• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Organized Criticality in an Anisotropic Earthquake Model?

    2018-05-14 01:05:06BinQuanLi李斌全andShengJunWang王圣軍
    Communications in Theoretical Physics 2018年3期
    關(guān)鍵詞:李斌

    Bin-Quan Li(李斌全)and Sheng-Jun Wang(王圣軍)

    School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,China

    1 Introduction

    Self-organized criticality(SOC)is a key concept as a possible explanation for the widespread occurrence in many nature systems that long range correlations in space and time.[1?5]Earthquakes are probably the most relevant paradigm of SOC that can be observed by humans on earth.The relevance of SOC to earthquakes was first pointed out by Bak,Tang,and Wiesenfeld,[1]Sornette and Sornette.[6]According to this theory,plate tectonics provides energy input at a slow time scale into a spatially extended,dissipative system that can exhibit breakdown events via a chain reaction process of propagating instabilities in space and time.The empirical Gutenberg-Richter(GR)law[7]arises from the system of driven plates building up to a critical state with avalanches of all sizes.According to the GR law the distribution of earthquake events is scale free over many orders of magnitude in energy.

    Then Olami,Feder and Christensen(OFC)introduced a nonconservative model on a lattice that displayed SOC.[8]The OFC model of earthquakes has played an important role in the context of SOC since 1992.However,the presence of criticality in the nonconservative version of the OFC model has been controversial since its introduction and it is still debated.[9?13]

    OFC models on different topologies have been investigated in the papers,such as,the annealed random neighbor(ARN)graph model,[14?17]the OFC model on a quenched random(QR)graph[18]and the effects of smallworld and scale-free topologies on the criticality of the non-conservative OFC model.[19?24]

    Most work in this area is usually focused on their topological properties[25?29]and homogeneous lattices with or without periodic boundary conditions.But the real systems modeled by these objects are not homogeneous.In a geological fault,for example,the local friction between the moving plates,which in fl uences both the rate of motion and the redistribution on the neighbors in the OFC model,cannot be expected to be a constant value but should fl uctuate according to local variations.Similarly,the local elasticity of the sheets,which determines how the energy is transferred from one point to another,is also expected to be variable.Therefore,a first step is to simply see how the introduction of quenched disorder in the simple coupled-map representation for these systems will affect their dynamical behavior.Some work has already been done along these lines.

    A new earthquake model based on a random network was studied,on which the toppling mechanism of the system is that the force of the unstable site is redistributed to their nearest neighbors randomly.[30?32]It is shown that when the system is conservative,the probability distribution displays power-law behavior.However,it displays no scaling behavior when the system is nonconservative.It is like the results in the ARN OFC model.But it is quite different to the model on quenched random graph[18]and the model on square lattice,both of which display criticality even the system is dissipated.It seems that the toppling mechanism of the system has affected the critical behavior of the system.They also compare the critical behavior of the model with different number of nearest neighbors.It is shown that different spatial topology does not alter the critical behavior of the system.

    Mousseau studied the in fl uence of quenched disorder on a coupled map model of earthquakes.[33]In his work,disorder is introduced in the redistribution fractionαiwhich now varies from site to site asαi=α+δi,whereδiis a random number taken from a linear distribution[?δ,δ].He said that the question of the role of disorder in dynamical systems is fundamental because most biological,neurological,or geological dynamical systems evolve in the presence of one or another type of disorder.

    Janosi and Kertesz studied the effect of randomness in the threshold for the OFC rule.[34]They found that this type of disorder destroys criticality and changes the distribution of avalanche size from power law to exponential.

    Ceva looked at uncorrelated and correlated disorder in the redistribution parameterα.[35]He was interested,however,in the effects of concentration of defects and not their amplitude.He found that SOC is stable under small concentration of defects.

    In this work,we investigate the critical behavior on a modi fied anisotropic OFC model.Two situations are considered in this paper.One situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.The other situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.Different boundary conditions are considered as well.The rest of the paper is organized as follows.In Sec.2,we review the original OFC model and we point out the main reasons that have induced us to study the modify OFC model.In Sec.3,we investigate the modi fied model and make comparison with other models by analyzing the distribution of earthquake sizes.Finally,in Sec.4 we provide brief discussion and conclusion.

    2 Model

    The OFC model is de fined on a two-dimensional square lattice ofL×Lsites.Each site is associated a real continuous energyEi.To mimic that the system is driven continuously and uniformly,the value ofEiincreases at the same rate.In simulations, find the largest value of energyEmaxin the system and increase the energy of all sites by the same amountEth?Emax.Therefore,the sites with the largest energy reaches the threshold value(Ei≥Eth)and becomes unstable.As soon as a site becomes unstable,i.e.,Ei≥Eth,the global driving is stopped and the system evolves according to the following local relaxation rule

    where“nn” stands for the collection of nearest neighbors to nodei.In general,there are 4 of nearest neighbors,and only the isotropic situation is considered.The parameterα∈[0,1/4]controls the level of conservation of the dynamics,whereα=1/4 corresponds to the conservative case,whileα<1/4 implies the model is nonconservative.

    The toppling of one site triggers an avalanche,that is,neighbors of this site may become unstable and toppling propagates in the network.The avalanche is over until all the sites are belowEth.Then the driving to all sites recovers.The number of toppling sites during an earthquake is de fined as the earthquake sizeS.Open boundary condition is used in OFC model.[36]

    Here we modify the OFC model only in the toppling rule:when there is an unstable site toppling,the energy of the site is redistributed to its nearest neighbors randomly not averagely as follows.

    If anyEi≥Eththen redistribute the energy onEito its neighbors randomly according to the following rule

    where“nn” stands for the collection of nearest neighbors to nodei,qis the number of nearest neighbors of every site.The anisotropic situation is considered in this modi fied OFC model.The size of parameterβnnis different for nearest neighbors.The parameterβ∈[0,1]controls the level of conservation of the dynamics that is equivalent to 4αin the OFC model,whereβ=1 corresponds to the conservative case,whileβ<1 implies the model is nonconservative.The parameterβnnat each site is chosen randomly from a uniform distribution between 0 andβ,and the sum is equal toβ.Details as follow,

    The other model that differs from above model only in the toppling rule:when there is an unstable site,the energy of the site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero,that is not Eqs.(2),(3)but Eqs.(4),(5),as follow

    where“nn” stands for the collection of nearest neighbors to nodei,qis the number of nearest neighbors of every site.β00is de fined as follow

    Table 1 The different of the two models.

    To completely de fine the model,we need to consider the boundary conditions.We care about the open and periodic boundary conditions in our models.[36?39]The energyαEof an unstable site at boundary is lost in the case of open boundary conditions.Periodic boundary conditions mean the energy is not lost,it is transferred to the other side,like a ring.In Table 1,we list the different of those models to be clearly understood.

    In a system of SOC,the distribution of earthquake sizes is a power law function.The power-law exponentτis de fined as

    In simulation,we will be interested in the distribution of avalanche sizesP(S).

    3 Simulations and Results

    3.1 The One Case of the Modi fied OFC Model

    Now we study the one case of the modi fied OFC model(Case 1).The energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.In comparison to the original OFC model we plot the distribution of avalanche sizes in Fig.1.The statistics are collected in the critical state for 109non-zero avalanches for each system size.

    Fig.1 (Color online)Avalanche size distribution with open boundary conditions for(a)different the value of the parameter β with the system size N=352.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.For comparison purposes,the original OFC model of α=0.25 is shown in the direction of the arrow.(b)Distribution of earthquake size for the different system size with β=1.0.

    In Fig.1(a),we show that the earthquakes size distributionP(S)for different values of the dissipation parameterβ,in the network withN= 352and with open boundary conditions.Different curves correspond toβ=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.We can see that the model transits from non-SOC to SOC behavior with the increase of the parameterβ.Power-law fit is shown as red solid line,the slope of the straight line isτ=1.286 58 forβ=1.0.It is like the critical exponent of the original OFC model.For comparison purposes,the original OFC model ofα=0.25 is shown in the direction of the arrow.

    In OFC model,the SOC states exhibit that the distribution is a power law function with an exponential cuto ff.The largest avalanche size in OFC model is about 7000.In the modi fied OFC model,the distribution of avalanche size depends on the dissipation parameterβ.The largest avalanche size in modi fied OFC model is about 1000,which is close to the system sizeN.

    Fig.2 (Color online)(a)Simulation result for the probability density of having an earthquake of energy E as a function of E for a dissipation parameter β with N=352 and with periodic boundary conditions.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 0.98,from left to right.The fitted curve is shown as red solid line.(b)Distribution of earthquake size for the different system size with β=0.95.Different curves correspond to N=152,252,352,502,and 1002.

    It is not like the result of the original OFC model.The original OFC model exhibits SOC behavior for a wide range ofαvalues and the exponentτdepends onα.However,we find that this modi fied OFC model exhibits power law distribution when the value ofβtends to 1.It is similar with the model on RN[14,16]and small-world networks.[19,23?24]

    In Fig.1(b),we show that the earthquakes size distributionP(S)for different size of the systemN,different curves correspond toN=152,252,352,and 502,from left to right.Size effect is present in Fig.1(b).It is like the result of the original OFC model.The scaling of the cutoffin the energy distribution as a function of the system size forβ=1.0.

    Now we plot the distribution of earthquake size for different values ofβwith periodic boundary conditions.As shown in Fig.2(a),we noticed that the model transits from non-SOC to SOC behavior with the increase of the dissipation parameterβ.Power-law fit is shown as red solid line,the slope of the straight line isτ=1.397 15 forN=352andβ=0.98.The largest avalanche size is about 103in the modi fied OFC model withβ<1.0.Although the system size isN=352,the largest size of avalanche is very large with periodic boundary conditions andβ=1.0.The largest size of avalanche is 108much larger than 103.There is not much difference in the results under different boundary conditions,except inβ=1.0.The result is only a slight difference in the critical exponent.As shown in Fig.2(b),the simulation results of avalanche size distribution in systems with dissipation parameterβ=0.95 and network sizeN=152,252,352,502,and 1002,respectively.Although system sizes range from 152to 1002,the change of the largest size of avalanche is very small.

    3.2 The Other Case of the Modi fied OFC Model

    Fig.3 (Color online)Avalanche size distribution with open boundary conditions for(a)different the value of the parameter β with the system size N=352.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.For comparison purposes,the original OFC model of α=0.25 is shown in the direction of the arrow.(b)Distribution of earthquake size for the different system size with β=1.0.The fitted curve is shown as red solid line.

    Next,we study the other case of the modi fied OFC model(Case 2).The energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.

    In Fig.3(a),we show that the earthquakes size distributionP(S)for different values of the dissipation parameterβ,in the network withN=352and with open boundary conditions.Different curves correspond toβ=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.It is shown that the distribution of avalanche size depends on the dissipation parameterβ.We can see that there is criticality only in the conservative case.Power-law fit is shown as red solid line,the slope of the straight line isτ=1.319 19 forβ=1.0.It is like the critical exponent of the original OFC model.For comparison purposes,the original OFC model ofα=0.25 is shown in the direction of the arrow.

    The result of this case and the original OFC model tend to the same in the conservative case.The only difference is that the avalanche size in the original model is bigger.This result may be closer to the actual situation,after all,every crust plate size is different.

    In Fig.3(b),we show that the earthquakes size distributionP(S)for different size of the systemN,different curves correspond toN=152,252,352and 502,from left to right.Size effect is strikingly present here in Fig.3(b).AsLorβincreases,the behavior slowly converges to a power law distribution of earthquake sizesP(s)~s?τwith an exponentτ=1.319 19.

    Fig.4 (Color online)(a)Simulation result for the probability density of having an earthquake of energy E as a function of E for a dissipation parameter β with N=352 and with periodic boundary conditions.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 0.98,from left to right.The fitted curve is shown as red solid line.(b)Distribution of earthquake size for the different system size with β=0.95.Different curves correspond to N=152,252,352,and 502.

    Now we plot the distribution of earthquake size for different values ofβwith periodic boundary conditions.As shown in Fig.4(a),we noticed that the model transits from non-SOC to SOC behavior with the increase of the dissipation parameterβ.Power-law fit is shown as red solid line,the slope of the straights line isτ=1.427 78 forN=352andβ=0.98.Similarly,the largest size of avalanche is 108much larger than normal 103forβ=1.0.

    As shown in Fig.4(b),the simulation results of avalanche size distribution in systems with dissipation parameterβ=0.95 and network sizeN=152,252,352,and 502,respectively.Although system sizes range from 152to 502,the change of the largest size of avalanche is very small.Some impact has produced on the distribution of avalanche size for the different system sizeN.We can see that size effect is exhibited but not particularly strong in Fig.4(b).We find that,asLorβincreases,the behavior slowly converges to a power law distribution of earthquake sizesP(s)~s?τwith an exponentτ=1.427 78.

    4 Conclusions

    In summary,we have made an extensive numerical study of a modi fied anisotropic model proposed by Olami,Feder,and Christensen to describe earthquake behavior.The toppling rule is different with that of the OFC model.Two situations were considered in this paper.One case is that the energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.The other case is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.Different boundary conditions were considered as well.By analyzing the distribution of earthquake sizes,we found that both above cases can exhibit self-organized criticality only in the conservative case or the approximate conservative case.Some evidence indicated that the critical exponent of both above situations and the original OFC model tend to the same result in the conservative case.The only difference is that the avalanche size in the original model is bigger.It is different from the result of original OFC model.The original OFC model exhibits SOC behavior for a wide range ofαvalues and the exponentτdepend onα.This result may be closer to the real world,after all,every crust plate size is different.

    [1]P.Bak,C.Tang,and K.Wiesenfeld,Phys.Rev.Lett.59(1987)381.

    [2]C.Haldeman and J.M.Beggs,Phys.Rev.Lett.94(2005)058101.

    [3]S.J.Wang and C.Zhou,New J.Phys.14(2012)023005.

    [4]D.Plenz and H.G.Schuster,Criticality in Neural Systems,Wiley,New York(2014).

    [5]S.J.Wang,G.Ouyang,J.Guang,et al.,Phys.Rev.Lett.116(2016)018101.

    [6]A.Sornette and D.Sornette,Europhys.Lett.9(1989)197.

    [7]B.Gutenberg and C.F.Richter,Ann.Geo fis.9(1956)1.

    [8]Z.Olami,H.J.S.Feder,and K.Christensen,Phys.Rev.Lett.68(1992)1244.

    [9]W.Klein and J.Rundle,Phys.Rev.Lett.71(1993)1288.

    [10]K.Christensen,Phys.Rev.Lett.71(1993)1289.

    [11]J.X.Carvalho and C.P.C.Prado,Phys.Rev.Lett.84(2000)4006.

    [12]J.X.Carvalho and C.P.C.Prado,Phys.Rev.Lett.87(2001)039802.

    [13]K.Christensen,D.Hamon,H.J.Jensen,and S.Lise,Phys.Rev.Lett.87(2001)039801.

    [14]S.Lise and H.J.Jensen,Phys.Rev.Lett.76(1996)2326.

    [15]M.L.Chabanol and V.Hakim,Phys.Rev.E 56(1997)R2343.

    [16]H.M.Broker and P.Grassberger,Phys.Rev.E 56(1997)3944.

    [17]O.Kinouchi,S.T.R.Pinho,and C.P.C.Prado,Phys.Rev.E 58(1998)3997.

    [18]S.Lise and M.Paczuski,Phys.Rev.Lett.88(2002)228301.

    [19]F.Caruso,V.Latora,A.Pluchino,et al.,Eur.Phys.J.B 50(2006)243.

    [20]F.Caruso,V.Latora,and A.Rapisarda,Complexity,Metastability and Nonextensivity,World Scienti fic,Singapore(2005)355.

    [21]N.Masuda,H.Miwa,and N.Konno,Phys.Rev.E 71(2005)036108.

    [22]A.F.Rozenfeld,R.Cohen,D.ben Avraham,and S.Havlin,Phys.Rev.Lett.89(2002)218701.

    [23]Min Lin,Xiao-Wei Zhao,and Tian-Lun Chen,Commun.Theor.Phys.41(2004)557.

    [24]Min Lin,Gang Wang,and Tian-Lun Chen,Commun.Theor.Phys.46(2006)1011.

    [25]P.Rattana,L.Berthouze,and I.Z.Kiss,Phys.Rev.E 90(2014)052806.

    [26]R.Dominguez,K.Tiampo,C.A.Serino,and W.Klein,Phys.Rev.E 87(2013)022809.

    [27]D.Markovic and C.Gros,Phys.Rep.536(2014)41.

    [28]L.De Arcangelis,C.Godano,J.R.Grasso,and E.Lippiello,Phys.Rep.628(2016)1.

    [29]A.A.Perkins,J.Galeano,and J.M.Pastor,Phys.Rev.E 94(2016)052304.

    [30]Duan-Ming Zhang,Fan Sun,et al.,Commun.Theor.Phys.45(2006)293.

    [31]Duan-Ming Zhang,Fan Sun,et al.,Commun.Theor.Phys.46(2006)261.

    [32]Fan Sun and Duan-Ming Zhang,Commun.Theor.Phys.50(2008)417.

    [33]N.Mousseau,Phys.Rev.Lett.77(1996)968.

    [34]I.M.Jánosi and J.Kert′esz,Physica(Amsterdam)200A(1993)179.

    [35]H.Ceva,Phys.Rev.E 52(1995)154.

    [36]S.Lise and M.Paczuski,Phys.Rev.E 63(2001)036111.

    [37]J.E.S.Socolar,G.Grinstein,and C.Jayaprakash,Phys.Rev.E 47(1993)2366.

    [38]P.Grassberger,Phys.Rev.E 49(1994)2436.

    [39]A.A.Middleton and C.Tang,Phys.Rev.Lett.74(1995)742.

    猜你喜歡
    李斌
    World Wetlands Day
    The Wizard of Oz
    The Wizard of Ozby L. Frank Baum
    The Wizard of Ozby L. Frank Baum
    History of the Alphabet
    Factory Life in the 1800's
    李斌:換道先跑
    汽車觀察(2019年2期)2019-03-15 06:00:30
    李斌:蔚來為未來而來
    金橋(2018年4期)2018-09-26 02:25:08
    李斌
    爆笑西游
    美女脱内裤让男人舔精品视频| 成人亚洲精品一区在线观看| 午夜影院在线不卡| 18禁动态无遮挡网站| 亚洲国产色片| 91精品国产国语对白视频| 成人特级av手机在线观看| 国产成人免费观看mmmm| 在线观看免费日韩欧美大片 | av免费在线看不卡| 午夜av观看不卡| 精品国产露脸久久av麻豆| 欧美bdsm另类| 丝瓜视频免费看黄片| 人妻系列 视频| 国产 精品1| 在现免费观看毛片| 人妻人人澡人人爽人人| 99九九在线精品视频 | 欧美日韩国产mv在线观看视频| 亚洲欧美日韩卡通动漫| 国产日韩一区二区三区精品不卡 | 亚洲中文av在线| 日韩一区二区视频免费看| 国产免费又黄又爽又色| 欧美一级a爱片免费观看看| 精品99又大又爽又粗少妇毛片| 欧美成人精品欧美一级黄| 最近2019中文字幕mv第一页| 免费黄色在线免费观看| 久久久久国产精品人妻一区二区| 亚洲四区av| 人妻一区二区av| 国产精品99久久久久久久久| 国产成人一区二区在线| 国产成人一区二区在线| www.av在线官网国产| 亚洲久久久国产精品| 伦精品一区二区三区| 国产成人精品一,二区| av在线老鸭窝| 午夜影院在线不卡| 大又大粗又爽又黄少妇毛片口| tube8黄色片| 极品少妇高潮喷水抽搐| 久久久久久久亚洲中文字幕| 精品久久久噜噜| 日韩电影二区| 国产av一区二区精品久久| 欧美变态另类bdsm刘玥| 久久这里有精品视频免费| 大又大粗又爽又黄少妇毛片口| 精品人妻一区二区三区麻豆| 99久久人妻综合| 高清毛片免费看| 熟妇人妻不卡中文字幕| 久久精品国产a三级三级三级| 国产爽快片一区二区三区| 欧美成人午夜免费资源| 内地一区二区视频在线| 国产欧美日韩一区二区三区在线 | 亚洲高清免费不卡视频| 一本久久精品| 日韩亚洲欧美综合| 最近2019中文字幕mv第一页| 妹子高潮喷水视频| 国产日韩欧美视频二区| 国产亚洲一区二区精品| 嘟嘟电影网在线观看| 午夜精品国产一区二区电影| 丝瓜视频免费看黄片| 久久久a久久爽久久v久久| 久久久久久久亚洲中文字幕| 午夜免费观看性视频| 国产午夜精品一二区理论片| 中国美白少妇内射xxxbb| 国产精品99久久久久久久久| 国产午夜精品一二区理论片| 国产伦理片在线播放av一区| 中文资源天堂在线| 国产在线视频一区二区| 女性生殖器流出的白浆| 成人亚洲欧美一区二区av| 夫妻性生交免费视频一级片| 成年美女黄网站色视频大全免费 | 国产欧美亚洲国产| 国产男女超爽视频在线观看| 亚洲无线观看免费| 国产精品99久久久久久久久| av有码第一页| 日本免费在线观看一区| 寂寞人妻少妇视频99o| 午夜日本视频在线| 深夜a级毛片| 日韩伦理黄色片| 七月丁香在线播放| 国产欧美另类精品又又久久亚洲欧美| 国产男人的电影天堂91| √禁漫天堂资源中文www| 人人妻人人添人人爽欧美一区卜| 在线 av 中文字幕| 超碰97精品在线观看| 夜夜爽夜夜爽视频| 国产成人精品福利久久| 久久久欧美国产精品| 国产视频首页在线观看| 一边亲一边摸免费视频| 男女边吃奶边做爰视频| 丰满乱子伦码专区| 成人漫画全彩无遮挡| 91在线精品国自产拍蜜月| 中国国产av一级| 黄色毛片三级朝国网站 | 香蕉精品网在线| 一级黄片播放器| 亚洲av免费高清在线观看| 三级国产精品片| 亚洲美女搞黄在线观看| 精品一区二区三卡| 亚洲欧美日韩东京热| 伦理电影大哥的女人| 欧美日本中文国产一区发布| 欧美区成人在线视频| 一级,二级,三级黄色视频| 亚洲精品日韩av片在线观看| 亚州av有码| 亚洲一级一片aⅴ在线观看| 日韩强制内射视频| 制服丝袜香蕉在线| 交换朋友夫妻互换小说| 国产精品偷伦视频观看了| 日韩精品有码人妻一区| 中国三级夫妇交换| 亚洲欧洲精品一区二区精品久久久 | 久久久久网色| 国产亚洲一区二区精品| 高清在线视频一区二区三区| 久久这里有精品视频免费| 高清视频免费观看一区二区| 色网站视频免费| 国产黄色免费在线视频| 九九久久精品国产亚洲av麻豆| 精品久久久久久久久av| 国产亚洲最大av| 日日爽夜夜爽网站| 国产精品久久久久成人av| 美女cb高潮喷水在线观看| 97精品久久久久久久久久精品| 韩国高清视频一区二区三区| 日本黄色片子视频| 99久久人妻综合| 夜夜爽夜夜爽视频| 国产在线男女| 十八禁网站网址无遮挡 | 午夜激情久久久久久久| 伦理电影免费视频| 精品少妇内射三级| 五月天丁香电影| 三级国产精品片| 久久精品国产a三级三级三级| av视频免费观看在线观看| 国产精品一区二区三区四区免费观看| 在线精品无人区一区二区三| .国产精品久久| 男女啪啪激烈高潮av片| 美女主播在线视频| 国产精品无大码| 少妇人妻久久综合中文| 国产一区亚洲一区在线观看| 青春草亚洲视频在线观看| 99久久综合免费| 欧美成人精品欧美一级黄| 日日摸夜夜添夜夜添av毛片| 三级国产精品欧美在线观看| 国产精品秋霞免费鲁丝片| 我要看日韩黄色一级片| 国产黄片美女视频| 看免费成人av毛片| 免费人妻精品一区二区三区视频| 国产男女内射视频| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 乱码一卡2卡4卡精品| 另类亚洲欧美激情| 在线看a的网站| 多毛熟女@视频| 亚洲欧美一区二区三区国产| h视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 永久网站在线| 久久婷婷青草| 永久网站在线| 日日撸夜夜添| 在线观看免费高清a一片| 中文字幕亚洲精品专区| 久久久亚洲精品成人影院| 99久久中文字幕三级久久日本| 亚洲,一卡二卡三卡| 亚洲av综合色区一区| 久久亚洲国产成人精品v| 免费高清在线观看视频在线观看| 国产精品女同一区二区软件| 国产精品久久久久成人av| 亚洲国产精品国产精品| 夫妻性生交免费视频一级片| 最新中文字幕久久久久| 久久97久久精品| 在线亚洲精品国产二区图片欧美 | 成年女人在线观看亚洲视频| 男女免费视频国产| 精品午夜福利在线看| 大香蕉97超碰在线| 欧美一级a爱片免费观看看| 日本-黄色视频高清免费观看| 我的女老师完整版在线观看| 亚洲国产最新在线播放| 在线观看人妻少妇| 黑丝袜美女国产一区| 99久久精品热视频| 观看美女的网站| 国产精品嫩草影院av在线观看| 99久久人妻综合| 久久国产精品大桥未久av | 久久精品国产鲁丝片午夜精品| 精品酒店卫生间| 婷婷色综合大香蕉| 国产av国产精品国产| 国产深夜福利视频在线观看| 精品人妻熟女毛片av久久网站| 亚洲第一av免费看| 九草在线视频观看| 欧美亚洲 丝袜 人妻 在线| 成人18禁高潮啪啪吃奶动态图 | 91久久精品国产一区二区三区| 简卡轻食公司| 美女中出高潮动态图| 国产精品一区二区性色av| 久久久久久伊人网av| 亚洲国产最新在线播放| 久久人人爽人人片av| 另类精品久久| 亚洲经典国产精华液单| 五月玫瑰六月丁香| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 在线观看av片永久免费下载| 国产亚洲最大av| 丝袜在线中文字幕| 精品酒店卫生间| 国产伦精品一区二区三区视频9| 插阴视频在线观看视频| 在线观看一区二区三区激情| 大话2 男鬼变身卡| 国产精品三级大全| 建设人人有责人人尽责人人享有的| 色5月婷婷丁香| 欧美一级a爱片免费观看看| 秋霞在线观看毛片| 五月天丁香电影| 国产免费又黄又爽又色| 精品酒店卫生间| 中文字幕人妻熟人妻熟丝袜美| 免费看光身美女| 亚洲伊人久久精品综合| 高清欧美精品videossex| 欧美成人午夜免费资源| 国产成人freesex在线| 最黄视频免费看| 黑人猛操日本美女一级片| 一区二区av电影网| 99久久精品国产国产毛片| 美女中出高潮动态图| 亚洲av国产av综合av卡| av国产精品久久久久影院| av在线app专区| 交换朋友夫妻互换小说| 人人澡人人妻人| 亚洲美女搞黄在线观看| 男女免费视频国产| 美女xxoo啪啪120秒动态图| 国产91av在线免费观看| 久久人妻熟女aⅴ| 搡老乐熟女国产| 自线自在国产av| 精品国产露脸久久av麻豆| 欧美另类一区| 女的被弄到高潮叫床怎么办| 最近中文字幕2019免费版| 一级毛片电影观看| 男人狂女人下面高潮的视频| 国产白丝娇喘喷水9色精品| 亚洲精品乱久久久久久| a 毛片基地| 少妇被粗大的猛进出69影院 | 汤姆久久久久久久影院中文字幕| 中国国产av一级| 成人二区视频| 三级经典国产精品| 国产精品人妻久久久影院| 97精品久久久久久久久久精品| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产最新在线播放| 精品一区二区三卡| 日日啪夜夜撸| 国精品久久久久久国模美| 黑人巨大精品欧美一区二区蜜桃 | 成人二区视频| 日韩,欧美,国产一区二区三区| 久久久久久久久大av| 国产老妇伦熟女老妇高清| 赤兔流量卡办理| 欧美精品一区二区免费开放| 少妇猛男粗大的猛烈进出视频| 涩涩av久久男人的天堂| 边亲边吃奶的免费视频| 一级毛片久久久久久久久女| 在线亚洲精品国产二区图片欧美 | 国产亚洲5aaaaa淫片| 亚洲成人手机| 国产欧美日韩精品一区二区| 亚洲天堂av无毛| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 亚洲一区二区三区欧美精品| 日日摸夜夜添夜夜爱| 精品久久久噜噜| 国内少妇人妻偷人精品xxx网站| av一本久久久久| 最近手机中文字幕大全| 免费黄频网站在线观看国产| 午夜福利网站1000一区二区三区| 亚洲欧美成人综合另类久久久| 国产免费一区二区三区四区乱码| a级毛色黄片| 黄色一级大片看看| 一级毛片 在线播放| 久久久久网色| 久久精品国产亚洲av涩爱| 久久热精品热| 18禁在线播放成人免费| 国产精品一二三区在线看| 少妇高潮的动态图| 五月玫瑰六月丁香| 色视频www国产| 久久国产精品大桥未久av | 国产免费又黄又爽又色| 久久国产乱子免费精品| 婷婷色av中文字幕| 婷婷色综合大香蕉| 蜜桃久久精品国产亚洲av| 最黄视频免费看| 欧美成人精品欧美一级黄| 深夜a级毛片| 国产无遮挡羞羞视频在线观看| 亚洲精品,欧美精品| 国产中年淑女户外野战色| 日韩av不卡免费在线播放| 欧美精品亚洲一区二区| 国产永久视频网站| 免费大片18禁| a级片在线免费高清观看视频| 激情五月婷婷亚洲| 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜| www.av在线官网国产| 久久97久久精品| 看免费成人av毛片| 大片免费播放器 马上看| 久久久久久久久久久免费av| 久久97久久精品| 九草在线视频观看| av卡一久久| 人人妻人人澡人人爽人人夜夜| 男男h啪啪无遮挡| 亚洲av二区三区四区| 六月丁香七月| 肉色欧美久久久久久久蜜桃| 亚洲av免费高清在线观看| 成年美女黄网站色视频大全免费 | 精品一区二区三卡| 丰满乱子伦码专区| 亚洲无线观看免费| 国产av国产精品国产| 国产成人精品福利久久| 午夜91福利影院| 欧美日韩综合久久久久久| 精品国产国语对白av| 精品国产一区二区三区久久久樱花| 最后的刺客免费高清国语| 99视频精品全部免费 在线| 能在线免费看毛片的网站| 日本免费在线观看一区| a 毛片基地| 亚洲一区二区三区欧美精品| 亚洲成人一二三区av| 日本av免费视频播放| 18禁动态无遮挡网站| 亚洲欧美成人综合另类久久久| 久久精品国产a三级三级三级| 亚洲综合色惰| 久久狼人影院| 国产精品欧美亚洲77777| 蜜桃在线观看..| 青春草亚洲视频在线观看| 国产精品99久久久久久久久| 国产成人a∨麻豆精品| 久久久久久久久久人人人人人人| 男人和女人高潮做爰伦理| 国产免费福利视频在线观看| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| 久热久热在线精品观看| 亚洲国产精品专区欧美| 男人添女人高潮全过程视频| 国产亚洲最大av| 亚洲性久久影院| 免费观看性生交大片5| 久久久国产精品麻豆| 国语对白做爰xxxⅹ性视频网站| 免费观看av网站的网址| 最近的中文字幕免费完整| 亚洲一区二区三区欧美精品| 香蕉精品网在线| 九九久久精品国产亚洲av麻豆| 精品亚洲成国产av| 少妇的逼好多水| 国产av一区二区精品久久| 在线观看三级黄色| 极品少妇高潮喷水抽搐| 26uuu在线亚洲综合色| 亚洲欧美日韩另类电影网站| 夜夜看夜夜爽夜夜摸| 国产高清有码在线观看视频| 欧美精品高潮呻吟av久久| 成年美女黄网站色视频大全免费 | 一本久久精品| 欧美日本中文国产一区发布| 国产一区二区在线观看日韩| 国产精品99久久99久久久不卡 | 久久久久久久亚洲中文字幕| 少妇丰满av| 如何舔出高潮| 十分钟在线观看高清视频www | 日日撸夜夜添| 日韩一区二区视频免费看| 美女xxoo啪啪120秒动态图| 大香蕉久久网| 婷婷色综合www| 在线观看av片永久免费下载| 国产精品伦人一区二区| 国产成人免费观看mmmm| 人妻 亚洲 视频| 18禁在线播放成人免费| 亚洲成色77777| 亚洲av免费高清在线观看| 男女边摸边吃奶| 欧美3d第一页| 久久久久久久久大av| 国产淫语在线视频| 亚洲一级一片aⅴ在线观看| 久久精品国产鲁丝片午夜精品| 亚洲精品视频女| 中文乱码字字幕精品一区二区三区| 女性生殖器流出的白浆| 青青草视频在线视频观看| 久久这里有精品视频免费| 亚洲国产欧美在线一区| 亚洲人成网站在线播| 日本与韩国留学比较| 欧美精品亚洲一区二区| 两个人的视频大全免费| 夜夜骑夜夜射夜夜干| 久久鲁丝午夜福利片| av女优亚洲男人天堂| 亚洲精品一二三| 国产视频首页在线观看| 国产欧美日韩精品一区二区| 在线观看三级黄色| 国产一区有黄有色的免费视频| 日日撸夜夜添| 高清在线视频一区二区三区| 最新中文字幕久久久久| 中文字幕制服av| 亚洲精品,欧美精品| 国产老妇伦熟女老妇高清| 高清午夜精品一区二区三区| 99九九在线精品视频 | 久久精品久久精品一区二区三区| 久久久久久久久久成人| 久久影院123| 亚洲三级黄色毛片| 亚洲av福利一区| 国产日韩欧美亚洲二区| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频| 日韩熟女老妇一区二区性免费视频| 精品久久久久久久久av| 纯流量卡能插随身wifi吗| 欧美精品一区二区免费开放| 韩国高清视频一区二区三区| 亚洲av中文av极速乱| 亚洲欧美一区二区三区国产| 中文天堂在线官网| 日韩亚洲欧美综合| 男女免费视频国产| 在线 av 中文字幕| 国产成人精品久久久久久| 一本大道久久a久久精品| 高清午夜精品一区二区三区| 精品久久久精品久久久| 大陆偷拍与自拍| 一级毛片我不卡| 免费观看av网站的网址| 老司机亚洲免费影院| 寂寞人妻少妇视频99o| 我要看黄色一级片免费的| 国产免费福利视频在线观看| 精品国产国语对白av| 久久久久久久久久人人人人人人| 日日摸夜夜添夜夜爱| 性高湖久久久久久久久免费观看| 啦啦啦视频在线资源免费观看| 国产在线免费精品| 久久6这里有精品| 九草在线视频观看| 亚洲婷婷狠狠爱综合网| 国产av码专区亚洲av| 午夜老司机福利剧场| 色网站视频免费| 婷婷色综合www| 大话2 男鬼变身卡| 下体分泌物呈黄色| 大码成人一级视频| 极品少妇高潮喷水抽搐| 亚洲av.av天堂| 又爽又黄a免费视频| 亚洲av男天堂| 午夜影院在线不卡| 免费久久久久久久精品成人欧美视频 | a级片在线免费高清观看视频| 18禁在线播放成人免费| 国产探花极品一区二区| 啦啦啦视频在线资源免费观看| 国产黄片美女视频| 亚洲国产最新在线播放| 日本黄大片高清| 国产精品一区www在线观看| 日韩人妻高清精品专区| 亚洲精品第二区| 国产精品国产三级专区第一集| 婷婷色av中文字幕| 国产 一区精品| 熟妇人妻不卡中文字幕| 七月丁香在线播放| 国产色婷婷99| 欧美国产精品一级二级三级 | 在线观看国产h片| 内射极品少妇av片p| 少妇猛男粗大的猛烈进出视频| 国产男女超爽视频在线观看| 中文字幕精品免费在线观看视频 | 午夜精品国产一区二区电影| 国产一区二区在线观看av| tube8黄色片| 日本猛色少妇xxxxx猛交久久| 久久毛片免费看一区二区三区| 18禁在线播放成人免费| 伦理电影大哥的女人| 成人无遮挡网站| 男女免费视频国产| 97精品久久久久久久久久精品| 国产精品偷伦视频观看了| 女的被弄到高潮叫床怎么办| 99久久精品热视频| 精品久久久噜噜| 男女国产视频网站| 欧美激情国产日韩精品一区| 国产免费视频播放在线视频| av天堂中文字幕网| 老司机亚洲免费影院| 国产黄色免费在线视频| 美女视频免费永久观看网站| 亚洲国产av新网站| 一级爰片在线观看| 伦理电影免费视频| 久久久久国产网址| 国产在视频线精品| 天天躁夜夜躁狠狠久久av| 色视频www国产| 少妇人妻 视频| 日本欧美视频一区| a级毛片免费高清观看在线播放| 久久久久久久久久成人| 一二三四中文在线观看免费高清| 国产在线视频一区二区| 最后的刺客免费高清国语| 三级国产精品欧美在线观看| 韩国av在线不卡| 少妇被粗大猛烈的视频| 亚洲精品乱码久久久v下载方式| 爱豆传媒免费全集在线观看| 国产淫语在线视频| 人人澡人人妻人| 欧美最新免费一区二区三区| 免费观看的影片在线观看| 国产精品一区二区性色av| 国产 精品1| 五月伊人婷婷丁香| 亚洲图色成人| 十分钟在线观看高清视频www | 蜜臀久久99精品久久宅男| 久久久久久人妻| 自拍欧美九色日韩亚洲蝌蚪91 | 91久久精品国产一区二区三区| 免费大片黄手机在线观看|