julian oscillation during austral summer.”Journal of Climate12 (8): 2538–2550.

    Hendon, H. H., M. C. Wheeler, and C. Zhang. 2007. “Seasonal dependence of the MJO–ENSO relationship.”Journal of Climate20: 531–543.

    Hsu, P.-C., and C.-H. Tsou, 2009. “Eddy energy along the tropical storm track in association with ENSO.”Journal of the Meteorological Society of JapanSer. II 87(4): 687–704.

    Hsu, P.-C., and T. Xiao. 2017. “Differences in the initiation and development of the Madden–Julian Oscillation over the Indian Ocean associated with two types of El Ni?o.”Journal of Climate30 (4): 1397–1415.

    Hsu, P. C., T. Li, and C. H. Tsou. 2011. “Interactions between Boreal Summer Intraseasonal Oscillations and Synoptic-Scale Disturbances over the Western North Pacific. Part I: Energetics Diagnosis*.”Journal of Climate24 (3): 927–941.

    Hsu, P.-C., J.-Y. Lee, and K.-J. Ha. 2016. “In fluence of boreal summer intraseasonal oscillation on rainfall extremes in southern China.”International Journal of Climatology36 (3):1403–1412.

    Kessler, W. S. 2001. “EOF representations of the Madden–Julian oscillation and its connection with ENSO.”Journal of Climate14 (13): 3055–3061.

    Lau, K.-H., and N.-C. Lau. 1992. “The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances.”Monthly Weather Review120 (11): 2523–2539.

    Lee, J.-Y., B. Wang, M. C. Wheeler, X. H. Fu, E. Duane, and W.-S.Kang. 2013. “Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region.”Climate Dynamics40 (1-2): 493–509.

    Liebmann, B., and C. A. Smith 1996. “Description of a complete(interpolated) outgoing longwave radiation dataset.”Bulletin of the American Meteorological Society77: 1275–1277.

    Madden, R. A., and P. R. Julian. 1971. “Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific.”Journal of the Atmospheric Sciences28 (5): 702–708.

    Maloney, E. D., and M. J. Dickinson. 2003. “The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances.”Journal of the Atmospheric Sciences60 (17): 2153–2168.

    Mao, J. Y., Z. Sun, and G. X. Wu. 2010. “20–50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea.”Climate Dynamics34 (5): 747–761.

    McPhaden, M. J., T. Lee, and D. McClurg. 2011. “El Ni?o and its relationship to changing background conditions in the tropical Pacific Ocean.”Geophysical Research Letters38 (15):L15790.

    Oort, A. H. 1964. “On estimates of the atmospheric energy cycle.”Monthly Weather Review92 (11): 483–493.

    Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell.2008. “Toward seamless prediction: Calibration of climate change projections using seasonal forecasts.”Bulletin of the American Meteorological Society89 (4): 459–470.

    Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.Alexander, P. Rowell, C. Kent, and A. Kaplan. 2003. “Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century.”Journal of Geophysical Research: Atmospheres108 (D14): 4407.doi: 10.1029/2002JD002670.

    Ren, H.-L., and F.-F. Jin. 2011. “Ni?o indices for two types of ENSO.”Geophysical Research Letters38 (4): L04704.

    Slingo, J. M., D. P. Rowe, R. Sperber, and F. Nortley. 1999. “On the predictability of the interannual behaviour of the Madden-Julian Oscillation and its relationship with El Ni?o.”Quarterly Journal of the Royal Meteorological Society125 (554): 583–609.

    Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore.2008. “Improvements to NOAA’s Historical Merged Land–ocean Surface Temperature Analysis (1880–2006).”Journal of Climate21: 2283–2296.

    Tsou, C.-H., H.-H. Hsu, and P.-C. Hsu. 2014. “The role of multiscale interaction in synoptic-scale eddy kinetic energy over the western North Pacific in autumn.”Journal of Climate27 (10):3750–3766.

    Waliser, D. E. 2006. “Intraseasonal variability.”The Asian Monsoon.Springer Berlin Heidelberg, 203–257.

    Wang, B., R. Wu, and X. Fu. 2000. “Pacific–East Asian teleconnection: How does ENSO affect East Asian climate?”Journal of Climate13 (9): 1517–1536.

    Yang, J. 2010. “Biweekly and 21–30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin.”Journal of Climate23 (5): 1146–1159.

    Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin. 2009. “El Ni?o in a changing climate.”Nature461 (7263):511–514.

    Yuan, Y., S. Yang, and Z. Zhang. 2012. “Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Ni?o: Possible effects of Indian Ocean SST.”Journal of Climate25 (22): 7867–7883.

    Yuan, Y., C. Y. Li, and J. Ling. 2015. “Different MJO activities between EP El Ni?o and CP El Ni?o.”Scientia Sinica Terrae45: 318–334.

    美女大奶头黄色视频| 久久久久国产一级毛片高清牌| 久久ye,这里只有精品| 国产片特级美女逼逼视频| 欧美+亚洲+日韩+国产| www.999成人在线观看| 亚洲av日韩在线播放| 国产欧美日韩综合在线一区二区| 中文字幕高清在线视频| 精品高清国产在线一区| www日本在线高清视频| 日韩 亚洲 欧美在线| 我要看黄色一级片免费的| 午夜免费鲁丝| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲午夜精品一区二区久久| 国产精品熟女久久久久浪| 热99国产精品久久久久久7| 精品福利观看| 国产日韩欧美视频二区| 欧美日韩黄片免| 亚洲专区中文字幕在线| av天堂在线播放| 日韩视频在线欧美| 两个人免费观看高清视频| 久久亚洲精品不卡| 人妻一区二区av| 亚洲av国产av综合av卡| 两个人看的免费小视频| 亚洲精品第二区| 久久精品aⅴ一区二区三区四区| 男女免费视频国产| svipshipincom国产片| 老司机影院成人| 免费黄频网站在线观看国产| 满18在线观看网站| 色综合欧美亚洲国产小说| 我要看黄色一级片免费的| 在线观看人妻少妇| 日本a在线网址| 一本—道久久a久久精品蜜桃钙片| 热re99久久国产66热| 纯流量卡能插随身wifi吗| 99re6热这里在线精品视频| 只有这里有精品99| 一区二区三区四区激情视频| 人人妻,人人澡人人爽秒播 | av网站在线播放免费| 婷婷色综合www| 国产亚洲精品第一综合不卡| 在线看a的网站| xxx大片免费视频| 国产精品久久久久成人av| 91成人精品电影| 免费观看人在逋| 十分钟在线观看高清视频www| 大片免费播放器 马上看| 18禁观看日本| videosex国产| 日韩一卡2卡3卡4卡2021年| 精品国产国语对白av| 乱人伦中国视频| 亚洲av电影在线进入| 国产精品秋霞免费鲁丝片| 午夜福利视频精品| 国产在线一区二区三区精| 波野结衣二区三区在线| 日韩一卡2卡3卡4卡2021年| 午夜91福利影院| av天堂在线播放| 精品国产一区二区三区久久久樱花| 久久久精品国产亚洲av高清涩受| 欧美人与性动交α欧美软件| av视频免费观看在线观看| 电影成人av| 国产精品三级大全| 一级黄片播放器| 91麻豆精品激情在线观看国产 | 亚洲欧洲日产国产| 免费看av在线观看网站| 99re6热这里在线精品视频| 久9热在线精品视频| 中文字幕av电影在线播放| 91字幕亚洲| 色94色欧美一区二区| 日韩一卡2卡3卡4卡2021年| 精品久久久精品久久久| av视频免费观看在线观看| 亚洲精品久久久久久婷婷小说| 久久久久久久久免费视频了| av线在线观看网站| 天天操日日干夜夜撸| www.精华液| 亚洲精品第二区| 免费在线观看完整版高清| 制服诱惑二区| 91九色精品人成在线观看| 日本91视频免费播放| 成年美女黄网站色视频大全免费| 免费久久久久久久精品成人欧美视频| 水蜜桃什么品种好| 亚洲国产精品999| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久精品久久久| 亚洲视频免费观看视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲 国产 在线| 亚洲成色77777| 成人国产av品久久久| 国产成人啪精品午夜网站| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 精品熟女少妇八av免费久了| 一本综合久久免费| 蜜桃在线观看..| 国产一区二区三区av在线| 国产av国产精品国产| 韩国精品一区二区三区| 高清黄色对白视频在线免费看| svipshipincom国产片| 国产精品一二三区在线看| 在线天堂中文资源库| 菩萨蛮人人尽说江南好唐韦庄| 美国免费a级毛片| 亚洲欧美色中文字幕在线| 高清黄色对白视频在线免费看| 黑人猛操日本美女一级片| 精品国产超薄肉色丝袜足j| 日韩,欧美,国产一区二区三区| 视频区图区小说| 夜夜骑夜夜射夜夜干| 成年动漫av网址| 嫁个100分男人电影在线观看 | 性色av乱码一区二区三区2| 啦啦啦在线观看免费高清www| 一二三四在线观看免费中文在| 在线精品无人区一区二区三| 中文字幕色久视频| 亚洲av综合色区一区| 性高湖久久久久久久久免费观看| 亚洲免费av在线视频| 男人爽女人下面视频在线观看| 免费看不卡的av| 午夜av观看不卡| 在线观看免费高清a一片| av在线app专区| 一级毛片我不卡| 巨乳人妻的诱惑在线观看| 男女边摸边吃奶| 久久久久久久精品精品| 免费少妇av软件| 亚洲精品自拍成人| 丝袜美足系列| 国产精品久久久人人做人人爽| 亚洲美女黄色视频免费看| 午夜福利视频精品| av视频免费观看在线观看| 亚洲天堂av无毛| 国产免费一区二区三区四区乱码| 精品人妻在线不人妻| 男人操女人黄网站| 在现免费观看毛片| 看免费成人av毛片| 国产男女内射视频| 在线亚洲精品国产二区图片欧美| 亚洲黑人精品在线| 久久久久久久精品精品| 一区福利在线观看| 亚洲欧美成人综合另类久久久| 免费在线观看视频国产中文字幕亚洲 | 一边摸一边做爽爽视频免费| 人人妻人人澡人人爽人人夜夜| 中文精品一卡2卡3卡4更新| 亚洲成人免费电影在线观看 | 女性被躁到高潮视频| 91麻豆精品激情在线观看国产 | 男男h啪啪无遮挡| 亚洲成人免费av在线播放| 欧美精品一区二区大全| 国产成人精品久久二区二区免费| 另类亚洲欧美激情| 精品一区二区三区四区五区乱码 | 最近中文字幕2019免费版| 免费久久久久久久精品成人欧美视频| 免费在线观看影片大全网站 | 亚洲中文日韩欧美视频| 国产午夜精品一二区理论片| 首页视频小说图片口味搜索 | 国产精品秋霞免费鲁丝片| 亚洲国产精品成人久久小说| 女性生殖器流出的白浆| 2018国产大陆天天弄谢| www.自偷自拍.com| 1024视频免费在线观看| av不卡在线播放| 亚洲男人天堂网一区| av片东京热男人的天堂| 欧美日韩黄片免| 国产伦人伦偷精品视频| 少妇猛男粗大的猛烈进出视频| 国产又爽黄色视频| 18禁黄网站禁片午夜丰满| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| av一本久久久久| 乱人伦中国视频| 久久精品成人免费网站| 中文字幕精品免费在线观看视频| 一二三四社区在线视频社区8| 一本—道久久a久久精品蜜桃钙片| 日韩中文字幕欧美一区二区 | 一二三四在线观看免费中文在| 日韩熟女老妇一区二区性免费视频| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品古装| 黄频高清免费视频| 免费一级毛片在线播放高清视频 | 99久久人妻综合| 一级,二级,三级黄色视频| 在线观看免费高清a一片| 成人午夜精彩视频在线观看| 国产精品亚洲av一区麻豆| 丰满饥渴人妻一区二区三| 久久中文字幕一级| 啦啦啦在线免费观看视频4| 精品国产一区二区三区四区第35| 亚洲伊人久久精品综合| 婷婷成人精品国产| 免费看十八禁软件| 一边摸一边抽搐一进一出视频| 成年人免费黄色播放视频| 亚洲综合色网址| 久久久久久久大尺度免费视频| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 国产成人一区二区在线| svipshipincom国产片| 亚洲国产精品国产精品| 亚洲五月婷婷丁香| 欧美精品亚洲一区二区| 欧美xxⅹ黑人| 一区二区三区乱码不卡18| 午夜福利,免费看| 婷婷丁香在线五月| 狠狠精品人妻久久久久久综合| 欧美精品人与动牲交sv欧美| 日本欧美国产在线视频| 波野结衣二区三区在线| 高清不卡的av网站| 中文字幕人妻丝袜一区二区| 2018国产大陆天天弄谢| 欧美精品高潮呻吟av久久| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区国产| 日本a在线网址| 日日摸夜夜添夜夜爱| 国产精品久久久人人做人人爽| 亚洲免费av在线视频| 丝袜在线中文字幕| 91国产中文字幕| 亚洲精品日本国产第一区| 岛国毛片在线播放| 精品少妇久久久久久888优播| av欧美777| 99久久精品国产亚洲精品| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| av电影中文网址| 欧美激情极品国产一区二区三区| 国产精品一区二区在线不卡| 成人午夜精彩视频在线观看| 免费久久久久久久精品成人欧美视频| 亚洲第一av免费看| 狂野欧美激情性xxxx| 成年av动漫网址| 国产黄色免费在线视频| 午夜激情av网站| 亚洲九九香蕉| 丝袜美足系列| 视频区欧美日本亚洲| 久久综合国产亚洲精品| 成年动漫av网址| 成人国产av品久久久| 夜夜骑夜夜射夜夜干| 岛国毛片在线播放| 亚洲,一卡二卡三卡| 久久亚洲国产成人精品v| 高清av免费在线| 精品亚洲成a人片在线观看| 午夜av观看不卡| 一级a爱视频在线免费观看| 免费观看人在逋| 91精品伊人久久大香线蕉| 亚洲,欧美精品.| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 免费在线观看影片大全网站 | 亚洲一区中文字幕在线| 日本一区二区免费在线视频| 在线观看www视频免费| 国产女主播在线喷水免费视频网站| 99久久99久久久精品蜜桃| 亚洲精品美女久久久久99蜜臀 | 亚洲中文av在线| 欧美大码av| 久久狼人影院| 又粗又硬又长又爽又黄的视频| 极品少妇高潮喷水抽搐| 亚洲伊人久久精品综合| 午夜免费成人在线视频| 精品一区二区三区四区五区乱码 | 最新的欧美精品一区二区| 久久久久网色| 国产成人精品久久二区二区91| 亚洲欧美一区二区三区久久| 成人亚洲精品一区在线观看| 亚洲成人手机| 成人免费观看视频高清| 久久99热这里只频精品6学生| 1024香蕉在线观看| √禁漫天堂资源中文www| 国产免费又黄又爽又色| 大片电影免费在线观看免费| 乱人伦中国视频| av福利片在线| 999久久久国产精品视频| 日本av免费视频播放| 亚洲欧美激情在线| 国产精品 国内视频| 亚洲精品日本国产第一区| 国产亚洲精品久久久久5区| 丝袜美足系列| 国产av精品麻豆| 91精品国产国语对白视频| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久 | 欧美激情 高清一区二区三区| 男女边吃奶边做爰视频| 巨乳人妻的诱惑在线观看| 一本色道久久久久久精品综合| 精品人妻1区二区| 视频区图区小说| 在线亚洲精品国产二区图片欧美| 国产国语露脸激情在线看| 每晚都被弄得嗷嗷叫到高潮| av福利片在线| 韩国精品一区二区三区| 日本vs欧美在线观看视频| 久久人人97超碰香蕉20202| 免费在线观看黄色视频的| 国产成人欧美| 1024视频免费在线观看| 建设人人有责人人尽责人人享有的| 亚洲激情五月婷婷啪啪| 亚洲熟女毛片儿| 日韩av在线免费看完整版不卡| 午夜激情av网站| 亚洲av欧美aⅴ国产| 一边摸一边抽搐一进一出视频| 国产成人精品久久二区二区91| 老司机亚洲免费影院| 少妇裸体淫交视频免费看高清 | 免费日韩欧美在线观看| 男女免费视频国产| 水蜜桃什么品种好| 一级,二级,三级黄色视频| 亚洲欧美精品综合一区二区三区| 十八禁人妻一区二区| 日韩一区二区三区影片| 91国产中文字幕| 啦啦啦啦在线视频资源| 亚洲人成电影免费在线| 亚洲av成人不卡在线观看播放网 | 亚洲成人手机| 国产熟女欧美一区二区| 国产老妇伦熟女老妇高清| 亚洲七黄色美女视频| 热99国产精品久久久久久7| 国产成人精品久久久久久| 在现免费观看毛片| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区 | 国产野战对白在线观看| 国产男人的电影天堂91| 考比视频在线观看| 黄片播放在线免费| 黄色一级大片看看| 一级毛片我不卡| 国产亚洲精品久久久久5区| av不卡在线播放| 国产成人精品久久二区二区91| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| 亚洲成人免费电影在线观看 | 精品亚洲成a人片在线观看| 在线av久久热| 久久精品熟女亚洲av麻豆精品| 免费久久久久久久精品成人欧美视频| 久久久欧美国产精品| 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看| 黄色怎么调成土黄色| 国产欧美日韩精品亚洲av| 中文字幕av电影在线播放| 午夜福利免费观看在线| 日韩免费高清中文字幕av| 国产成人精品久久久久久| 手机成人av网站| 日日爽夜夜爽网站| 精品国产一区二区三区久久久樱花| 亚洲国产最新在线播放| 99国产精品一区二区蜜桃av | 国产熟女午夜一区二区三区| av线在线观看网站| 婷婷丁香在线五月| 蜜桃在线观看..| 欧美日韩视频高清一区二区三区二| 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 亚洲九九香蕉| 丝袜脚勾引网站| 亚洲精品久久久久久婷婷小说| 亚洲av综合色区一区| 99热国产这里只有精品6| 午夜免费成人在线视频| 高清av免费在线| 亚洲视频免费观看视频| 免费在线观看日本一区| 成在线人永久免费视频| 在线 av 中文字幕| 亚洲精品日韩在线中文字幕| 老汉色∧v一级毛片| 人人妻人人澡人人爽人人夜夜| 大片免费播放器 马上看| 免费观看人在逋| 手机成人av网站| 汤姆久久久久久久影院中文字幕| 欧美成人精品欧美一级黄| 国产精品秋霞免费鲁丝片| 天天躁狠狠躁夜夜躁狠狠躁| 免费av中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 精品少妇内射三级| 中文字幕另类日韩欧美亚洲嫩草| 九色亚洲精品在线播放| 久9热在线精品视频| 国产在线一区二区三区精| av又黄又爽大尺度在线免费看| 久久久精品免费免费高清| 久久热在线av| 女性生殖器流出的白浆| 日本欧美国产在线视频| 嫁个100分男人电影在线观看 | 精品欧美一区二区三区在线| 蜜桃在线观看..| 日日夜夜操网爽| 久久中文字幕一级| 亚洲精品第二区| 99精品久久久久人妻精品| 国产亚洲精品第一综合不卡| 国产成人啪精品午夜网站| 国产成人一区二区在线| 99九九在线精品视频| 在线看a的网站| 日韩一区二区三区影片| 国产精品秋霞免费鲁丝片| 日韩视频在线欧美| 天堂8中文在线网| 精品久久久久久久毛片微露脸 | 国产无遮挡羞羞视频在线观看| 一区二区av电影网| 精品一品国产午夜福利视频| 日本av手机在线免费观看| 国产真人三级小视频在线观看| 国产亚洲午夜精品一区二区久久| 日本黄色日本黄色录像| 女人爽到高潮嗷嗷叫在线视频| 精品福利永久在线观看| 老司机靠b影院| 最新在线观看一区二区三区 | 十分钟在线观看高清视频www| 国产主播在线观看一区二区 | 久久人妻熟女aⅴ| 又紧又爽又黄一区二区| 69精品国产乱码久久久| 国产日韩欧美在线精品| 人人澡人人妻人| 久久久国产精品麻豆| 久久久久网色| 欧美日韩视频精品一区| 欧美av亚洲av综合av国产av| 丰满迷人的少妇在线观看| 色94色欧美一区二区| 男人爽女人下面视频在线观看| 制服诱惑二区| 国产一区有黄有色的免费视频| 国产精品一区二区在线不卡| 亚洲人成77777在线视频| 国产精品久久久久久精品电影小说| 久久九九热精品免费| 男人舔女人的私密视频| 日本猛色少妇xxxxx猛交久久| 一二三四社区在线视频社区8| 国产成人a∨麻豆精品| 永久免费av网站大全| 婷婷色av中文字幕| 亚洲成国产人片在线观看| 亚洲精品一二三| 99国产精品99久久久久| 欧美在线一区亚洲| 纯流量卡能插随身wifi吗| 中文精品一卡2卡3卡4更新| 男女床上黄色一级片免费看| 婷婷色综合www| 免费人妻精品一区二区三区视频| 男女午夜视频在线观看| 欧美精品av麻豆av| 成人亚洲欧美一区二区av| 九色亚洲精品在线播放| 午夜老司机福利片| 一区二区日韩欧美中文字幕| 黄色毛片三级朝国网站| 母亲3免费完整高清在线观看| 午夜视频精品福利| 亚洲精品国产一区二区精华液| 久久鲁丝午夜福利片| 欧美 亚洲 国产 日韩一| 亚洲美女黄色视频免费看| 一个人免费看片子| 久久热在线av| 免费女性裸体啪啪无遮挡网站| 国产亚洲一区二区精品| 一本色道久久久久久精品综合| 久久av网站| 高清欧美精品videossex| 国产色视频综合| 欧美av亚洲av综合av国产av| 黄色a级毛片大全视频| 精品免费久久久久久久清纯 | 国产成人av教育| 日韩视频在线欧美| 啦啦啦在线免费观看视频4| 天天操日日干夜夜撸| 狠狠精品人妻久久久久久综合| 午夜久久久在线观看| 性高湖久久久久久久久免费观看| 狂野欧美激情性bbbbbb| 性少妇av在线| 免费在线观看完整版高清| 我要看黄色一级片免费的| 两性夫妻黄色片| 日本欧美视频一区| 日日夜夜操网爽| 欧美精品人与动牲交sv欧美| 韩国精品一区二区三区| 国产高清videossex| 国产av精品麻豆| 韩国高清视频一区二区三区| 国产精品亚洲av一区麻豆| 91精品三级在线观看| 成年人午夜在线观看视频| 欧美日韩福利视频一区二区| 国产主播在线观看一区二区 | 伊人亚洲综合成人网| 韩国精品一区二区三区| 国产精品一区二区在线不卡| 免费观看人在逋| 老汉色∧v一级毛片| 高清av免费在线| 色94色欧美一区二区| 日韩一区二区三区影片| 可以免费在线观看a视频的电影网站| 一二三四社区在线视频社区8| 一边摸一边抽搐一进一出视频| 国产成人av教育| 宅男免费午夜| 免费日韩欧美在线观看| 又大又黄又爽视频免费| 91麻豆精品激情在线观看国产 | 国产精品久久久av美女十八| av国产精品久久久久影院| 一级片免费观看大全| 十八禁高潮呻吟视频| 欧美日韩视频高清一区二区三区二| 在线看a的网站| 欧美+亚洲+日韩+国产| 中国国产av一级| 亚洲七黄色美女视频| 好男人电影高清在线观看| 欧美大码av| 亚洲国产精品一区二区三区在线| 亚洲专区中文字幕在线| av天堂久久9| 成年美女黄网站色视频大全免费| 午夜精品国产一区二区电影| 国产视频首页在线观看| 成年美女黄网站色视频大全免费| 18禁观看日本| 成人影院久久| 亚洲欧美一区二区三区黑人| 999久久久国产精品视频| av天堂久久9| 最近最新中文字幕大全免费视频 | 国产精品免费大片| 午夜福利免费观看在线| 啦啦啦啦在线视频资源| www.精华液| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美日韩在线播放| www.熟女人妻精品国产| 男女之事视频高清在线观看 | 欧美精品一区二区免费开放| 美女午夜性视频免费| 色播在线永久视频|