• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Organized Criticality in an Anisotropic Earthquake Model?

    2018-05-14 01:05:06BinQuanLi李斌全andShengJunWang王圣軍
    Communications in Theoretical Physics 2018年3期
    關(guān)鍵詞:李斌

    Bin-Quan Li(李斌全)and Sheng-Jun Wang(王圣軍)

    School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,China

    1 Introduction

    Self-organized criticality(SOC)is a key concept as a possible explanation for the widespread occurrence in many nature systems that long range correlations in space and time.[1?5]Earthquakes are probably the most relevant paradigm of SOC that can be observed by humans on earth.The relevance of SOC to earthquakes was first pointed out by Bak,Tang,and Wiesenfeld,[1]Sornette and Sornette.[6]According to this theory,plate tectonics provides energy input at a slow time scale into a spatially extended,dissipative system that can exhibit breakdown events via a chain reaction process of propagating instabilities in space and time.The empirical Gutenberg-Richter(GR)law[7]arises from the system of driven plates building up to a critical state with avalanches of all sizes.According to the GR law the distribution of earthquake events is scale free over many orders of magnitude in energy.

    Then Olami,Feder and Christensen(OFC)introduced a nonconservative model on a lattice that displayed SOC.[8]The OFC model of earthquakes has played an important role in the context of SOC since 1992.However,the presence of criticality in the nonconservative version of the OFC model has been controversial since its introduction and it is still debated.[9?13]

    OFC models on different topologies have been investigated in the papers,such as,the annealed random neighbor(ARN)graph model,[14?17]the OFC model on a quenched random(QR)graph[18]and the effects of smallworld and scale-free topologies on the criticality of the non-conservative OFC model.[19?24]

    Most work in this area is usually focused on their topological properties[25?29]and homogeneous lattices with or without periodic boundary conditions.But the real systems modeled by these objects are not homogeneous.In a geological fault,for example,the local friction between the moving plates,which in fl uences both the rate of motion and the redistribution on the neighbors in the OFC model,cannot be expected to be a constant value but should fl uctuate according to local variations.Similarly,the local elasticity of the sheets,which determines how the energy is transferred from one point to another,is also expected to be variable.Therefore,a first step is to simply see how the introduction of quenched disorder in the simple coupled-map representation for these systems will affect their dynamical behavior.Some work has already been done along these lines.

    A new earthquake model based on a random network was studied,on which the toppling mechanism of the system is that the force of the unstable site is redistributed to their nearest neighbors randomly.[30?32]It is shown that when the system is conservative,the probability distribution displays power-law behavior.However,it displays no scaling behavior when the system is nonconservative.It is like the results in the ARN OFC model.But it is quite different to the model on quenched random graph[18]and the model on square lattice,both of which display criticality even the system is dissipated.It seems that the toppling mechanism of the system has affected the critical behavior of the system.They also compare the critical behavior of the model with different number of nearest neighbors.It is shown that different spatial topology does not alter the critical behavior of the system.

    Mousseau studied the in fl uence of quenched disorder on a coupled map model of earthquakes.[33]In his work,disorder is introduced in the redistribution fractionαiwhich now varies from site to site asαi=α+δi,whereδiis a random number taken from a linear distribution[?δ,δ].He said that the question of the role of disorder in dynamical systems is fundamental because most biological,neurological,or geological dynamical systems evolve in the presence of one or another type of disorder.

    Janosi and Kertesz studied the effect of randomness in the threshold for the OFC rule.[34]They found that this type of disorder destroys criticality and changes the distribution of avalanche size from power law to exponential.

    Ceva looked at uncorrelated and correlated disorder in the redistribution parameterα.[35]He was interested,however,in the effects of concentration of defects and not their amplitude.He found that SOC is stable under small concentration of defects.

    In this work,we investigate the critical behavior on a modi fied anisotropic OFC model.Two situations are considered in this paper.One situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.The other situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.Different boundary conditions are considered as well.The rest of the paper is organized as follows.In Sec.2,we review the original OFC model and we point out the main reasons that have induced us to study the modify OFC model.In Sec.3,we investigate the modi fied model and make comparison with other models by analyzing the distribution of earthquake sizes.Finally,in Sec.4 we provide brief discussion and conclusion.

    2 Model

    The OFC model is de fined on a two-dimensional square lattice ofL×Lsites.Each site is associated a real continuous energyEi.To mimic that the system is driven continuously and uniformly,the value ofEiincreases at the same rate.In simulations, find the largest value of energyEmaxin the system and increase the energy of all sites by the same amountEth?Emax.Therefore,the sites with the largest energy reaches the threshold value(Ei≥Eth)and becomes unstable.As soon as a site becomes unstable,i.e.,Ei≥Eth,the global driving is stopped and the system evolves according to the following local relaxation rule

    where“nn” stands for the collection of nearest neighbors to nodei.In general,there are 4 of nearest neighbors,and only the isotropic situation is considered.The parameterα∈[0,1/4]controls the level of conservation of the dynamics,whereα=1/4 corresponds to the conservative case,whileα<1/4 implies the model is nonconservative.

    The toppling of one site triggers an avalanche,that is,neighbors of this site may become unstable and toppling propagates in the network.The avalanche is over until all the sites are belowEth.Then the driving to all sites recovers.The number of toppling sites during an earthquake is de fined as the earthquake sizeS.Open boundary condition is used in OFC model.[36]

    Here we modify the OFC model only in the toppling rule:when there is an unstable site toppling,the energy of the site is redistributed to its nearest neighbors randomly not averagely as follows.

    If anyEi≥Eththen redistribute the energy onEito its neighbors randomly according to the following rule

    where“nn” stands for the collection of nearest neighbors to nodei,qis the number of nearest neighbors of every site.The anisotropic situation is considered in this modi fied OFC model.The size of parameterβnnis different for nearest neighbors.The parameterβ∈[0,1]controls the level of conservation of the dynamics that is equivalent to 4αin the OFC model,whereβ=1 corresponds to the conservative case,whileβ<1 implies the model is nonconservative.The parameterβnnat each site is chosen randomly from a uniform distribution between 0 andβ,and the sum is equal toβ.Details as follow,

    The other model that differs from above model only in the toppling rule:when there is an unstable site,the energy of the site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero,that is not Eqs.(2),(3)but Eqs.(4),(5),as follow

    where“nn” stands for the collection of nearest neighbors to nodei,qis the number of nearest neighbors of every site.β00is de fined as follow

    Table 1 The different of the two models.

    To completely de fine the model,we need to consider the boundary conditions.We care about the open and periodic boundary conditions in our models.[36?39]The energyαEof an unstable site at boundary is lost in the case of open boundary conditions.Periodic boundary conditions mean the energy is not lost,it is transferred to the other side,like a ring.In Table 1,we list the different of those models to be clearly understood.

    In a system of SOC,the distribution of earthquake sizes is a power law function.The power-law exponentτis de fined as

    In simulation,we will be interested in the distribution of avalanche sizesP(S).

    3 Simulations and Results

    3.1 The One Case of the Modi fied OFC Model

    Now we study the one case of the modi fied OFC model(Case 1).The energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.In comparison to the original OFC model we plot the distribution of avalanche sizes in Fig.1.The statistics are collected in the critical state for 109non-zero avalanches for each system size.

    Fig.1 (Color online)Avalanche size distribution with open boundary conditions for(a)different the value of the parameter β with the system size N=352.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.For comparison purposes,the original OFC model of α=0.25 is shown in the direction of the arrow.(b)Distribution of earthquake size for the different system size with β=1.0.

    In Fig.1(a),we show that the earthquakes size distributionP(S)for different values of the dissipation parameterβ,in the network withN= 352and with open boundary conditions.Different curves correspond toβ=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.We can see that the model transits from non-SOC to SOC behavior with the increase of the parameterβ.Power-law fit is shown as red solid line,the slope of the straight line isτ=1.286 58 forβ=1.0.It is like the critical exponent of the original OFC model.For comparison purposes,the original OFC model ofα=0.25 is shown in the direction of the arrow.

    In OFC model,the SOC states exhibit that the distribution is a power law function with an exponential cuto ff.The largest avalanche size in OFC model is about 7000.In the modi fied OFC model,the distribution of avalanche size depends on the dissipation parameterβ.The largest avalanche size in modi fied OFC model is about 1000,which is close to the system sizeN.

    Fig.2 (Color online)(a)Simulation result for the probability density of having an earthquake of energy E as a function of E for a dissipation parameter β with N=352 and with periodic boundary conditions.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 0.98,from left to right.The fitted curve is shown as red solid line.(b)Distribution of earthquake size for the different system size with β=0.95.Different curves correspond to N=152,252,352,502,and 1002.

    It is not like the result of the original OFC model.The original OFC model exhibits SOC behavior for a wide range ofαvalues and the exponentτdepends onα.However,we find that this modi fied OFC model exhibits power law distribution when the value ofβtends to 1.It is similar with the model on RN[14,16]and small-world networks.[19,23?24]

    In Fig.1(b),we show that the earthquakes size distributionP(S)for different size of the systemN,different curves correspond toN=152,252,352,and 502,from left to right.Size effect is present in Fig.1(b).It is like the result of the original OFC model.The scaling of the cutoffin the energy distribution as a function of the system size forβ=1.0.

    Now we plot the distribution of earthquake size for different values ofβwith periodic boundary conditions.As shown in Fig.2(a),we noticed that the model transits from non-SOC to SOC behavior with the increase of the dissipation parameterβ.Power-law fit is shown as red solid line,the slope of the straight line isτ=1.397 15 forN=352andβ=0.98.The largest avalanche size is about 103in the modi fied OFC model withβ<1.0.Although the system size isN=352,the largest size of avalanche is very large with periodic boundary conditions andβ=1.0.The largest size of avalanche is 108much larger than 103.There is not much difference in the results under different boundary conditions,except inβ=1.0.The result is only a slight difference in the critical exponent.As shown in Fig.2(b),the simulation results of avalanche size distribution in systems with dissipation parameterβ=0.95 and network sizeN=152,252,352,502,and 1002,respectively.Although system sizes range from 152to 1002,the change of the largest size of avalanche is very small.

    3.2 The Other Case of the Modi fied OFC Model

    Fig.3 (Color online)Avalanche size distribution with open boundary conditions for(a)different the value of the parameter β with the system size N=352.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.For comparison purposes,the original OFC model of α=0.25 is shown in the direction of the arrow.(b)Distribution of earthquake size for the different system size with β=1.0.The fitted curve is shown as red solid line.

    Next,we study the other case of the modi fied OFC model(Case 2).The energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.

    In Fig.3(a),we show that the earthquakes size distributionP(S)for different values of the dissipation parameterβ,in the network withN=352and with open boundary conditions.Different curves correspond toβ=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.It is shown that the distribution of avalanche size depends on the dissipation parameterβ.We can see that there is criticality only in the conservative case.Power-law fit is shown as red solid line,the slope of the straight line isτ=1.319 19 forβ=1.0.It is like the critical exponent of the original OFC model.For comparison purposes,the original OFC model ofα=0.25 is shown in the direction of the arrow.

    The result of this case and the original OFC model tend to the same in the conservative case.The only difference is that the avalanche size in the original model is bigger.This result may be closer to the actual situation,after all,every crust plate size is different.

    In Fig.3(b),we show that the earthquakes size distributionP(S)for different size of the systemN,different curves correspond toN=152,252,352and 502,from left to right.Size effect is strikingly present here in Fig.3(b).AsLorβincreases,the behavior slowly converges to a power law distribution of earthquake sizesP(s)~s?τwith an exponentτ=1.319 19.

    Fig.4 (Color online)(a)Simulation result for the probability density of having an earthquake of energy E as a function of E for a dissipation parameter β with N=352 and with periodic boundary conditions.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 0.98,from left to right.The fitted curve is shown as red solid line.(b)Distribution of earthquake size for the different system size with β=0.95.Different curves correspond to N=152,252,352,and 502.

    Now we plot the distribution of earthquake size for different values ofβwith periodic boundary conditions.As shown in Fig.4(a),we noticed that the model transits from non-SOC to SOC behavior with the increase of the dissipation parameterβ.Power-law fit is shown as red solid line,the slope of the straights line isτ=1.427 78 forN=352andβ=0.98.Similarly,the largest size of avalanche is 108much larger than normal 103forβ=1.0.

    As shown in Fig.4(b),the simulation results of avalanche size distribution in systems with dissipation parameterβ=0.95 and network sizeN=152,252,352,and 502,respectively.Although system sizes range from 152to 502,the change of the largest size of avalanche is very small.Some impact has produced on the distribution of avalanche size for the different system sizeN.We can see that size effect is exhibited but not particularly strong in Fig.4(b).We find that,asLorβincreases,the behavior slowly converges to a power law distribution of earthquake sizesP(s)~s?τwith an exponentτ=1.427 78.

    4 Conclusions

    In summary,we have made an extensive numerical study of a modi fied anisotropic model proposed by Olami,Feder,and Christensen to describe earthquake behavior.The toppling rule is different with that of the OFC model.Two situations were considered in this paper.One case is that the energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.The other case is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.Different boundary conditions were considered as well.By analyzing the distribution of earthquake sizes,we found that both above cases can exhibit self-organized criticality only in the conservative case or the approximate conservative case.Some evidence indicated that the critical exponent of both above situations and the original OFC model tend to the same result in the conservative case.The only difference is that the avalanche size in the original model is bigger.It is different from the result of original OFC model.The original OFC model exhibits SOC behavior for a wide range ofαvalues and the exponentτdepend onα.This result may be closer to the real world,after all,every crust plate size is different.

    [1]P.Bak,C.Tang,and K.Wiesenfeld,Phys.Rev.Lett.59(1987)381.

    [2]C.Haldeman and J.M.Beggs,Phys.Rev.Lett.94(2005)058101.

    [3]S.J.Wang and C.Zhou,New J.Phys.14(2012)023005.

    [4]D.Plenz and H.G.Schuster,Criticality in Neural Systems,Wiley,New York(2014).

    [5]S.J.Wang,G.Ouyang,J.Guang,et al.,Phys.Rev.Lett.116(2016)018101.

    [6]A.Sornette and D.Sornette,Europhys.Lett.9(1989)197.

    [7]B.Gutenberg and C.F.Richter,Ann.Geo fis.9(1956)1.

    [8]Z.Olami,H.J.S.Feder,and K.Christensen,Phys.Rev.Lett.68(1992)1244.

    [9]W.Klein and J.Rundle,Phys.Rev.Lett.71(1993)1288.

    [10]K.Christensen,Phys.Rev.Lett.71(1993)1289.

    [11]J.X.Carvalho and C.P.C.Prado,Phys.Rev.Lett.84(2000)4006.

    [12]J.X.Carvalho and C.P.C.Prado,Phys.Rev.Lett.87(2001)039802.

    [13]K.Christensen,D.Hamon,H.J.Jensen,and S.Lise,Phys.Rev.Lett.87(2001)039801.

    [14]S.Lise and H.J.Jensen,Phys.Rev.Lett.76(1996)2326.

    [15]M.L.Chabanol and V.Hakim,Phys.Rev.E 56(1997)R2343.

    [16]H.M.Broker and P.Grassberger,Phys.Rev.E 56(1997)3944.

    [17]O.Kinouchi,S.T.R.Pinho,and C.P.C.Prado,Phys.Rev.E 58(1998)3997.

    [18]S.Lise and M.Paczuski,Phys.Rev.Lett.88(2002)228301.

    [19]F.Caruso,V.Latora,A.Pluchino,et al.,Eur.Phys.J.B 50(2006)243.

    [20]F.Caruso,V.Latora,and A.Rapisarda,Complexity,Metastability and Nonextensivity,World Scienti fic,Singapore(2005)355.

    [21]N.Masuda,H.Miwa,and N.Konno,Phys.Rev.E 71(2005)036108.

    [22]A.F.Rozenfeld,R.Cohen,D.ben Avraham,and S.Havlin,Phys.Rev.Lett.89(2002)218701.

    [23]Min Lin,Xiao-Wei Zhao,and Tian-Lun Chen,Commun.Theor.Phys.41(2004)557.

    [24]Min Lin,Gang Wang,and Tian-Lun Chen,Commun.Theor.Phys.46(2006)1011.

    [25]P.Rattana,L.Berthouze,and I.Z.Kiss,Phys.Rev.E 90(2014)052806.

    [26]R.Dominguez,K.Tiampo,C.A.Serino,and W.Klein,Phys.Rev.E 87(2013)022809.

    [27]D.Markovic and C.Gros,Phys.Rep.536(2014)41.

    [28]L.De Arcangelis,C.Godano,J.R.Grasso,and E.Lippiello,Phys.Rep.628(2016)1.

    [29]A.A.Perkins,J.Galeano,and J.M.Pastor,Phys.Rev.E 94(2016)052304.

    [30]Duan-Ming Zhang,Fan Sun,et al.,Commun.Theor.Phys.45(2006)293.

    [31]Duan-Ming Zhang,Fan Sun,et al.,Commun.Theor.Phys.46(2006)261.

    [32]Fan Sun and Duan-Ming Zhang,Commun.Theor.Phys.50(2008)417.

    [33]N.Mousseau,Phys.Rev.Lett.77(1996)968.

    [34]I.M.Jánosi and J.Kert′esz,Physica(Amsterdam)200A(1993)179.

    [35]H.Ceva,Phys.Rev.E 52(1995)154.

    [36]S.Lise and M.Paczuski,Phys.Rev.E 63(2001)036111.

    [37]J.E.S.Socolar,G.Grinstein,and C.Jayaprakash,Phys.Rev.E 47(1993)2366.

    [38]P.Grassberger,Phys.Rev.E 49(1994)2436.

    [39]A.A.Middleton and C.Tang,Phys.Rev.Lett.74(1995)742.

    猜你喜歡
    李斌
    World Wetlands Day
    The Wizard of Oz
    The Wizard of Ozby L. Frank Baum
    The Wizard of Ozby L. Frank Baum
    History of the Alphabet
    Factory Life in the 1800's
    李斌:換道先跑
    汽車觀察(2019年2期)2019-03-15 06:00:30
    李斌:蔚來為未來而來
    金橋(2018年4期)2018-09-26 02:25:08
    李斌
    爆笑西游
    久久99热这里只频精品6学生| 国产一级毛片在线| 巨乳人妻的诱惑在线观看| 亚洲欧美精品综合一区二区三区| 中文字幕高清在线视频| 亚洲欧美日韩高清在线视频 | 欧美激情高清一区二区三区| 一区福利在线观看| 国产日韩欧美亚洲二区| 国产精品一二三区在线看| 亚洲三区欧美一区| 国产精品一区二区精品视频观看| 午夜免费鲁丝| av网站在线播放免费| 99热网站在线观看| 可以免费在线观看a视频的电影网站| 18禁黄网站禁片午夜丰满| 国产麻豆69| bbb黄色大片| 精品一区二区三区四区五区乱码| 91九色精品人成在线观看| 男女高潮啪啪啪动态图| 免费av中文字幕在线| 国产精品欧美亚洲77777| 久久性视频一级片| 国产一区有黄有色的免费视频| 免费在线观看影片大全网站| 欧美精品啪啪一区二区三区 | 欧美精品亚洲一区二区| 国产在视频线精品| 在线观看舔阴道视频| 中文字幕精品免费在线观看视频| 搡老熟女国产l中国老女人| 亚洲精品国产av成人精品| 欧美日韩国产mv在线观看视频| 窝窝影院91人妻| 中文字幕高清在线视频| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品久久二区二区免费| 欧美中文综合在线视频| av网站在线播放免费| 国产高清videossex| 爱豆传媒免费全集在线观看| 一级片'在线观看视频| 中文精品一卡2卡3卡4更新| 夜夜夜夜夜久久久久| 欧美一级毛片孕妇| 日本猛色少妇xxxxx猛交久久| 精品久久蜜臀av无| 一级毛片电影观看| 91大片在线观看| 黄色怎么调成土黄色| 色视频在线一区二区三区| 啦啦啦视频在线资源免费观看| 国产成人免费无遮挡视频| 亚洲精品av麻豆狂野| 91九色精品人成在线观看| 五月天丁香电影| 色老头精品视频在线观看| 亚洲五月色婷婷综合| 黑人巨大精品欧美一区二区mp4| 精品少妇一区二区三区视频日本电影| 久久久久网色| 曰老女人黄片| 欧美 日韩 精品 国产| 欧美精品亚洲一区二区| 欧美日韩av久久| 老熟妇仑乱视频hdxx| 亚洲成人免费av在线播放| 亚洲伊人色综图| 天天影视国产精品| a级片在线免费高清观看视频| 亚洲成人国产一区在线观看| 国产91精品成人一区二区三区 | 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利一区二区在线看| 亚洲男人天堂网一区| 国产成人精品在线电影| 99国产精品一区二区蜜桃av | 国产精品99久久99久久久不卡| 中文字幕av电影在线播放| 日韩免费高清中文字幕av| 精品高清国产在线一区| 一边摸一边抽搐一进一出视频| 老司机在亚洲福利影院| 韩国高清视频一区二区三区| 亚洲专区中文字幕在线| 国产精品影院久久| 日韩视频在线欧美| 亚洲国产看品久久| 日韩精品免费视频一区二区三区| 巨乳人妻的诱惑在线观看| 欧美激情 高清一区二区三区| 女性生殖器流出的白浆| 国产精品 国内视频| 如日韩欧美国产精品一区二区三区| 日韩大码丰满熟妇| 99热网站在线观看| 国产精品一区二区免费欧美 | 久久av网站| 午夜免费观看性视频| 亚洲精品国产精品久久久不卡| 亚洲精品美女久久av网站| 一区二区三区精品91| 色视频在线一区二区三区| 国产高清国产精品国产三级| 热re99久久国产66热| 亚洲精品第二区| 91字幕亚洲| 一区福利在线观看| 大陆偷拍与自拍| 免费在线观看视频国产中文字幕亚洲 | 两性夫妻黄色片| 国产麻豆69| 国产一区二区 视频在线| av电影中文网址| 动漫黄色视频在线观看| 亚洲欧美色中文字幕在线| 99精品欧美一区二区三区四区| 在线精品无人区一区二区三| 国产精品久久久久久人妻精品电影 | 久热这里只有精品99| 国产在线视频一区二区| 男女之事视频高清在线观看| 制服诱惑二区| 操美女的视频在线观看| 正在播放国产对白刺激| 丝袜美足系列| 超碰成人久久| 亚洲国产成人一精品久久久| 精品亚洲成a人片在线观看| 亚洲第一青青草原| 五月开心婷婷网| 色94色欧美一区二区| 这个男人来自地球电影免费观看| 国产黄频视频在线观看| 亚洲人成电影免费在线| 日本猛色少妇xxxxx猛交久久| 亚洲 欧美一区二区三区| 一二三四在线观看免费中文在| 国产成人欧美| 日韩制服丝袜自拍偷拍| 国产不卡av网站在线观看| 午夜福利在线免费观看网站| 成年人黄色毛片网站| 777米奇影视久久| 国产1区2区3区精品| 建设人人有责人人尽责人人享有的| 久久久久久人人人人人| 亚洲精品久久成人aⅴ小说| 黄色视频,在线免费观看| 亚洲精华国产精华精| 亚洲国产av影院在线观看| 两个人看的免费小视频| 王馨瑶露胸无遮挡在线观看| 一边摸一边抽搐一进一出视频| 国产日韩欧美亚洲二区| av欧美777| 中文字幕另类日韩欧美亚洲嫩草| 又大又爽又粗| 国产男女内射视频| 国产免费视频播放在线视频| 欧美精品啪啪一区二区三区 | 国产精品影院久久| 成年人免费黄色播放视频| 最新的欧美精品一区二区| 一进一出抽搐动态| 91大片在线观看| 美女国产高潮福利片在线看| 纯流量卡能插随身wifi吗| 欧美变态另类bdsm刘玥| 日本黄色日本黄色录像| 天天操日日干夜夜撸| 女人精品久久久久毛片| 精品一区二区三区av网在线观看 | 国产一区二区在线观看av| 精品第一国产精品| 曰老女人黄片| 国产精品麻豆人妻色哟哟久久| 一本一本久久a久久精品综合妖精| 欧美黑人精品巨大| 黄色视频,在线免费观看| 午夜精品久久久久久毛片777| 欧美一级毛片孕妇| 午夜日韩欧美国产| 久久国产精品影院| 亚洲欧美激情在线| 精品亚洲乱码少妇综合久久| 在线观看www视频免费| 精品国产一区二区三区四区第35| 国产在线视频一区二区| 日韩大码丰满熟妇| 免费久久久久久久精品成人欧美视频| 日日夜夜操网爽| 丰满饥渴人妻一区二区三| 国产淫语在线视频| 精品少妇黑人巨大在线播放| av网站免费在线观看视频| 一进一出抽搐动态| 国产成人免费无遮挡视频| 天堂俺去俺来也www色官网| 波多野结衣av一区二区av| 一二三四社区在线视频社区8| 欧美激情高清一区二区三区| 女警被强在线播放| 亚洲精品久久午夜乱码| 美国免费a级毛片| 亚洲欧美激情在线| 欧美黄色片欧美黄色片| 亚洲国产欧美一区二区综合| 亚洲精品国产色婷婷电影| 午夜激情av网站| 亚洲精品一区蜜桃| 国产在线免费精品| 久久香蕉激情| 免费在线观看日本一区| 在线亚洲精品国产二区图片欧美| 人妻 亚洲 视频| 中文字幕人妻丝袜制服| 欧美成狂野欧美在线观看| svipshipincom国产片| 久久国产精品人妻蜜桃| 午夜久久久在线观看| 99久久综合免费| 婷婷色av中文字幕| 久久精品国产亚洲av香蕉五月 | 精品卡一卡二卡四卡免费| 日韩中文字幕欧美一区二区| h视频一区二区三区| 欧美精品人与动牲交sv欧美| 十分钟在线观看高清视频www| 免费在线观看日本一区| 悠悠久久av| 一二三四社区在线视频社区8| 最新的欧美精品一区二区| 91大片在线观看| 99热全是精品| 久久毛片免费看一区二区三区| 99国产综合亚洲精品| 亚洲国产av新网站| 精品高清国产在线一区| 中文字幕制服av| 人人妻人人爽人人添夜夜欢视频| 丝袜人妻中文字幕| 国产高清videossex| 亚洲欧美清纯卡通| 午夜福利视频在线观看免费| 黄频高清免费视频| 777米奇影视久久| 亚洲自偷自拍图片 自拍| 亚洲欧美色中文字幕在线| 男女之事视频高清在线观看| 中文字幕色久视频| a级毛片黄视频| tube8黄色片| 国产有黄有色有爽视频| 热99re8久久精品国产| 丝袜美足系列| 精品人妻一区二区三区麻豆| 久久中文看片网| 欧美成狂野欧美在线观看| 精品一区二区三区av网在线观看 | 精品第一国产精品| 亚洲中文字幕日韩| 欧美变态另类bdsm刘玥| 丝袜人妻中文字幕| 亚洲情色 制服丝袜| 国产成人欧美| 日韩熟女老妇一区二区性免费视频| 久久九九热精品免费| 精品第一国产精品| 国产欧美日韩一区二区三区在线| 精品人妻在线不人妻| 久久久久国内视频| 国产高清videossex| 啦啦啦啦在线视频资源| 精品少妇黑人巨大在线播放| 后天国语完整版免费观看| 黄片播放在线免费| 一边摸一边抽搐一进一出视频| 午夜免费成人在线视频| 黑丝袜美女国产一区| 欧美另类亚洲清纯唯美| 一二三四在线观看免费中文在| 亚洲视频免费观看视频| 欧美精品一区二区大全| 欧美少妇被猛烈插入视频| 不卡av一区二区三区| 精品人妻一区二区三区麻豆| 免费观看av网站的网址| 成人三级做爰电影| 日韩一区二区三区影片| 99国产精品免费福利视频| 免费不卡黄色视频| 女人爽到高潮嗷嗷叫在线视频| 无遮挡黄片免费观看| 最新的欧美精品一区二区| 中文字幕高清在线视频| 啦啦啦免费观看视频1| 亚洲美女黄色视频免费看| 91大片在线观看| 狠狠精品人妻久久久久久综合| 99精国产麻豆久久婷婷| 大码成人一级视频| a级毛片黄视频| 精品人妻熟女毛片av久久网站| 热99re8久久精品国产| 色婷婷久久久亚洲欧美| 欧美变态另类bdsm刘玥| 交换朋友夫妻互换小说| av福利片在线| 精品国产国语对白av| 999久久久国产精品视频| 精品国产乱码久久久久久男人| 一区二区av电影网| 美国免费a级毛片| 日韩精品免费视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 青青草视频在线视频观看| 老司机靠b影院| 日韩熟女老妇一区二区性免费视频| 极品人妻少妇av视频| 一边摸一边抽搐一进一出视频| 免费少妇av软件| 男女免费视频国产| 久久人人爽av亚洲精品天堂| 国产精品影院久久| 亚洲精品中文字幕一二三四区 | 中文字幕最新亚洲高清| 亚洲精品国产av蜜桃| 在线天堂中文资源库| av福利片在线| 免费日韩欧美在线观看| 91麻豆精品激情在线观看国产 | 午夜激情久久久久久久| 97精品久久久久久久久久精品| 久久av网站| 最新在线观看一区二区三区| 老司机在亚洲福利影院| 捣出白浆h1v1| 国产成人欧美在线观看 | 久9热在线精品视频| 亚洲欧美清纯卡通| kizo精华| 久久精品久久久久久噜噜老黄| 国产成+人综合+亚洲专区| 18禁国产床啪视频网站| 亚洲国产av影院在线观看| 美女高潮到喷水免费观看| 国产一区二区三区av在线| 国产高清videossex| 久久精品国产a三级三级三级| 丝袜美腿诱惑在线| 亚洲avbb在线观看| 国产视频一区二区在线看| 久久精品人人爽人人爽视色| www.精华液| 国产欧美日韩一区二区三区在线| 久久久国产精品麻豆| 亚洲avbb在线观看| 女人被躁到高潮嗷嗷叫费观| 久久精品国产亚洲av高清一级| 国产精品 欧美亚洲| 老司机靠b影院| 性色av乱码一区二区三区2| 人人澡人人妻人| 国产野战对白在线观看| 中国美女看黄片| 黑人操中国人逼视频| 亚洲精品一二三| 黄色片一级片一级黄色片| 欧美国产精品va在线观看不卡| 热99久久久久精品小说推荐| 国产欧美日韩一区二区精品| 精品卡一卡二卡四卡免费| 日韩欧美一区二区三区在线观看 | 一级a爱视频在线免费观看| 国产在线视频一区二区| 亚洲国产欧美在线一区| 九色亚洲精品在线播放| 久久久水蜜桃国产精品网| 中文字幕色久视频| 久久久久久免费高清国产稀缺| 亚洲av日韩精品久久久久久密| 成人国产av品久久久| 91九色精品人成在线观看| 久久亚洲精品不卡| 国产熟女午夜一区二区三区| 热99国产精品久久久久久7| 91麻豆精品激情在线观看国产 | 欧美久久黑人一区二区| 久久精品国产a三级三级三级| 国产精品久久久久久人妻精品电影 | 男女之事视频高清在线观看| 正在播放国产对白刺激| 亚洲少妇的诱惑av| 黄片大片在线免费观看| 亚洲欧美清纯卡通| www.999成人在线观看| 高清av免费在线| 国产视频一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 正在播放国产对白刺激| 97在线人人人人妻| 精品福利永久在线观看| 啦啦啦在线免费观看视频4| 精品视频人人做人人爽| 香蕉国产在线看| 五月天丁香电影| 欧美黄色片欧美黄色片| 最黄视频免费看| a级毛片黄视频| 亚洲精品国产精品久久久不卡| 老司机午夜十八禁免费视频| 亚洲五月色婷婷综合| 国产男女超爽视频在线观看| 成年女人毛片免费观看观看9 | 一个人免费在线观看的高清视频 | 久久国产精品影院| 丝袜美腿诱惑在线| 久久久久久久精品精品| videos熟女内射| 在线观看免费日韩欧美大片| 超碰成人久久| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 搡老岳熟女国产| 精品一区二区三区四区五区乱码| 免费不卡黄色视频| 国产亚洲欧美精品永久| 777久久人妻少妇嫩草av网站| 国产一区二区三区综合在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 三上悠亚av全集在线观看| 纵有疾风起免费观看全集完整版| 丰满迷人的少妇在线观看| 一区在线观看完整版| 欧美中文综合在线视频| 人人妻,人人澡人人爽秒播| 青草久久国产| 国产精品1区2区在线观看. | 十八禁人妻一区二区| 99国产精品一区二区三区| 啦啦啦 在线观看视频| 高清在线国产一区| 亚洲国产毛片av蜜桃av| 最黄视频免费看| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| 老司机福利观看| 涩涩av久久男人的天堂| 免费人妻精品一区二区三区视频| 久久九九热精品免费| 不卡av一区二区三区| 国产一区二区三区在线臀色熟女 | 99九九在线精品视频| 在线精品无人区一区二区三| 大码成人一级视频| 12—13女人毛片做爰片一| 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 欧美日本中文国产一区发布| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 又大又爽又粗| a级毛片黄视频| 精品国产一区二区三区久久久樱花| 久久ye,这里只有精品| 波多野结衣av一区二区av| 黄色片一级片一级黄色片| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 性色av一级| 国产精品av久久久久免费| 黄片大片在线免费观看| 久久久国产一区二区| 亚洲人成电影免费在线| 超碰97精品在线观看| 中文字幕人妻丝袜制服| 国产成人免费无遮挡视频| 考比视频在线观看| 国产亚洲欧美精品永久| 搡老岳熟女国产| 少妇的丰满在线观看| 欧美+亚洲+日韩+国产| 一区二区三区精品91| 亚洲午夜精品一区,二区,三区| 国产一区二区三区在线臀色熟女 | 欧美乱码精品一区二区三区| av有码第一页| 一级毛片女人18水好多| 亚洲av美国av| www.精华液| 久热这里只有精品99| 99久久国产精品久久久| 亚洲五月色婷婷综合| 久久久久久久久久久久大奶| 欧美性长视频在线观看| 国产免费现黄频在线看| 色视频在线一区二区三区| 国产av一区二区精品久久| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费成人在线视频| 日本wwww免费看| 999精品在线视频| 如日韩欧美国产精品一区二区三区| 水蜜桃什么品种好| 天堂中文最新版在线下载| 无限看片的www在线观看| 国产免费现黄频在线看| 国产成人免费无遮挡视频| 国产91精品成人一区二区三区 | 9色porny在线观看| 久久毛片免费看一区二区三区| 久久久国产一区二区| 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 啪啪无遮挡十八禁网站| 亚洲欧美清纯卡通| 中文字幕人妻丝袜制服| 亚洲专区字幕在线| 少妇裸体淫交视频免费看高清 | 青草久久国产| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 丰满饥渴人妻一区二区三| 亚洲精华国产精华精| 少妇 在线观看| 99国产综合亚洲精品| 精品高清国产在线一区| 国产免费现黄频在线看| 午夜91福利影院| 国产有黄有色有爽视频| 国产成人精品久久二区二区免费| 欧美黑人欧美精品刺激| 久久人人爽av亚洲精品天堂| 99国产精品免费福利视频| 人人妻人人添人人爽欧美一区卜| 在线永久观看黄色视频| 黑人猛操日本美女一级片| 久久久精品免费免费高清| 免费久久久久久久精品成人欧美视频| 日本91视频免费播放| 两人在一起打扑克的视频| 免费黄频网站在线观看国产| 亚洲伊人久久精品综合| 久久人人97超碰香蕉20202| 日本wwww免费看| 欧美+亚洲+日韩+国产| 99久久精品国产亚洲精品| 精品亚洲乱码少妇综合久久| 波多野结衣一区麻豆| www.自偷自拍.com| 在线av久久热| 美女中出高潮动态图| 欧美另类一区| 巨乳人妻的诱惑在线观看| 久久久国产一区二区| 国产淫语在线视频| 高清av免费在线| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 91麻豆精品激情在线观看国产 | 日韩免费高清中文字幕av| 亚洲九九香蕉| 女性被躁到高潮视频| 色精品久久人妻99蜜桃| 动漫黄色视频在线观看| 欧美日韩福利视频一区二区| 涩涩av久久男人的天堂| 国产精品亚洲av一区麻豆| 一个人免费看片子| 国产男女内射视频| 久久久精品免费免费高清| 免费久久久久久久精品成人欧美视频| 精品视频人人做人人爽| 国产成人啪精品午夜网站| 亚洲成人国产一区在线观看| 啦啦啦中文免费视频观看日本| 日韩三级视频一区二区三区| 中文字幕高清在线视频| 国内毛片毛片毛片毛片毛片| 亚洲精品国产av成人精品| 免费高清在线观看日韩| a级毛片黄视频| 欧美在线一区亚洲| 侵犯人妻中文字幕一二三四区| 久久天躁狠狠躁夜夜2o2o| 久久久久久免费高清国产稀缺| 亚洲色图 男人天堂 中文字幕| 在线亚洲精品国产二区图片欧美| 国产欧美日韩综合在线一区二区| 欧美+亚洲+日韩+国产| 日韩中文字幕视频在线看片| 久久精品aⅴ一区二区三区四区| www.熟女人妻精品国产| www.999成人在线观看| 咕卡用的链子| 啪啪无遮挡十八禁网站| 国产无遮挡羞羞视频在线观看| 久久久国产成人免费| 日本五十路高清| av网站在线播放免费| 欧美黄色片欧美黄色片| 热re99久久国产66热| 高清黄色对白视频在线免费看| 午夜激情av网站| 波多野结衣一区麻豆| 精品亚洲成国产av| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 久久青草综合色| 精品国产乱码久久久久久男人| 夜夜骑夜夜射夜夜干|