董環(huán) 郝冉 宋園園 張鵬 胡潔
1河北醫(yī)科大學(xué)護(hù)理學(xué)院研究中心(石家莊050017);2航天中心醫(yī)院護(hù)理部(北京100049)
慢性疼痛是一類臨床上普遍存在且難治的疾病,嚴(yán)重影響患者的生存質(zhì)量。據(jù)統(tǒng)計(jì),世界上至少有20%人口飽受慢性疼痛折磨[1]。慢性疼痛發(fā)生機(jī)制復(fù)雜,主要包括傷害性感受、外周敏化和中樞敏化[2]。機(jī)體接受傷害性刺激后,損傷部位釋放致痛物質(zhì)致敏傷害性感受器,繼而背根神經(jīng)節(jié)(dorsal root ganglia,DRG)發(fā)放異位沖動(dòng)增加突觸傳遞,導(dǎo)致低強(qiáng)度的刺激也可引發(fā)疼痛,即形成“外周敏化”;在脊髓水平,神經(jīng)遞質(zhì)受體活化增加,同時(shí)神經(jīng)膠質(zhì)細(xì)胞激活并釋放促炎因子,造成背角神經(jīng)元興奮性增強(qiáng),并將傷害信息上傳至大腦,引起疼痛反應(yīng)及下行調(diào)制作用,形成“中樞敏化”[2]。
目前研究表明,表觀遺傳學(xué)修飾參與慢性疼痛的發(fā)生發(fā)展過程,其中DNA甲基化、組蛋白修飾和MicroRNA(miRNA)是3種常見的表觀遺傳學(xué)修飾[3]。miRNA是一類長度約22個(gè)核苷酸的非編碼RNA,可通過序列互補(bǔ)結(jié)合到靶mRNA的3′UTR區(qū),抑制翻譯或促進(jìn)靶mRNA降解,調(diào)控細(xì)胞表型及功能[4]。研究發(fā)現(xiàn)在慢性疼痛中存在大量差異表達(dá)的miRNA,對其表達(dá)進(jìn)行調(diào)節(jié),可加重或減輕疼痛。miRNA表達(dá)調(diào)控存在多個(gè)水平,包括外周、脊髓和大腦,另外在外周血中也存在部分差異表達(dá)的miRNA作為疼痛的潛在標(biāo)志物[5?6]。根據(jù)文獻(xiàn)的匯總結(jié)果,本文將主要從異位神經(jīng)沖動(dòng)、神經(jīng)遞質(zhì)受體活化、炎癥反應(yīng)3個(gè)方面探討慢性疼痛相關(guān)miRNA或miRNA簇(表1),并對其參與慢性疼痛機(jī)制的研究進(jìn)展進(jìn)行概述。
1.1 miR?183簇 miR?183簇包括miR?183、miR?96和miR?182。在慢性疼痛中miR?183簇在大鼠DRG中低表達(dá),并與離子通道導(dǎo)致的異位神經(jīng)沖動(dòng)有關(guān)[7?8]。PENG 等[7]發(fā)現(xiàn),在SNI模型中,miR?183簇通過酪氨酸激酶受體B陽性的低閾值機(jī)械感覺神經(jīng)元控制痛覺敏感性,其靶基因CACNA2D編碼電壓門控鈣通道的輔助亞基α2δ,并在人和小鼠DRG中高度保守。進(jìn)一步研究發(fā)現(xiàn),miR?183簇通過靶向作用于主要的轉(zhuǎn)錄調(diào)控因子,間接控制超過80%的神經(jīng)病理性疼痛相關(guān)基因的表達(dá)。此外,LIN等[8]證實(shí)miR?183/96與電壓門控鈉通道有關(guān),在SNL模型中,DRG中miR?183/96表達(dá)下調(diào),其靶基因Nav1.3表達(dá)上調(diào),過表達(dá)miR?183/96能抑制Nav1.3的表達(dá),并減輕神經(jīng)病理性疼痛。
1.2 其他miRNA 目前研究發(fā)現(xiàn),慢性疼痛中存在多種miRNA可通過調(diào)節(jié)離子通道亞基表達(dá)影響異位神經(jīng)沖動(dòng)的發(fā)放。miRNA?30b在SNI和SNL的DRG中均表達(dá)下調(diào),并分別靶向作用于SCN9A(編碼Nav1.7)和SCN3A(編碼Nav1.3),從而誘導(dǎo)疼痛[9?10]。miR?17?92 簇是一個(gè)高度保守的基因簇,編碼6個(gè)不同的miRNA。SAKAI等[11]發(fā)現(xiàn),miR?17?92簇在SNL的DRG中表達(dá)上調(diào),并靶向調(diào)節(jié)電壓門控鉀通道及其亞基參與疼痛調(diào)節(jié),但在CFA模型中表達(dá)未發(fā)生改變,揭示了miR?17?92簇在慢性疼痛動(dòng)物模型中存在不同的表達(dá)模式。LU等[12]研究證實(shí),在SNI的DRG中miR?449a通過抑制瞬時(shí)受體電位陽離子通道亞族A成員1(transient receptor potential A1,TRPA1)和鈣激活鉀通道亞基α1(編碼基因KCNMA1)的表達(dá)可減輕疼痛。此外,在癌痛模型中,DRG中miR?34c?5p和miR?1a?3p表達(dá)上調(diào),并分別靶向 Cav2.3和 Clcn3參與疼痛調(diào)節(jié)[13?14]。
2.1 miR?183 XIE等[15]證實(shí),在CCI模型中,脊髓背角中miR?183表達(dá)下調(diào),并靶向作用于哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)調(diào)節(jié)下游血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的表達(dá),即通過抑制mTOR/VEGF信號通路,抑制AMPA受體表達(dá),從而減輕疼痛。ZHOU等[16]在CCI中發(fā)現(xiàn),脊髓中miR?182?5p通過靶向抑制酪氨酸激酶Ephb1受體的表達(dá)減輕神經(jīng)元敏感性及痛覺過敏,并證明此過程由NMDA受體調(diào)節(jié)??傊诼蕴弁粗衜iR?183簇在脊髓背角中可能與谷氨酸受體調(diào)節(jié)的背角神經(jīng)元興奮性有關(guān)。
2.2 miR?212/132簇 XIA 等[17]在CCI中證實(shí),環(huán)磷腺苷效應(yīng)元件結(jié)合蛋白(cAMP response element binding protein,CREB)和CREB依賴的轉(zhuǎn)錄共激活因子(CREB?regulated transcription coactivator 1,CRTC1)與miR212/132之間存在正反饋?zhàn)饔茫琋R2B?CRTC1/CREB?miR212/132信號通路在CCI中發(fā)揮關(guān)鍵作用,鞘內(nèi)注射CRTC1/CREB腺病毒載體及miR212/132反義鎖核酸抑制其表達(dá)可減輕痛覺過敏;另外有研究表明,在癌痛模型中,CRTC1/CREB與miR212/132之間亦存在正反饋?zhàn)饔茫?8?19],但 miR?212/132 在 CCI和癌痛模型中表達(dá)模式不同。LEINDERS等[20]在SNI的脊髓及DRG中均發(fā)現(xiàn)miR?132?3p表達(dá)明顯上調(diào),并證實(shí)其靶向調(diào)節(jié)脊髓中AMPA受體的GluA1亞基從而加重疼痛??傊珻RTC1/CREB?miR?132/212通路與NMDA及AMPA受體的表達(dá)密切相關(guān),并在慢性疼痛中發(fā)揮關(guān)鍵作用。
2.3 其他miRNA HUANG等[21]首次證明,在化療藥物紫杉醇和前根切斷誘導(dǎo)的神經(jīng)病理性疼痛模型中,脊髓背角神經(jīng)元中的γ?氨基丁酸(γ?aminobutyric acid,GABA)能突觸功能明顯受損,敲低或抑制miR?500后可通過靶向調(diào)節(jié)Gad1基因,促進(jìn)GAD67的表達(dá)并改善GABA能突觸功能,從而減輕神經(jīng)病理性疼痛。DING等[22]證實(shí)在CCI的對側(cè)前扣帶皮層中,miR?539表達(dá)下調(diào),并靶向調(diào)節(jié)NR2B亞基從而發(fā)揮鎮(zhèn)痛作用。進(jìn)一步研究發(fā)現(xiàn),選擇性抑制含有NR2B亞基的NMDA受體后疼痛減輕,揭示miR?539通過調(diào)節(jié)NR2B的表達(dá)并影響NMDA受體活性,參與疼痛調(diào)節(jié)。
表1 慢性疼痛相關(guān)miRNATab.1 miRNA associated with chronic pain
3.1 miR?146 miR?146是目前研究較多的參與炎癥信號通路的miRNA。WEI等[23]研究表明,在SCI模型的脊髓中miR?146表達(dá)上調(diào),并靶向調(diào)節(jié)白介素?1受體相關(guān)激酶1(IL?1 receptor?associated kinase 1,IRAK1)和腫瘤壞死因子受體相關(guān)蛋白6(TNF receptor?associated factor 6,TRAF6),從而抑制促炎因子釋放,發(fā)揮抗炎作用。LU等[24]證實(shí),在SNL的星形膠質(zhì)細(xì)胞中miR?146a?5p表達(dá)上調(diào),并負(fù)向調(diào)節(jié)TRAF6及下游通路JNK/CCL2。同時(shí)證明激活通路TRAF/JNK能上調(diào)miR?146a?5p的表達(dá)水平,提示miR?146a?5p可能通過炎癥通路參與疼痛調(diào)節(jié)。
3.2 miR?155 miR?155是一種多功能miRNA,由其下游基因介導(dǎo),參與多種生理病理過程。研究表明在CCI中脊髓miR?155表達(dá)上調(diào),通過靶向結(jié)合細(xì)胞因子信號轉(zhuǎn)導(dǎo)抑制因子1(suppressor of cytokine signalling 1,SOCS1)可促進(jìn)核轉(zhuǎn)錄因子?κB(nuclear factor?κB,NF?κB)和p38絲裂原活化蛋白激酶的活化,促進(jìn)炎癥反應(yīng),從而加重痛覺過敏[25]。血清和糖皮質(zhì)激素調(diào)節(jié)蛋白激酶(serum and gluco?corticoid regulated protein kinase,SGK)在小膠質(zhì)細(xì)胞中負(fù)向調(diào)節(jié)多種炎癥因子并抑制NF?κB信號通路轉(zhuǎn)導(dǎo)從而發(fā)揮抗炎作用[34]。LIU等[26]在CCI的脊髓中證實(shí)了miR?155的另一個(gè)靶基因SGK3,miR?155通過靶向調(diào)節(jié)SGK3促進(jìn)炎癥反應(yīng),從而發(fā)揮致痛作用。此外,HEYN等[6]發(fā)現(xiàn),在神經(jīng)病理性疼痛患者外周血中miR?155表達(dá)上調(diào),并靶向調(diào)節(jié)去乙?;?,抑制初始CD4+T細(xì)胞分化為Treg細(xì)胞,促進(jìn)炎癥反應(yīng),從而加重痛覺過敏??傊?,miR?155可能通過發(fā)揮促炎作用參與疼痛調(diào)節(jié)。
3.3 miR?141 高遷移率族蛋白1(high?mobility group box 1,HMGB1)在神經(jīng)病理性疼痛中發(fā)揮關(guān)鍵作用,抗HMGB1抗體已被證實(shí)可減輕神經(jīng)性疼痛[35]。ZHANG等[27]發(fā)現(xiàn),在CCI的DRG中miR?141表達(dá)下調(diào),并靶向調(diào)節(jié)HMGB1,過表達(dá)miR?141可通過抑制促炎細(xì)胞因子釋放發(fā)揮抗炎作用,從而減輕疼痛。同時(shí),此效應(yīng)在CFA的脊髓中也得到證實(shí)[28]。揭示了miR?141在慢性疼痛中可能通過抑制炎癥反應(yīng)參與疼痛調(diào)節(jié)。
3.4 miR?1 在周圍神經(jīng)系統(tǒng)的神經(jīng)膠質(zhì)細(xì)胞中亦存在疼痛相關(guān)miRNA。NEUMANN等[29]研究發(fā)現(xiàn),在CCI的坐骨神經(jīng)中,miR?1表達(dá)下調(diào),其靶基因腦源性神經(jīng)營養(yǎng)因子(brain?derived neurotrophic factor,BDNF)及Cx43表達(dá)上調(diào),過表達(dá)miR?1可減輕痛覺過敏;而在DRG和脊髓中miR?1表達(dá)未改變。之后,該團(tuán)隊(duì)證明敲低BDNF也可造成miR?1表達(dá)下調(diào),提示miR?1與BDNF之間可能存在負(fù)反饋環(huán)路[36]。
3.5 其他miRNA 與miR?155類似,在CCI的脊髓中miR?19a及miR?221均表達(dá)上調(diào),并靶向調(diào)節(jié)SOCS1的表達(dá)參與疼痛調(diào)節(jié)[30?31],其中,miR?221亦被證實(shí)可通過促進(jìn)NF?κB和p38絲裂原活化蛋白激酶信號通路的活化發(fā)揮促炎作用[31]。LEINDERS等[20]研究發(fā)現(xiàn),在周圍神經(jīng)病變患者的白細(xì)胞中miR?132?3p表達(dá)上調(diào),并進(jìn)一步在SNI中證實(shí),脊髓及DRG中miR?132?3p亦表達(dá)上調(diào),鞘內(nèi)注射miR?132?3p抑制劑后小膠質(zhì)細(xì)胞活化增加且疼痛加重,揭示miR?132?3p在神經(jīng)病理性疼痛中的重要作用。在SNL中,脊髓背角神經(jīng)元中miR?186?5p表達(dá)下調(diào),過表達(dá)miR?186?5p可通過靶向調(diào)節(jié)CXCL13/CXCR5/ERK通路促進(jìn)星形膠質(zhì)細(xì)胞活化,從而減輕疼痛[32]。CHEN等[33]發(fā)現(xiàn),在CFA的脊髓中miR?16表達(dá)下調(diào),其靶基因?yàn)镽as相關(guān)蛋白23,過表達(dá)miR?16可通過抑制Ras相關(guān)蛋白23及p38/MAPK信號通路活性使疼痛減輕。
總之,miRNA參與慢性疼痛的神經(jīng)傳導(dǎo)和免疫過程,并可能作為“主開關(guān)”調(diào)節(jié)特定的基因表達(dá)。盡管目前在不同的慢性疼痛模型中已發(fā)現(xiàn)較多疼痛相關(guān)miRNA,但由于miRNA在體內(nèi)存在復(fù)雜的網(wǎng)絡(luò)調(diào)控系統(tǒng),因此,針對疼痛傳導(dǎo)通路的不同部位來探究miRNA的作用機(jī)制尤為重要,目前研究部位主要集中于DRG和脊髓,很少涉及外周神經(jīng)和大腦;miRNA的作用機(jī)制主要包括DRG中異位沖動(dòng)發(fā)放、脊髓中神經(jīng)遞質(zhì)受體活化及炎癥反應(yīng),細(xì)胞自噬等其他相關(guān)機(jī)制研究尚少。此外,目前尚缺乏關(guān)于炎性疼痛及癌痛動(dòng)物模型的研究,這在一定程度上限制了對慢性疼痛相關(guān)miRNA的深入研究。因此,進(jìn)一步研究及闡明miRNA在慢性疼痛中的作用機(jī)制有助于理解慢性疼痛的發(fā)生發(fā)展過程,并為臨床治療提供新策略。
參考文獻(xiàn)
[1] GOLDBERG D S,MCGEE S J.Pain as a global public health priority[J].Bmc Public Health,2011,11(1):1?5.
[2] WOOLF C J.Pain:moving from symptom control toward mecha?nism?specific pharmacologic management[J].Ann Intern Med,2004,140(6):441?451.
[3] DESCALZI G,IKEGAMI D,USHIJIMA T,et al.Epigenetic mechanisms of chronic pain[J].Trends Neurosci,2015,38(4):237?246.
[4] BARTEL D P.MicroRNAs:target recognition and regulatory functions[J].Cell,2009,136(2):215?233.
[5] 施燕渲,朱濤.miR?132在神經(jīng)病理性疼痛傳導(dǎo)通路中的表達(dá)[J].實(shí)用醫(yī)學(xué)雜志,2017,33(19):3189?3192.
[6] HEYN J,LUCHTING B,HINSKE L C,et al.miR?124a and miR?155 enhance differentiation of regulatory T cells in patients with neuropathic pain[J].J Neuroinflammation,2016,13(1):248.
[7] PENG C,LI L,ZHANG M D,et al.miR?183 cluster scales me?chanical pain sensitivity by regulating basal and neuropathic pain genes[J].Science,2017,356(6343):1168?1171.
[8] LIN C R,CHEN K H,YANG C H,et al.Intrathecal miR?183 delivery suppresses mechanical allodynia in mononeuropathic rats.[J].Eur J Neurosci,2014,39(10):1682?1689.
[9] SU S,SHAO J,ZHAO Q,et al.MiR?30b attenuates neuropath?ic pain by regulating voltage?gated sodium channel Nav1.3 in rats[J].Front Mol Neurosci,2017,10:126.
[10] SHAO J,CAO J,WANG J,et al.MicroRNA?30b regulates ex?pression of the sodium channel Nav1.7 in nerve injury?induced neuropathic pain in the rat[J].Mol Pain,2016,12:1?13.
[11] SAKAI A,SAITOW F,MARUYAMA M,et al.MicroRNA clus?ter miR?17?92 regulates multiple functionally related voltage?gat?ed potassium channels in chronic neuropathic pain[J].Nat Com?mun,2017,8:16079.
[12] LU S,MA S,WANG Y,et al.Mus musculus?microRNA?449a ameliorates neuropathic pain by decreasing the level of KC?NMA1 and TRPA1,and increasing the level of TPTE[J].Mol Med Rep,2017,16(1):353?360.
[13] GANDLA J,LOMADA S K,LU J,et al.miR?34c?5p functions as pronociceptive microRNA in cancer pain by targeting Cav2.3 containing calcium channels[J].Pain,2017,158(9):1765?1779.
[14] BALI K K,SELVARAJ D,SATAGOPAM V P,et al.Genome?wide identification and functional analyses of microRNA signa?tures associated with cancer pain[J].EMBO Mol Med,2013,5(11):1740?1758.
[15] XIE X,MA L,XI K,et al.MicroRNA?183 suppresses neuro?pathic pain and expression of AMPA receptors by targeting mTOR/VEGF signaling pathway[J].Cell Physiol Biochem,2017,41(1):181?192.
[16] ZHOU X,ZHANG C,ZHANG C,et al.MicroRNA?182?5p reg?ulates nerve injury?induced nociceptive hypersensitivity by tar?geting ephrin type?b receptor 1[J].Anesthesiol,2017,126(5):967?977.
[17] XIA T,CHU S,CUI Y,et al.The role of NR2B?CREB?miR212/132?CRTC1?CREB signal network in pain regulation in vitro and in vivo[J].Anesth Analg,2017,124(6):2045?2053.
[18] HOU B,CUI X,LIU Y,et al.Positive feedback regulation be?tween microRNA?132 and CREB in spinal cord contributes to bone cancer pain in mice[J].Eur J Pain,2016,20(8):1299?1308.
[19] LIANG Y,LIU Y,HOU B,et al.CREB?regulated transcription coactivator 1 enhances CREB?dependent gene expression in spi?nal cord to maintain the bone cancer pain in mice[J].Mol Pain,2016,12:1?11.
[20] LEINDERS M,UCEYLER N,PRITCHARD R A,et al.In?creased miR?132?3p expression is associated with chronic neuro?pathic pain[J].Exp Neurol,2016,283:276?286.
[21] HUANG Z Z,WEI J Y,OU?YANG H D,et al.mir?500?mediat?ed GAD67 downregulation contributes to neuropathic pain[J].J Neurosci,2016,36(23):6321?6331.
[22] DING M,SHEN W,HU Y.The role of miR?539 in the anterior cingulate cortex in chronic neuropathic pain[J].Pain Med,2017,18(12):2433?2442.
[23] WEI J,WANG J,ZHOU Y,et al.MicroRNA?146a contributes to SCI recovery via regulating TRAF6 and IRAK1 expression[J].Biomed Res Int,2016,2016:4013487.
[24] LU Y,CAO D L,JIANG B C,et al.MicroRNA?146a?5p attenu?ates neuropathic pain via suppressing TRAF6 signaling in the spinal cord[J].Brain Behav Immun,2015,49:119?129.
[25] TAN Y,YANG J,XIANG K,et al.Suppression of microRNA?155 attenuates neuropathic pain by regulating SOCS1 signalling pathway[J].Neurochem Res,2015,40(3):550?560.
[26] LIU S,ZHU B,SUN Y,et al.MiR?155 modulates the progres?sion of neuropathic pain through targeting SGK3[J].Int J Clin Exp Pathol,2015,8(11):14374?14382.
[27] ZHANG J,ZHANG H,ZI T.Overexpression of microRNA?141 relieves chronic constriction injury?induced neuropathic pain via targeting high?mobility group box 1[J].Int J Mol Med,2015,36(5):1433?1439.
[28] SHEN W S,XU X Q,ZHAI N N,et al.Potential mechanisms of microRNA?141?3p to alleviate chronic inflammatory pain by downregulation of downstream target gene HMGB1:in vitro and in vivo studies[J].Gene Ther,2017,24(6):353?360.
[29] NEUMANN E,HERMANNS H,BARTHEL F,et al.Expres?sion changes of microRNA?1 and its targets Connexin 43 and brain?derived neurotrophic factor in the peripheral nervous sys?tem of chronic neuropathic rats[J].Mol Pain,2015,11(1):39.
[30] WANG C,JIANG Q,WANG M,et al.MiR?19a targets suppres?sor of cytokine signaling 1 to modulate the progression of neuro?pathic pain[J].Int J Clin Exp Pathol,2015,8(9):10901 ?10907.
[31] XIA L,ZHANG Y,DONG T.Inhibition of MicroRNA?221 Alle?viates Neuropathic Pain Through Targeting Suppressor of Cyto?kine Signaling 1[J].J Mol Neurosci,2016,59(3):411?420.
[32] JIANG B C,CAO D L,ZHANG X,et al.CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5[J].J Clin Invest,2016,126(2):745?761.
[33] CHEN W,GUO S,WANG S.MicroRNA?16 Alleviates Inflam?matory Pain by Targeting Ras?Related Protein 23(RAB23)and Inhibiting p38 MAPK Activation[J].Med Sci Monit,2016,22:3894?3901.
[34] INOUE K,SAKUMA E,MORIMOTO H,et al.Serum?and glu?cocorticoid?inducible kinases in microglia[J].Biochem Biophys Res Commun,2016,478(1):53?59.
[35] SHIBASAKI M,SASAKI M,MIURA M,et al.Induction of high mobility group box?1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury[J].Pain,2010,149(3):514?521.
[36] NEUMANN E,BRANDENBURGER T,SANTANA?VARELA S,et al.MicroRNA?1?associated effects of neuron?specific brain?derived neurotrophic factor gene deletion in dorsal root ganglia[J].Mol Cell Neurosci,2016,75:36?43.