• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solution of Spin and Pseudo-Spin Symmetric Dirac Equation in(1+1)Space-Time Using Tridiagonal Representation Approach

    2018-05-14 01:04:53AssiAAlhaidariandBahlouli
    Communications in Theoretical Physics 2018年3期

    I.A.AssiA.D.Alhaidariand H.Bahlouli

    1Department of Physics and Physical Oceanography,Memorial University of Newfoundland,St.John’s,NL A1B3X7,Canada

    2Saudi Center for Theoretical Physics,P.O.Box 32741,Jeddah 21438,Saudi Arabia

    3Physics Department,King Fahd University of Petroleum&Minerals,Dhahran 31261,Saudi Arabia

    1 Introduction

    The Dirac wave equation is used to describe the dynamics of spin one-half particles at high energies(but below the threshold of pair creation)in relativistic quantum mechanics. It is a relativistically covariant linear first order differential equation in space and time for a multi-component spinor wavefunction.This equation is consistent with both the principles of quantum mechanics and the theory of special relativity.[1?3]The physics and mathematics of the Dirac equation are very rich,illuminating and gave birth to the theoretical foundation for different physical phenomena that were not observed in the non-relativistic regime.Among others,we can cite the prediction of electron spin,the existence of antiparticles and tunneling through very high barriers,the so-called Klein tunneling.[4?6]In addition,Dirac equation appears at a lower energy scale in graphene(2-D array of carbon atoms),wherein the behavior of electrons is modeled by 2-D massless Dirac equation,the so-called Dirac-Weyl equation.[7?10]Recent relevant applications of the Dirac equation could be found in Refs.[11–16]where the relativistic rotational and vibrational energy spectra are obtained for various physical systems.However,despite its fundamental importance in physics,exact solutions of the Dirac equation were obtained only for a very limited class of potentials.[17?25]

    In this paper,we study situations with spin or pseudospin symmetry,which are SU(2)symmetries of the Dirac equation that have different applications especially in nuclear physics.[26?33]The spin symmetric case is generally de fined for situations wherewhereCsis a real constant whileS(r)andV(r)are the scalar and vector components of the potential,respectively.Spin symmetry has been used to explain the suppression of spin-orbit splitting of meson states with heavy and light quarks.Pseudospin symmetry occurs whenwhereCpis a real constant parameter.This latter symmetry was used to explain the near degeneracy of some single particle levels near the Fermi surface.Here,we will restrict our study to the exact symmetry whereCs=Cp=0,that is whenAside from their physical applications,these symmetries allow the decoupling of the upper and lower spinor components of the Dirac equation transforming it into a Schr?dinger-like equation for each of the two components.This makes it mathematically easier to obtain analytic solutions of the original wave equation for certain potential con figurations.In addition to the scalar and vector potentials,we also include a pseudo-scalar component to the potential con figuration

    Exact solutions of the Dirac equation are of great bene fit both from the theoretical and applied point of view.Analytic solutions allow for a better understanding of physical phenomena and establish the necessary correspondence between relativistic effects and their nonrelativistic analogues.In this spirit,we would like to revisit the one-dimensional Dirac equation and investigate all potentially solvable class of interactions using the tridiagonal representation approach(TRA).[34?35]The hope is to be able to enlarge the conventional class of solvable potentials of the Dirac equation.

    The organization of this work goes as follows.We give a review of the TRA in the next section.In Sec.3,we present a mathematical formulation of the problem for the spin and pseudo-spin symmetric situations.Then,in Secs.4 and 5 we present different examples of solvable potentials.Lastly,we conclude our work in Sec.6.

    2 Review of the TRA

    The basic idea of the TRA is to write the spinor wavefunction as a bounded in finite series with respect to a suitably chosen square integrable basis functions.Thatis a set of expansion coefficients that are functions of the energyand potential parameters whereas andis a complete set of properly chosen spinor basis functions.The stationary wave equation readswhereHis the Dirac Hamiltonian.We require that the matrix representation of the wave operator,be tridiagonal and symmetric so that the action of the wave operator on the elements of the basis is allowed to take the general formTo achieve this requirement,we were obliged to use the kinetic balance equation that relates the upper and the lower spinor basis components transforming the wave equation into the following three-term recursion relation for

    Thus,the problem now is reduced to solving this threeterm recursion relation,which is equivalent to solving the original problem sincecontain all physical information(both structural and dynamical)about the system.Of course,there are different mathematical techniques to solve this algebraic equation.[36?37]For example,Eq.(1)could be written in a form that allows for direct comparison to well-known orthogonal polynomials.However,in other situations this recursion relation does not correspond to any of the known orthogonal polynomials hence giving rise to new classes of orthogonal polynomials.The remaining challenge will then be to extract physical information(e.g.,energy spectrum and phase shift)from the properties of the associated orthogonal polynomials such as the weight function,generating function,spectrum formula,asymptotics,zeroes,etc.[38?39]

    The most general square-integrable basis that are used in the TRA take the following form[34?35]

    wherey=y(x),Amis a normalization constant andPm(y)is a polynomial of a degreeminy.Whereas,w(y)is a positive function that vanishes on the boundaries of the original con figuration space with coordinatexand has a form,for convenience,similar to the weight function associated with the polynomialPm(y).In our present work,we will be using two sets of bases:

    3 Formulation

    The space component of the vector potential,U,could be eliminated by the local gauge transformationψ(x)→e?iΛ(x)ψ(x)such that dΛ/dx=U.Therefore,from now on and for simplicity,we takeU=0.It should be noted that in(3+1)space-time with spherical symmetry,Eq.(4)withW(x)→W(x)+κ/xrepresents the radial Dirac equation withxbeing the radial coordinate and the spinorbit quantum numberκ=±1,±2,±3,...Now,the exact spin and pseudo-spin symmetric coupling correspond toS=VandS=?V,respectively.We discuss below the positive energy solution of the spin symmetric coupling in the time-independent Dirac equation.The negative energy pseudo-spin symmetric solution follows from the spin symmetric one by a straightforward map,which will be derived below.

    Now,for spin symmetric coupling the Dirac equation(4)withU=0 reads as follows

    whereSubstituting this expression ofin the first equation of Eq.(5)gives the following Schr?dinger-like second order differential equation for the upper spinor component

    The objective now is to find a discrete square integrable spinor basis in which the matrix representation of the wave equation(5)becomes tridiagonal and symmetric so that the corresponding three-term recursion relation could be solved exactly for the expansion coefficients of the wavefunction and for as large a class of potentials as possible.As noted in the introduction above,we writeis a complete set of square integrable basis elements for the two wavefunction components and{fn(?)}is an appropriate set of energy dependent functions.Now,in the TRA,we impose the requirement that the matrix representation of the Dirac wave operatoris tridiagonal and symmetric(with?nbeing a spinor whose componentsso that the wave equation(5)becomes a threeterm recursion relation for the expansion coefficients

    Giving an identical equation to the pseudo-spin symmetric Dirac equation(10).Thus,applying the map(13)on the positive energy spin symmetric solution gives the negative energy pseudo-spin symmetric solution.

    In the following two sections,we obtain the exact positive energy solution of the spin symmetric Dirac equa-tion(5)in the Laguerre and Jacobi bases by giving the expansion coefficients{fn}in terms of orthogonal polynomials in the energy variable.The asymptotics of these polynomials give the phase shift of the continuous energy scattering states and the spectrum of the discrete energy bound states.

    4 Solution in the Laguerre Basis

    Lety(x)be a transformation from the real con figuration space with coordinatexto a new dimensionless coordinateysuch thaty>0.A complete set of square integrable functions as basis for the wavefunction in the newy-space that also satisfy the desirable boundary conditions(vanish at the boundaries)could be chosen as follows

    where the prime stands for the derivative with respect tox.It is required that in function spacemust be nearest neighbor toThat is,the tridiagonal requirement on Eq.(17)means thatshould be expressed as a linear combination of terms inThe differential property of the Laguerre polynomial,and its recursion relation,show that this could be achieved if we impose the constraint thatwhereρandσare dimensionless potential parameters.Thus,we can rewrite Eq.(17)as follows

    be a linear function iny.That

    In the following two subsections,we consider the two possible scenarios found in Appendix A that correspond to Eq.(A6a)and(A6b),respectively.

    4.1 The q=0 Scenario of Eq.(A6a)

    In this scenario,the vector potential isV(y)=y2a?1(A+By)and the pseudo-scalar potential isW(y)=λya?1(ρy+σ),wherea,A,andBare real parameters introduced in the Appendix A.Moreover,the basis parameters areν2=(2σ+1?a)2and 2α=ν+1?a.There are two con figurations in this scenario:one corresponds toa=0 wherey(x)=λxand the other corresponds toa=1/2 wherey(x)=(λx/2)2.

    For the first con figuration,we can write

    where the Meixner-Pollaczek polynomial is de fined as

    which is a quadratic equation that could easily be solved for?n.WithW0=0,it is identical to the energy spectrum of the spin-symmetric Dirac-Coulomb problem(i.e.,with equal scalar and vector Coulomb potentials).Themthbound state energy wavefunction,will be written in terms of the Meixner polynomialwhich is the discrete version of the Meixner-Pollaczek polynomial,asThe orthonormal version of this polynomial is de fined as

    where we have also replacedxby the radial coordinaterandκis the spin-orbit coupling constant. ? is the vector oscillator frequency whereas the pseudo-scalar oscillator frequency isω.These parameter assignments are motivated by physical expectations as will be justi fied by the results obtained below.Without loss of generality,we can always chooseV0=0.Therefore,the parameters in the Dirac wave operator matrix(A7a)are as follows:

    Substituting these parameters in Eq.(A7a),results in the following symmetric three-term recursion relation for the expansion coefficients of the wave function

    It is obvious that for positive energy where?>M,these assignments violate reality sincezbecomes pure imaginary and1.Thus,we are forced to make the replacementchanging the trigonometric functions in Eq.(32)to hyperbolic and making the asymptotic wavefunction vanish since the oscillatory factor einθin Eq.(23)changes into a decaying factor e?nθ.All of this imply that there are no continuous energy scattering states but only discrete energy bound states.This,of course,is an expected result for the isotropic oscillator whose energy spectrum is con firmed using the spectrum formula of the Meixner-Pollaczek polynomial that gives

    with ?=0,this is identical to the energy spectrum of the Dirac-oscillator problem.The correspondingm-th bound state wavefunction will be written in terms of the discrete version of the Meixner-Pollaczek polynomial as

    4.2 The q=1 Scenario of(A6b)

    In this scenario,the vector potential isV(y) =y2a?2(A+By)and the pseudo-scalar potential isW(y)=λya?1(ρy+σ)such thatρ2=1/4.Moreover,the basis parameterνis to be determined later by physical constraints whereas 2α=ν+2?a.There are two con figurations in this scenario:one corresponds toa=1 wherey(x)=eλxwith?∞

    For the first con figuration,we can write

    To make the vector potential vanish at in finity we can freely chooseV0=0.Therefore,the parameters in the Dirac wave operator matrix(A7b)are as follows:

    Substituting these parameters in Eq.(A7b),results in the following symmetric three-term recursion relation for the expansion coefficients of the wave function

    which is a quadratic equation to be solved for?n.WithW0=0,it is identical to the energy spectrum of the spinsymmetric Dirac-Morse problem(i.e.,with equal scalar and vector exponential potentials).Now,the continuous dual Hahn polynomial has a mix of continuous and discrete spectra forξ<0,then the following wavefunction represents the system with a mix of continuous energy?and discrete energy?m

    5 Solution in the Jacobi Basis

    Lety(x)be a coordinate transformation such that?1 6y6+1.A complete set of square integrable functions as basis in the new con figuration space with the dimensionless coordinateyhas the following elements The real dimensionless parameters{μ,ν}are greater than?1 whereas{α,β}will be determined by square integrability and the tridiagonal requirement.Substituting Eq.(50)into Eq.(6)and using the differentiation chain rule d/dx=y′(ddy),we obtain

    In the following two subsections,we consider the two physical scenarios found in Appendix B and corresponding to Eqs.(A16a)and(A16b),respectively.

    5.1 The(p,q)=(0,0)Scenario of(A16a)

    In this scenario,the vector potential takes the formand the pseudoscalar potential reads

    where we can always chooseV0=0.The vector and scalar are potential boxes with sinusoidal bottom whereas the pseudo-scalar is a potential box with 1/xsingularity of strength±2W?at the two edges of the box.This potential con figuration was never reported in the literature.Its existence here is a demonstration of the unique advantage of the TRA over other methods for enlarging the class of exactly solvable potentials.Substituting these results back in(A16a),we obtain the following three-term recursion relation for the expansion coefficients

    Some of the properties of this new polynomialwere derived numerically in Ref.[38].In contrast to the orthogonal polynomials of Sec.3,the analytical properties of this new polynomial are not yet known.Thus,the properties of the corresponding physical system(such as the phase shift and energy spectrum that would have been determined from the asymptotics of the polynomial[38])could not be given analytically or in a closed form.In the absence of these analytic properties,we give in Table 1 numerical results for the lowest part of the positive energy relativistic spectrum for a chosen set of values of the physical parameters.In Appendix C,we give the details of the procedure used in this calculation.The upper component of the spinor wavefunction is written as

    The lower component of the spinor wavefunction can be easily obtained by calculatingusing Eq.(52)with

    Table 1 The lowest part of the energy spectrum associated with the potential con figuration(53)for various basis sizes.We used the procedure outlined in Appendix C and took the following values of the physical parameters:M=1,λ=1,V0=0,V1=5,W+=?2,and W?=3.

    Table 2 The lowest part of the energy spectrum associated with the potential con figuration(56)for various basis sizes.We took the following values of the physical parameters:M=1,L=1,V0=5,V1=?4,W+=?2,and W?=3.

    5.2 The(p,q)=(1,0)Scenario of(A16b)

    In this scenario,the vector potential is

    whereρ=W?/λandσ=W+/λ.Moreover,the basis parameters areν2=(2W+/λ+b?1)2,2α=μ+2?a,and 2β=ν+1?b. The parameterμis fixed later by physical constraints including the( finite)number of bound states.There are three physical con figurations associated with this scenario.The first one corresponds toandx>0.The second one corresponds to(a,b)=(1/2,1/2)wherey(x)=sin(λx)and?π/2λ0.

    where we have also made the replacementTo force the vector potential to vanish at in finity,we chooseV?=0. The basis parameters becomeν2=(W+/λ ?1/2)2,2α=μ+1 and 2β=ν+1/2.Substituting these quantities in Eq.(A16b)and after somewhat lengthy manipulations,we obtain the following three-term recursion relation

    Comparing this recursion relation with Eq.(12)in Ref.[38],giveswhereis a new orthogonal polynomial de fined in Ref.[38]withSome of the interesting properties of this polynomial are discussed in the same Ref.[38].For example,ifσis positive then this polynomial has only a continuous spectrum.However,ifσis negative then the spectrum is a mix of continuous scattering states and a finite number of discrete bound states.Moreover,the corresponding bound state energies are obtained from the following spectrum formula of the polynomial

    where,again,andHowever,

    which could be positive or negative depending on the sign ofTherefore,withand for negativeσthe bound state energy spectrum is obtained from the spectrum formula(61).On the other hand,for positiveσthe system has only continuum scattering states with the two-component wavefunctionand where the scattering phase shift is obtained from the asymptotics of the polynomialRn(?),or equivalentlywhich is unfortunately not yet known analytically.Consequently,one needs to resort to numerical means.

    6 Conclusion

    In this article,we have discussed different exactly solvable potentials for the Dirac equation that have never been reported in the literature.However,we did not exhaust all possible solvable potentials in this manuscript.For example,we could have included a larger class of potentials by keepingV±?=0 in the potentialV(x)of Subsec.5.1 pro-vided that the basis parameters become energy dependent and chosen such that

    Moreover,we did not include the possibility that the basis is neither orthogonal nor tri-thogonal(i.e.,the basis overlap matrixis not tridiagonal)but the Dirac wave operator is still tridiagonal.This is accomplished by the requirement that the matrix representation of the kinetic energy operator,

    contains a counter term that cancels the non-tridiagonal

    We also hope that experts in orthogonal polynomials will soon derive the analytical properties of the two orthogonal polynomials mentioned in Sec.5,which will allow us to write different properties associated with the physical system in closed form,e.g.the energy spectrum and phase shift.

    Appendix A The Laguerre Basis

    Appendix B The Jacobi Basis

    We observe a symmetry in the three scenarios above that allows us to obtain the solution corresponding to an(a,b)case by a simple parameter map from another(b,a)case.One can show that any(a,b)case belonging to Eq.(A12c)is obtained from(b,a)case in Eq.(A12b)by the following simple map

    Finally,we obtain the following tridiagonal matrix representation of the Dirac wave operator corresponding to the two scenarios of Eq.(A15)above:

    In these expressions,the matrixis obtained using the recursion relation of the Jacobi polynomial and its orthogonality relation,

    Appendix C Energy Spectrum Calculation in the Jacobi Basis

    We choose the lower component of the spinor basis to be energy independent and be related to the upper component via a relation similar to the kinetic balance equation and as follows

    whereτis a non-physical computational parameter of inverse length dimension.We expect that physical results will be independent of the choice of value of this parameter as long as that choice is either unique or natural.Since the choice ofτin the formulation of the problem above is?+M(see below Eq.(8)),then we expect that this unique or natural choice ofτwill be different for each energy eigenvalue.If we designate the value of them-th bound state as a function ofτas?m(τ),then the unique or natural choice ofat which

    That is,the energy spectrum as a function ofτis at an extremum.In fact,the extremum condition for calculating them-th bound state energy forces the basis parameterτin Eq.(A18)to assume the value.Now,in this energy independent basis the matrix elements of the Dirac wave operator(8)become

    To test the procedure,we use Eq.(A22)to calculate the energy spectra for all three problems of Subsec.5.2 and compare them to those obtained using the exact spectrum formula(61).Agreement is achieved to machine accuracy for a large enough basis size.Consequently,we employ the same procedure but using Eq.(A21)to obtain the energy spectra for the two problems of Subsec.5.1 that do not have an exact spectrum formula.Those results are shown in Tables 1 and 2.

    We are honored to dedicate this work to Prof.Hashim A.Yamani on the occasion of his 71st birthday.The authors would like to thank King Fahd University of Petroleum and Minerals(KFUPM)for their support under research grant RG1502,and acknowledge the material support and encouragements of the Saudi Center for Theoretical Physics(SCTP).

    [1]J.D.Bjorken and S.D.Drell,Relativistic Quantum Mechanics,McGraw-Hill,New York(1964).

    [2]W.Greiner,B.Müller,and J.Rafelski,Quantum Electrodynamics of Strong Fields,Springer,Berlin(1985).

    [3]W.Greiner,Relativistic Quantum Mechanics:Wave Equations,Vol.3,Springer,Berlin(1990).

    [4]O.Klein,Z.Phys.53(1929)157.

    [5]N.Dombey and A.Calogeracos,Phys.Rep.315(1999)41.

    [6]N.Dombey,P.Kennedy,and A.Calogeracos,Phys.Rev.Lett.85(2000)1787.

    [7]K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,I.V.Grigorieva,and A.A.Firsov,Science 306(2004)666.

    [8]A.De Martino,L.DellAnna,and R.Egger,Phys.Rev.Lett.98(2007)066802.

    [9]A.H.Castro Neto,F.Guinea,N.M.R.Peres,K.S.Novoselov,and A.K.Geim,Rev.Mod.Phys.81(2009)109.

    [10]S.Kuru,J.Negro,and L.M.Nieto,J.Phys.C 21(2009)455305.

    [11]C.S.Jia,J.W.Dai,L.H.Zhang,J.Y.Liu,and X.L.Peng,Phys.Lett.A 379(2015)137.

    [12]Yu Sun,G.D.Zhang,and C.S.Jia,Chem.Phys.Lett.636(2015)197.

    [13]C.S.Jia and Z.W.Shui,Euro.Phys.J.A 51(2015)144.

    [14]C.S.Jia,T.He,and Z.W.Shui,Comput.Theor.Chem.1108(2017)57.

    [15]C.S.Jia and Y.Jia,Euro.Phys.J.D 71(2017)3.

    [16]Z.W.Shui and C.S.Jia,Euro.Phys.J.Plus 132(2017)292.

    [17]G.V.Shishkin and V.M.Villalba,J.Math.Phys.30(1989)2132.

    [18]A.Anderson,Phys.Rev.A 43(1991)4602.

    [19]G.V.Shishkin,J.Phys.A 26(1993)4135.

    [20]A.V.Yurov,Phys.Lett.A 225(1997)51.

    [21]C.Quesne and V.M.Tkachuk,J.Phys.A 38(2005)1747.

    [22]K.Nouicer,J.Phys.A 39(2006)5125.

    [23]C.Quesne and V.M.Tkachuk,SIGMA 3(2007)016.

    [24]T.K.Jana and P.Roy,Phys.Lett.A 373(2009)1239.

    [25]H.Akcay,Phys.Lett.A 373(2009)616.

    [26]G.B.Smith and L.J.Tassie,Ann.Phys.65(1971)352.

    [27]J.N.Ginocchio,Phys.Rev.Lett.78(1997)436.

    [28]J.S.Bell and H.Ruegg,Nucl.Phys.B 98(1975)151.

    [29]J.N.Ginocchio,A.Leviatan,Phys.Rev.Lett.87(2001)072502.

    [30]J.N.Ginocchio,Phys.Rep.414(2005)165.

    [31]P.Alberto,A.S.de Castro,and M.Malheiro,Phys.Rev.C 87(2013)03130.

    [32]P.Alberto,A.de Castro,M.Fiolhais,R.Lisboa,and M.Malheiro,J.Phys.Conference Series 490(2014)012069.

    [33]P.Alberto,M.Malheiro,T.Frederico,and A.de Castro,J.Phys.Conference Series 738(2016)012033.

    [34]A.D.Alhaidari,Ann.Phys.317(2005)152.

    [35]A.D.Alhaidari,J.Math.Phys.58(2017)072104.

    [36]S.T.Chihara,An Introduction to Orthogonal Polynomials,Gordon and Breach,New York(1978),and references therein.

    [37]R.Koekoek and R.Swarttouw,The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogues,Reports of the Faculty of Technical Mathematics and Informatics,Number 98-17,Delft University of Technology Delft,(1998)page 37.

    [38]A.D.Alhaidari,J.Math.Phys.59(2018)013503.

    [39]A.D.Alhaidari,H.Bahlouli,and I.A.Assi,Phys.Lett.A 380(2016)1577.

    激情五月婷婷亚洲| 在线观看免费日韩欧美大片 | 亚洲婷婷狠狠爱综合网| 嘟嘟电影网在线观看| 亚洲第一av免费看| 黄色配什么色好看| 少妇丰满av| 亚洲国产精品一区三区| 建设人人有责人人尽责人人享有的| 日韩视频在线欧美| 日本-黄色视频高清免费观看| 哪个播放器可以免费观看大片| 精品一区在线观看国产| 日韩欧美精品免费久久| 久久久久久久久久久丰满| 人妻一区二区av| av网站免费在线观看视频| 最近最新中文字幕免费大全7| 国精品久久久久久国模美| 人妻系列 视频| 日日啪夜夜爽| 大陆偷拍与自拍| 欧美日韩成人在线一区二区| 人人澡人人妻人| 水蜜桃什么品种好| 久久毛片免费看一区二区三区| 亚洲第一区二区三区不卡| 伊人久久精品亚洲午夜| 七月丁香在线播放| 国产淫语在线视频| 男人爽女人下面视频在线观看| 国产成人精品婷婷| 欧美亚洲 丝袜 人妻 在线| 人妻制服诱惑在线中文字幕| 尾随美女入室| 精品视频人人做人人爽| tube8黄色片| 熟女人妻精品中文字幕| 水蜜桃什么品种好| 成人漫画全彩无遮挡| a级毛片免费高清观看在线播放| 一本久久精品| 亚洲国产精品国产精品| 99国产综合亚洲精品| 欧美bdsm另类| 热re99久久国产66热| 91精品国产九色| 久久亚洲国产成人精品v| 久久久久久久久久久久大奶| 国国产精品蜜臀av免费| 国产精品国产三级国产专区5o| 日韩精品免费视频一区二区三区 | 色网站视频免费| 3wmmmm亚洲av在线观看| 亚洲欧美日韩卡通动漫| 三上悠亚av全集在线观看| 国产成人freesex在线| 国产午夜精品久久久久久一区二区三区| 一级毛片电影观看| 韩国av在线不卡| 久久久精品免费免费高清| 满18在线观看网站| 五月玫瑰六月丁香| 高清欧美精品videossex| 涩涩av久久男人的天堂| 91久久精品电影网| av天堂久久9| 最近的中文字幕免费完整| 亚洲欧美色中文字幕在线| 精品国产一区二区三区久久久樱花| 少妇人妻 视频| 免费观看无遮挡的男女| 亚洲不卡免费看| 亚洲精品,欧美精品| 亚洲精品日韩在线中文字幕| 18禁在线播放成人免费| 内地一区二区视频在线| 五月开心婷婷网| 欧美bdsm另类| 丝袜美足系列| 久久狼人影院| 国产女主播在线喷水免费视频网站| 成人手机av| 高清视频免费观看一区二区| 日韩制服骚丝袜av| 交换朋友夫妻互换小说| 成人亚洲欧美一区二区av| 国产免费现黄频在线看| 精品人妻一区二区三区麻豆| 国产精品蜜桃在线观看| 亚洲国产色片| 一本久久精品| 99久久综合免费| 观看美女的网站| 精品久久蜜臀av无| 亚洲国产精品专区欧美| 久久99蜜桃精品久久| 国产熟女午夜一区二区三区 | 精品久久久久久久久av| 国产成人午夜福利电影在线观看| 伦精品一区二区三区| .国产精品久久| 乱码一卡2卡4卡精品| 搡老乐熟女国产| 日韩免费高清中文字幕av| 青春草国产在线视频| 亚洲国产毛片av蜜桃av| 老女人水多毛片| 国产亚洲av片在线观看秒播厂| 黄色一级大片看看| 亚洲色图 男人天堂 中文字幕 | 国产女主播在线喷水免费视频网站| 亚洲综合色惰| 丰满迷人的少妇在线观看| 日本av手机在线免费观看| 高清av免费在线| 精品少妇久久久久久888优播| 少妇人妻精品综合一区二区| 久久久久久久亚洲中文字幕| 久久女婷五月综合色啪小说| 亚洲国产精品一区二区三区在线| 一级毛片黄色毛片免费观看视频| 精品久久久久久久久亚洲| 亚洲精品乱久久久久久| 一级毛片我不卡| 日本黄色片子视频| h视频一区二区三区| 在线看a的网站| 看非洲黑人一级黄片| 午夜av观看不卡| 一区在线观看完整版| 观看av在线不卡| 欧美日韩精品成人综合77777| 啦啦啦在线观看免费高清www| 日韩免费高清中文字幕av| 亚洲国产色片| 久久毛片免费看一区二区三区| 日本与韩国留学比较| 亚洲精品久久午夜乱码| 日日啪夜夜爽| 男女啪啪激烈高潮av片| 男男h啪啪无遮挡| 精品人妻一区二区三区麻豆| 这个男人来自地球电影免费观看 | 免费看光身美女| 亚洲国产av新网站| 国产 精品1| 少妇被粗大的猛进出69影院 | 日韩不卡一区二区三区视频在线| 丝袜脚勾引网站| 黄色欧美视频在线观看| 在线播放无遮挡| 91久久精品国产一区二区成人| 午夜福利视频精品| 成年人午夜在线观看视频| 国产精品一二三区在线看| 国产一区二区三区综合在线观看 | 2018国产大陆天天弄谢| 飞空精品影院首页| 免费观看av网站的网址| 一级片'在线观看视频| 韩国av在线不卡| 免费大片黄手机在线观看| 我的女老师完整版在线观看| 建设人人有责人人尽责人人享有的| 久久鲁丝午夜福利片| 少妇人妻 视频| 热99国产精品久久久久久7| av专区在线播放| 在线观看免费日韩欧美大片 | 高清黄色对白视频在线免费看| 欧美另类一区| 久久久久久久久久久丰满| 午夜福利视频精品| 一区二区三区精品91| 亚洲色图 男人天堂 中文字幕 | 女人久久www免费人成看片| 最近最新中文字幕免费大全7| 简卡轻食公司| 欧美激情国产日韩精品一区| 18禁裸乳无遮挡动漫免费视频| av女优亚洲男人天堂| 熟女av电影| 国产欧美日韩综合在线一区二区| 丝袜脚勾引网站| 91精品三级在线观看| 国产成人91sexporn| a 毛片基地| 精品人妻熟女毛片av久久网站| 亚洲综合色惰| 免费看av在线观看网站| 久久人妻熟女aⅴ| 成人影院久久| 久久久a久久爽久久v久久| 最新的欧美精品一区二区| 最近中文字幕高清免费大全6| 精品亚洲成a人片在线观看| 亚洲av欧美aⅴ国产| 在线观看美女被高潮喷水网站| 亚洲少妇的诱惑av| 国产黄频视频在线观看| 天美传媒精品一区二区| 国产精品一区www在线观看| av在线观看视频网站免费| 全区人妻精品视频| 久久免费观看电影| 视频中文字幕在线观看| 丝袜喷水一区| 日韩伦理黄色片| 中文乱码字字幕精品一区二区三区| 麻豆成人av视频| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的| 亚洲人成77777在线视频| 欧美国产精品一级二级三级| 日本91视频免费播放| 久久久午夜欧美精品| 国产成人免费无遮挡视频| av线在线观看网站| 亚洲精品,欧美精品| 能在线免费看毛片的网站| 久久久精品免费免费高清| 一区二区三区精品91| 一区二区三区四区激情视频| 国产日韩欧美亚洲二区| freevideosex欧美| av不卡在线播放| 精品少妇黑人巨大在线播放| 久久久国产一区二区| 亚洲精品456在线播放app| 熟女电影av网| 啦啦啦中文免费视频观看日本| 黄色欧美视频在线观看| 亚洲av成人精品一二三区| 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 多毛熟女@视频| 成人二区视频| 男女免费视频国产| 嫩草影院入口| 伊人久久精品亚洲午夜| 男女国产视频网站| 久久狼人影院| 少妇人妻 视频| 少妇熟女欧美另类| 熟女电影av网| av卡一久久| 两个人免费观看高清视频| 成人国产麻豆网| 亚洲精品第二区| 老司机影院毛片| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品无人区| 欧美性感艳星| 99久久精品一区二区三区| 日韩精品有码人妻一区| 99热全是精品| 两个人的视频大全免费| 丰满少妇做爰视频| 免费大片黄手机在线观看| 国产精品欧美亚洲77777| 久久精品国产a三级三级三级| freevideosex欧美| av电影中文网址| 亚洲精品,欧美精品| 毛片一级片免费看久久久久| 两个人免费观看高清视频| 精品一区二区免费观看| 999精品在线视频| 人妻夜夜爽99麻豆av| 久久韩国三级中文字幕| 99国产精品免费福利视频| 国产成人精品婷婷| 午夜福利视频在线观看免费| 免费播放大片免费观看视频在线观看| 久久精品久久久久久久性| 寂寞人妻少妇视频99o| 黄色怎么调成土黄色| 亚洲三级黄色毛片| 18禁裸乳无遮挡动漫免费视频| 晚上一个人看的免费电影| 亚洲av欧美aⅴ国产| 王馨瑶露胸无遮挡在线观看| 国产在线免费精品| 亚洲av电影在线观看一区二区三区| 精品人妻一区二区三区麻豆| 欧美日韩在线观看h| 亚洲精品日本国产第一区| 国产精品.久久久| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 亚洲精品日韩av片在线观看| 中文字幕精品免费在线观看视频 | 免费黄色在线免费观看| 久久国产精品男人的天堂亚洲 | 国产不卡av网站在线观看| 免费av不卡在线播放| 观看av在线不卡| 制服人妻中文乱码| 最近手机中文字幕大全| 乱码一卡2卡4卡精品| 国产免费现黄频在线看| 亚洲怡红院男人天堂| av国产久精品久网站免费入址| 国产一区有黄有色的免费视频| 成人黄色视频免费在线看| 99热6这里只有精品| 国产女主播在线喷水免费视频网站| 精品久久久精品久久久| 女性生殖器流出的白浆| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 黄色怎么调成土黄色| 蜜桃在线观看..| 精品午夜福利在线看| 日日啪夜夜爽| 亚洲美女视频黄频| 午夜精品国产一区二区电影| 日韩伦理黄色片| 另类精品久久| 欧美日韩在线观看h| 99热全是精品| 免费高清在线观看视频在线观看| 秋霞在线观看毛片| 日产精品乱码卡一卡2卡三| 欧美日韩av久久| 大话2 男鬼变身卡| 男人爽女人下面视频在线观看| 全区人妻精品视频| 美女cb高潮喷水在线观看| 夫妻性生交免费视频一级片| 午夜91福利影院| 少妇高潮的动态图| 久久韩国三级中文字幕| 色94色欧美一区二区| 高清不卡的av网站| 亚洲中文av在线| 最近中文字幕高清免费大全6| 中国美白少妇内射xxxbb| a级毛片免费高清观看在线播放| 国产精品麻豆人妻色哟哟久久| 草草在线视频免费看| 中文字幕免费在线视频6| 亚洲精品,欧美精品| 在线免费观看不下载黄p国产| 你懂的网址亚洲精品在线观看| 在线观看国产h片| 久久国产精品男人的天堂亚洲 | 国产国语露脸激情在线看| 亚洲精品456在线播放app| 寂寞人妻少妇视频99o| 99久久精品国产国产毛片| 高清午夜精品一区二区三区| 中文字幕av电影在线播放| 日韩,欧美,国产一区二区三区| 亚洲国产精品一区三区| 男女无遮挡免费网站观看| 爱豆传媒免费全集在线观看| 亚洲精品国产av蜜桃| av免费观看日本| 人妻少妇偷人精品九色| 久久久久久伊人网av| 国产日韩欧美视频二区| 午夜福利网站1000一区二区三区| 久久 成人 亚洲| 久久av网站| 亚洲精品亚洲一区二区| 国产黄色视频一区二区在线观看| 午夜福利在线观看免费完整高清在| 国语对白做爰xxxⅹ性视频网站| 亚洲在久久综合| 最近最新中文字幕免费大全7| 涩涩av久久男人的天堂| 免费播放大片免费观看视频在线观看| 十八禁高潮呻吟视频| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站| 狠狠婷婷综合久久久久久88av| 校园人妻丝袜中文字幕| 性高湖久久久久久久久免费观看| 日本爱情动作片www.在线观看| 国产探花极品一区二区| 亚洲欧洲精品一区二区精品久久久 | 日韩精品有码人妻一区| 人人妻人人添人人爽欧美一区卜| av视频免费观看在线观看| 一级毛片电影观看| 一级爰片在线观看| 九色成人免费人妻av| 日本91视频免费播放| 各种免费的搞黄视频| 欧美成人午夜免费资源| 精品一区二区免费观看| 久久久久久久大尺度免费视频| 少妇丰满av| 国产视频内射| 亚洲一区二区三区欧美精品| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| 一区二区三区免费毛片| 国产欧美亚洲国产| 综合色丁香网| 欧美日本中文国产一区发布| 亚洲国产精品一区三区| 久久这里有精品视频免费| av一本久久久久| 国产色爽女视频免费观看| 日本色播在线视频| 婷婷成人精品国产| 22中文网久久字幕| 亚洲精品日本国产第一区| 精品人妻偷拍中文字幕| av女优亚洲男人天堂| 亚洲精品亚洲一区二区| 内地一区二区视频在线| 国产熟女午夜一区二区三区 | 国产精品偷伦视频观看了| 性色avwww在线观看| av有码第一页| 一级毛片我不卡| 免费av不卡在线播放| 中文字幕精品免费在线观看视频 | 少妇丰满av| 久久精品久久久久久久性| 美女主播在线视频| 久久99热6这里只有精品| 国产精品成人在线| 18禁动态无遮挡网站| av在线观看视频网站免费| 欧美亚洲日本最大视频资源| av播播在线观看一区| 18禁动态无遮挡网站| 大香蕉久久成人网| 亚洲人成网站在线播| 91aial.com中文字幕在线观看| 中文字幕制服av| 如日韩欧美国产精品一区二区三区 | 一边摸一边做爽爽视频免费| 超色免费av| av女优亚洲男人天堂| 免费观看av网站的网址| 51国产日韩欧美| 午夜福利网站1000一区二区三区| 国产视频内射| 亚洲精品日韩在线中文字幕| 亚洲欧美一区二区三区国产| 亚洲精品aⅴ在线观看| 久久精品国产亚洲网站| 欧美bdsm另类| 成年av动漫网址| 亚洲熟女精品中文字幕| 香蕉精品网在线| 成人黄色视频免费在线看| 老熟女久久久| 国产精品久久久久久久电影| 亚洲精品乱久久久久久| 日韩视频在线欧美| 看十八女毛片水多多多| 五月玫瑰六月丁香| 国产深夜福利视频在线观看| 亚洲精品aⅴ在线观看| 久久人人爽av亚洲精品天堂| 丰满少妇做爰视频| videos熟女内射| 久久人人爽人人爽人人片va| 两个人免费观看高清视频| 精品久久久久久久久av| kizo精华| 欧美性感艳星| 国产男女超爽视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲久久久国产精品| 精品卡一卡二卡四卡免费| 国产av精品麻豆| 丝袜脚勾引网站| 国产精品 国内视频| 丰满饥渴人妻一区二区三| 久久99蜜桃精品久久| 婷婷色av中文字幕| 国产精品一国产av| 99热全是精品| 如日韩欧美国产精品一区二区三区 | 亚洲av中文av极速乱| 啦啦啦啦在线视频资源| 亚洲伊人久久精品综合| 国产淫语在线视频| 久久久久久久精品精品| 插逼视频在线观看| 日韩亚洲欧美综合| 国产午夜精品久久久久久一区二区三区| 国产深夜福利视频在线观看| 免费久久久久久久精品成人欧美视频 | 国产日韩欧美视频二区| 日韩伦理黄色片| 亚洲不卡免费看| 九色成人免费人妻av| 久热这里只有精品99| 啦啦啦中文免费视频观看日本| 久久久久国产网址| 99久国产av精品国产电影| 只有这里有精品99| 国产精品久久久久久精品古装| 亚洲av男天堂| 一级爰片在线观看| 国产综合精华液| 精品国产露脸久久av麻豆| 人妻人人澡人人爽人人| 免费高清在线观看视频在线观看| 天堂俺去俺来也www色官网| 精品久久久久久电影网| 午夜视频国产福利| 久久人人爽av亚洲精品天堂| 99国产综合亚洲精品| av电影中文网址| 2022亚洲国产成人精品| 99热这里只有精品一区| 一本—道久久a久久精品蜜桃钙片| 久久久精品免费免费高清| 制服人妻中文乱码| 午夜福利视频精品| 少妇高潮的动态图| 亚洲,一卡二卡三卡| 国产淫语在线视频| 久久人人爽人人爽人人片va| 十八禁高潮呻吟视频| 一区二区三区精品91| 婷婷色综合www| 一级毛片黄色毛片免费观看视频| 免费观看无遮挡的男女| 黄色一级大片看看| 久久午夜综合久久蜜桃| 另类亚洲欧美激情| 国产国拍精品亚洲av在线观看| 青春草视频在线免费观看| 乱码一卡2卡4卡精品| 国产黄频视频在线观看| 欧美丝袜亚洲另类| 视频在线观看一区二区三区| 午夜激情福利司机影院| 这个男人来自地球电影免费观看 | 国产av精品麻豆| 秋霞在线观看毛片| 街头女战士在线观看网站| 九九在线视频观看精品| 色婷婷久久久亚洲欧美| 久久久亚洲精品成人影院| 亚洲精品乱码久久久v下载方式| 亚洲av.av天堂| 中国美白少妇内射xxxbb| 一区二区三区四区激情视频| 欧美精品一区二区大全| 韩国av在线不卡| 女人精品久久久久毛片| 中国美白少妇内射xxxbb| 啦啦啦视频在线资源免费观看| 成人毛片a级毛片在线播放| 亚洲欧美日韩另类电影网站| 99热网站在线观看| 日本欧美视频一区| 免费观看性生交大片5| 成人毛片60女人毛片免费| 国产乱来视频区| 18禁裸乳无遮挡动漫免费视频| 秋霞伦理黄片| 好男人视频免费观看在线| 天天操日日干夜夜撸| 啦啦啦啦在线视频资源| 在线观看三级黄色| 久久久欧美国产精品| 人妻人人澡人人爽人人| 高清视频免费观看一区二区| 在线 av 中文字幕| 国产国语露脸激情在线看| 在线观看一区二区三区激情| 免费观看性生交大片5| 免费高清在线观看日韩| 韩国高清视频一区二区三区| 亚洲av福利一区| 国产精品不卡视频一区二区| 春色校园在线视频观看| 日韩人妻高清精品专区| 中文字幕免费在线视频6| 欧美另类一区| 岛国毛片在线播放| 亚洲精品成人av观看孕妇| 美女主播在线视频| 少妇的逼水好多| 午夜福利影视在线免费观看| 91午夜精品亚洲一区二区三区| 涩涩av久久男人的天堂| 国产精品一区二区在线不卡| 在线播放无遮挡| 亚洲精品av麻豆狂野| 中文字幕亚洲精品专区| 18禁动态无遮挡网站| 黄片无遮挡物在线观看| 久久久久久人妻| 视频在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 男女免费视频国产| 人妻系列 视频| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区久久久樱花| 老司机亚洲免费影院| 亚洲av欧美aⅴ国产| 中文字幕制服av| 亚洲国产精品一区二区三区在线| 欧美丝袜亚洲另类| 日韩中字成人| 久久久a久久爽久久v久久| 亚洲欧洲日产国产| 色5月婷婷丁香| 黄片播放在线免费| 在线天堂最新版资源|