• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians:The Case of Stellar Halo of Milky Way

    2018-05-14 01:04:50RamiAhmadElNabulsi
    Communications in Theoretical Physics 2018年3期

    Rami Ahmad El-Nabulsi

    Athens Institute for Education and Research,Mathematics and Physics Divisions,8 Valaoritou Street,Kolonaki,10671 Athens,Greece

    1 Introduction

    Recently,the notion of non-standard Lagrangians(NSL)was extensively explored in literature in an attempt to explore the inverse variational problem of some familiar nonlinear differential equations.[1]A number of motivating results were obtained in the theory of dissipative dynamical systems,[2?6]geometric and nonlinear dynamics,[7?18]plasma physics,[19]quantum theory,[20?22]relativity,[23?25]and electromagnetic theory.[26]Despite the wide range of applications of NSL,the topic still requires more attention and deserves more concentration and studies.It is noteworthy that NSL are more appreciated by mathematicians than physicists and we already know the main reason.In physics,the meaning of NSL is still unclear,no physical foundation was studied carefully and accordingly they serve mathematicians more than physicists.This is an open dilemma that deserves a serious analysis.In applied mathematics and mainly in the framework of dynamical systems,NSL may increase the number of the initial data required to fix the classical trajectory and generate dynamical equations that go beyond the standard Newton’s law paradigm.NSL came in a large number of mathematical forms.[6]One interesting form introduced in literature is the Logarithmic Lagrangian(LL),[27]which possesses some interesting properties related to the Li′enard-type and Emden nonlinear differential equations.In fact,such forms of Lagrangians were introduced in order to study the root of reciprocal Lagrangians in the theory of inverse variational problem.Motivated by LL,the main aim of this paper is to introduce the corresponding non-standard Hamiltonians and to discuss some of its implications in stellar dynamics.We have selected this topic due to its double impacts in applied mathematics and physics.In reality,the stellar dynamics and the motion of stars within galaxies are getting more and more recognized to be important both in applied mathematics and practical applications as they connect the microscopic and macroscopic kinetic theory of gases and fl uids.In fact,the collisionless Boltzmann equation,which is the subject of this paper,is the most classical but fundamental equation in the kinetic theory used to describe the motion of stars within galaxies,which allows the numbers of stars to be calculated as a function of position and velocity in the galaxy.However,it is well-known that the collisionless Boltzmann equation can be derived using Hamiltonian’s equations.As the LL approach is expected to modify the Hamilton’s equations of motion,we expect accordingly that the Boltzmann equation is modi fied as well.We are curious to know the implications of the modi fied Boltzmann equation in stellar dynamics.The paper is organized as follows:in Sec.2,we introduce the basic setups of logarithmic Lagrangians and their corresponding non-standard Hamiltonians;in Sec.3 we discuss their implications in stellar dynamics and finally conclusions are given in Sec.4.

    2 Logarithmic Lagrangians and Their Corresponding Non-Standard Hamiltonians

    We start by introducing the basic setups of the LL approach.

    Let timet∈R1be the base manifold,Mthendimensional con figuration space ontwith coordinatesqk(t),(k=1,2,...,n),TM the tangent bundle ofMwith coordinates(qk(t),˙qk(t)).The LL of the system is denoted by lnL(qk(t),˙qk(t),t)∈C2([a,b]×Rn×Rn;R)with(qk(t),˙qk(t),t)→L(qk(t),˙qk(t),t)assumed to be aC2function with respect to all its arguments.The action functional along a curveq(t)inMwith endpointsaandbis de fined by:

    ReplacingF→ ξlnLgives effortlessly Eq.(2).

    In what follows,we suppose for simplicity that the Lagrangian does not depend on time.The action principle can also be carried out on the phase space in the Hamiltonian formalism.We introduce a family of conjugate momenta from the family of Lagrangianpk=?lnL/?˙qkand take a Legendre transformation to get the Hamiltonian in the familyH(qk,pk)=ξ(pk˙qk?lnL(˙qk,qk))and the family of the action functionals is expressed as:

    It is interesting to obtain conservation of energy in the LL approach and standard forms of the canonical equations.Remark 2It is notable that the non-standard Hamiltonians are exactly equivalent to the Logarithmic Lagrangians because no truncations occur when the Hamiltonians are derived from the Lagrangians.However,post-Newtonian Lagrangians and Hamiltonians at the same order are non-equivalent in general due to the truncations in the transformation between the Lagrangians and Hamiltonians.[29?31]Even the differences between the Lagrangians and Hamiltonians caused by the truncations make the Lagrangians and Hamiltonians have different dynamics.[32?34]

    Equations(1)–(10)are general descriptions of the theory and method.We will use now these equations in the next section to derive the corresponding Boltzmann equation and discuss some of its implications in stellar dynamics.

    3 Applications in Stellar Dynamics

    In the framework of the semiclassical transport theory,the Boltzmann equation governs the spatio-temporal evolution of the particle gas.In fact,galaxies are collisionless systems as their relaxation time is very long.Hence,the motion of stars within galaxies can be described by the collisionless Boltzmann equation. This equation can be derived using Hamiltonian mechanics.In this section,the MCBE will be derived from the modified Hamiltonian equations(8)and(9).To do this,we let:be the distribution function of stars in a certain galaxy inN-particle phase space where?x∈R3and?p∈R3are position and momentum respectively.This is in fact the probability density in the 6-dimensional phase space of position and velocity at a given time known as the space phase density.[35]We shall assume in this work that the number of stars does not change.In fact,we can represent the fl ow of collisionless stars by:[36]

    Remark 3It is noteworthy for elucidation that Eq.(11)is the well-known Liouville theorem(expressed in a differential form)which states that the phase space density of a certain element as it moves in phase space is fixed.However,the standard Hamiltonian is replaced by the non-standard one.In other words,the non-standard Lagrangians and its corresponding non-standard Hamiltonian are implemented in Eq.(11).

    For the case of a star of massmmoving in a gravitational field Φ,the Hamiltonian isUsually,the gravitational field obeys the Poisson equationwhereGis the gravitational constant andis the mass density.Then from Eq.(11),we find usingv

    Using the fact thatp=?lnL/?v=mv/L,we get:

    Equation(13)is the MCBE.From this equation more useful equations may be derived accordingly,mainly the Jeans equations,which relate number densities,mean velocities,velocity dispersions,and the gravitational potential.However,we may distinguish between two independent cases:weak and strong gravitational field.Although we know that when the gravitational field is strong,e.g.near the vicinity of black holes,general relativity must be used accordingly,and the evolution of the system is described by the general relativistic Vlasov-Einstein system,[37]we will explore some of the effects of LL approach classically for the case of dense systems.

    Case 1Weak gravitational field:To derive the first of these equations,we consider the 0thmoment by integrating Eq.(11)over all velocities:

    which is the standard continuity equation.To derive the 2ndof the Jeans equations,we consider the 1stmoment of the MCBE by multiplying by the velocity and integrating again over all velocities:and accordingly we find:

    If the gravitational field is weak,one can simplify Eq.(20)to:

    A comparison with the Euler equation in fl uid dynamics shows that the termhas a similar effect as a pressureP.As an application,let us search the conditions under,which stars can form out of the interstellar medium.For simplicity,we will deal with a one-dimensional problem.In that case the following relations hold:

    n≡ρis the density of the gas assumed to be at rest with initial densityρ0.The gravitational potential in Eq.(29)obeys the equation:

    In what follow we consider a small perturbation around the equilibrium position such that(n,P,v,Φ)=(n0+and that the gas is isothermal,is the isothermal sound speed,k,μandmuare respectively the Boltzmann constant,the mean molecular weight and the atomic mass unit.In fact,we have based our hypothesis on the fact that the energy exchange by radiation is very proficient for interstellar mater.[40]To solve the system of equations,we assume a harmonic perturbation such thatkis the wave vector andωis the corresponding frequency.Therefore,we obtain after simple algebra the following dispersion relation:

    It is obvious that whenξ=1/4,we fall into the isothermal sound waves.Ifξ>1/4 then the system is stable and the perturbation varies periodically in time.Ifξ<1/4 andk?1 the system is stable whereas fork?1,the system is unstable.Notice that the critical wave-number now isthe critical wavelength isWe can deduce now the modi fied Jeans mass,which isHence we argue that a physical solution is obtained only ifξ<1/4.Any gas of cloud with mass larger that the modi fied Jeans mass is unstable and hence will collapse due to its own gravitational field.It is notable at the end that after settingit is easy to check that the perturbed part of the density obeys the sound wave equationwhere

    Case 2Strong gravitational field:If,for instance,the gravitational field is strong,such as that in the proximity of the event horizon of a black hole,then Eq.(20)is replaced by:

    The last term is proportional to the logarithmic of the gravitational field.This is interesting as logarithmic correction to the gravitational field was discussed in differential celestial problems(see the most recent work.[41])Further that for strong gravitational field the continuity equation is modi fied.To check this,we can write:

    In Eq.(37)the pressureis coupled to the gravitational if eld and accordingly rending the system of equation coupled altogether and the Fourier decomposition can not be applied.Obviously whenEq.(37)is reduced to its standard form and the Fourier decomposition can be applied easily and stability may be obtained accordingly.It is noteworthy that the relationis interesting since it relates the pressure to the gravitational field.Such a relation has interesting consequences in general relativity and a theory of gravity as a pressure force was discussed in Refs.[42–43]and have interesting features in cosmology and theory of dark matter and dark energy.[44?45]Considering the previous perturbation ansatzs we obtain,which corresponds to isothermal sound waves.We may conclude that within the LL approach,a strong gravitational field is stable if it is subject to an extra-pressureand dominated by isothermal sound waves.As a simple numerical test,we consider the simple model of our Galaxy’s stellar halo assumed to be spherical and governed by the logarithmic potentiallnrwherev0is a constant(assuming the velocity components are isotropic).For the Milky Way’s halo,observations show that the velocity of gas on circular orbits isv0≈220 km·s?1(rotation is negligible)and thatThe extra-pressure is then given bylnr/2ξ.This pressure is tiny for largerbut signi ficant for smallrand vanishes atr=1(in unitsv0=1).We first plot in Fig.1 the variations ofˉPforξ=1/8 andξ=?1/8 after settingv0=1 for graphical illustration purpose:

    Fig.1(Color online)Variations ofˉP for ξ=1/8(blue graph)and ξ= ?1/8(red graph).

    Forξ=1/8 the global minimum(≈?8/7e)occurs atr=e2/7and forξ=?1/8 the global maximum(≈8/7e)occurs as well atIn Figs.2–5 we plot in 3D the variations oflnr/2ξfor different ranges ofξand their corresponding contour plot:

    Fig.2(Color online)Variations ofˉP for?1/4<ξ<1/4.

    Fig.3 (Color online)Contour plot of Fig.2.

    Fig.4(Color online)Variations of for?10<ξ<0.

    Fig.5 (Color online)Contour plot of Fig.4.

    Fig.6(Color online)Variations of for ξ=1/8(blue graph)and ξ= ?1/8(red graph).

    More generally,the dark halo potential of the Milky Way is characterized by the logarithmic potential Φ=withd=12 Kpc andvhalo=131.5 km·s?1.The density distribution is given by the Plummer pro-wherer0=0.53 Kpc andwhereTherefore the gravitational potential in the LL approach is given by:

    We plot in Fig.6 the variations offorξ=1/8 andξ=?1/8 after settingvhalo=n0=1 for graphical illustration purpose and we plot in Figs.7–10 their 3D variations for different ranges ofξ:

    Fig.7(Color online)Variations of for?1/4<ξ<1/4.

    Fig.8 (Color online)Contour plot of Fig.7.

    Fig.9(Color online)Variations of for?1/4<ξ<1/4.

    Fig.10 (Color online)Contour plot of Fig.9.

    Forξ=1/8,the global minimum is≈?11367 atr=0 whereas the global maximum is≈11367 atr=0 in unitsvhalo=n0=1.

    4 Conclusions

    To conclude in this work,we have introduced the notion of LL,which belongs to the class of non-standard Lagrangians.After deriving the corresponding Hamiltonian equations and the modi fied Boltzmann equation we have discussed their implications in stellar dynamics in galaxies.We have discussed two independent classical cases:the weak and the strong gravitational field.For the weak case,the modi fied Jeans equations are more or less similar to the standard ones.More precisely,after introducing a small perturbation around the equilibrium position,it was observed that the dispersion relation is slightly modi fied and depends on the parameterξ.Whenξ=1/4,the medium is governed by the isothermal sound waves.Forξ>1/4,the system is stable and the perturbation varies periodically in time.Stability of the system is achieved as well forξ<1/4 andk?1 whereas it is unstable fork?1.We have deduced as well the Jeans mass and it was observed that a physical solution is obtained only ifξ<1/4.For the strong case,Jeans equations are modified considerably.A new pressure termappears in the theory and amazingly whenthe medium is stable and is governed by isothermal sound waves.Such a relation between the gravitational field and the pressure is motivating and may have interesting consequences in astrophysics and cosmology.In this note,we have tried to prove the importance of NSL in general and LL in particular in astrophysics(the Milky Way’s halo).Starting from simple arguments,we have obtained a number of rich possibilities that deserve further exploration and application.

    I would like to thank the anonymous referees for their useful comments and valuable suggestions.

    [1]A.Saha and B.Talukdar,Rep.Math.Phys.73(2014)299.

    [2]Z.E.Musielak,Chaos,Solitons&Fractals 42(2009)2645.

    [3]Z.E.Musielak,J.Phys.A:Math.Theor.41(2008)295.

    [4]Z.E.Musielak,J.Phys.A:Math.Theor.41(2008)055205.

    [5]J.L.Cieslinski and T.Nikiciuk,J.Phys.A:Math.Theor.43(2010)175205.

    [6]R.A.EL-Nabulsi,Qual.Theory Dyn.Syst.12(2013)273.

    [7]J.F.Carinena and J.F.Nunez,Nonlinear Dyn.83(2016)457.

    [8]J.F.Carinena and J.F.Nunez,Nonlinear Dyn.86(2016)1285.

    [9]Y.Zhang and X.S.Zhou,Nonlinear Dyn.84(2016)1867.

    [10]R.A.El-Nabulsi and H.Rezazadeh,J.Nonlinear Anal.Optim.5(2014)21.

    [11]R.A.El-Nabulsi,Nonlinear Dyn.74(2013)381.

    [12]R.A.El-Nabulsi,Comp.Appl.Math.33(2014)163.

    [13]R.A.El-Nabulsi,Nonlinear Dyn.79(2015)2055.

    [14]R.A.El-Nabulsi,Qual.Theory Dyn.Syst.13(2014)149.

    [15]R.A.El-Nabulsi,T.Soulati,and H.Rezazadeh,J.Adv.Res.Dyn.Control Syst.5(2013)50.

    [16]R.A.El-Nabulsi,Proc.Nat.Acad.Sci.Ind.A:Phys.Sci.84(2014)563.

    [17]R.A.El-Nabulsi,Proc.Nat.Acad.Sci.Ind.A:Phys.Sci.85(2015)247.

    [18]S.Liu,F.Guan,Y.Wang,et al.,Nonlinear Dyn.88(2017)1229.

    [19]R.A.El-Nabulsi,Canad.J.Phys 93(2015)55.

    [20]R.A.El-Nabulsi,Indian J.Phys.87(2013)379.

    [21]R.A.El-Nabulsi,Indian J.Phys.87(2013)465.

    [22]R.A.El-Nabulsi,Appl.Math.Lett.43(2015)120.

    [23]R.A.El-Nabulsi,J.Theor.Appl.Phys.7(2013)1.

    [24]R.A.El-Nabulsi,Canad.J.Phys.91(2013)618.

    [25]R.A.El-Nabulsi,J.Theor.Appl.Phys.7(2013)60.

    [26]R.A.El-Nabulsi,J.At.Mol.Sci.5(2014)268.

    [27]A.Saha and B.Talukdar,On the Non-Standard Lagrangian Equations,arXiv:nlin.SI/1301.2667.

    [28]T.Roubicek,Mathematical Tools for Physicists,ed.M.Grinfeld,J.Wiley,Weinheim(2014).

    [29]X.Wu,L.Mei,G.Huang,and S.Liu,Phys.Rev.D 91(2015)024042.

    [30]R.C.Chen and X.Wu,Commun.Theor.Phys.65(2016)321.

    [31]H.Wang and G.Q.Huang,Commun.Theor.Phys.64(2015)159.

    [32]X.Wu and G.Huang,Month.Not.Roy.Astron.Soc.452(2015)3167.

    [33]L.Huang,X.Wu,L.J.Mei,and G.Q.Huang,Commun.Theor.Phys.68(2017)375.

    [34]L.Huang,X.Wu,and D.Ma,Eur.Phys.J.C 76(2016)488.

    [35]C.Cercignani,The Boltzmann Equation and Its Applications,Springer,New York(1988).

    [36]V.Vedenyapin,E.Dulov,and A.Sinitsyn,Kinetic Boltzmann,Vlasov and Related Equations,Elsevier,1sted.,July,London(2011).

    [37]H.Andreasson,Living Rev.Rel.14(2011)4.

    [38]J.Binney and S.Tremaine,Galactic Dynamics,2nded.,Princeton University Press,Princeton(2008).

    [39]B.Jones and P.Saha,The Galaxy,Chap.2,Lectures Given at Queen Mary,University of London,London(2008).

    [40]S.Hofner,Gravitational Collapse:Jeans Criterion and Free Fall Time,Lectures Notes Given at the Department of Physics and Astronomy,Uppsala University,Uppsala(2010).

    [41]O.Ragos,I.Haranas,and I.Gkigkitzis,Astrophys.Space Sci.345(2013)67.

    [42]M.Arminjon,Rev.Roum.Sci.Tech.Ser.Mec.Appl.38(1993)107.

    [43]M.Arminjon,Gravitation as a Pressure Force:a Scalar Ether Theory,Proc.5th International Conference“Physical Interpretations of Relativity Theory”,(London,1996),Supplementary Papers Volume(M.C.Duffy,ed.),British Soc.Philos.Sci./University of Sunderland,(1998)pp.1-27.

    [44]K.H.C.Castello-Branco and J.F.da Rocha-Neto,Gravitational Pressure and the Accelerating Universe,arXiv:grqc/1311.1590.

    [45]T.Ma and S.Wang,Dis.Cont.Dyn.Sys.A 34(2014)335.

    [46]B.Jones and P.Saha,The Galaxy,Lectures given at Queen Mary University of London,September-December,(2007).

    [47]A.Helmi and S.D.M.White,Building up the stellar halo of the Milky Way,The Galactic Halo:Bright Stars and Dark Matter,Proceedings of The Third Stromlo Symposium,eds.B.K.Gibson,T.S.Axelrod,and M.E.Putman(ASP Conference Series),arXiv:astro-ph/9811108.

    曰老女人黄片| 琪琪午夜伦伦电影理论片6080| 热re99久久国产66热| 一进一出抽搐动态| www.999成人在线观看| av免费在线观看网站| 国产aⅴ精品一区二区三区波| 中国美女看黄片| 中文字幕人妻丝袜一区二区| 国产亚洲av高清不卡| 欧美大码av| 久久香蕉激情| 免费高清在线观看日韩| 色在线成人网| 岛国在线观看网站| 精品日产1卡2卡| 国产精品久久久久久人妻精品电影| 亚洲第一青青草原| 在线视频色国产色| 黄色成人免费大全| av片东京热男人的天堂| 高清黄色对白视频在线免费看| 亚洲精品粉嫩美女一区| 老司机靠b影院| 免费一级毛片在线播放高清视频 | 丁香六月欧美| av福利片在线| 成在线人永久免费视频| 涩涩av久久男人的天堂| 亚洲午夜精品一区,二区,三区| 亚洲国产精品久久男人天堂| 国产高清有码在线观看视频 | 91av网站免费观看| 啦啦啦免费观看视频1| 亚洲欧美精品综合一区二区三区| 久久午夜综合久久蜜桃| 久久这里只有精品19| 91av网站免费观看| 国产真人三级小视频在线观看| 搞女人的毛片| 自拍欧美九色日韩亚洲蝌蚪91| 母亲3免费完整高清在线观看| 国产不卡一卡二| 国产精品98久久久久久宅男小说| 久久国产精品人妻蜜桃| 真人一进一出gif抽搐免费| 久久精品国产亚洲av高清一级| 国产精品香港三级国产av潘金莲| 又紧又爽又黄一区二区| 亚洲精品av麻豆狂野| 自拍欧美九色日韩亚洲蝌蚪91| 91国产中文字幕| 黄色视频,在线免费观看| 中文字幕人成人乱码亚洲影| 亚洲少妇的诱惑av| 欧美国产精品va在线观看不卡| 午夜成年电影在线免费观看| 男人的好看免费观看在线视频 | 久久热在线av| 非洲黑人性xxxx精品又粗又长| 人成视频在线观看免费观看| 午夜福利,免费看| 免费看a级黄色片| 麻豆成人av在线观看| 欧美绝顶高潮抽搐喷水| 久久影院123| x7x7x7水蜜桃| 国产精品久久久久久人妻精品电影| 色综合站精品国产| 国产不卡一卡二| 色哟哟哟哟哟哟| 亚洲午夜理论影院| 国产在线精品亚洲第一网站| 精品一区二区三区四区五区乱码| 色播亚洲综合网| 久久久水蜜桃国产精品网| 国产高清激情床上av| 少妇粗大呻吟视频| 99国产精品一区二区三区| 久久人妻av系列| 国产单亲对白刺激| 给我免费播放毛片高清在线观看| 国产亚洲欧美精品永久| 中文字幕另类日韩欧美亚洲嫩草| 国产精品免费一区二区三区在线| 91字幕亚洲| 99国产精品一区二区三区| 免费久久久久久久精品成人欧美视频| 精品欧美国产一区二区三| 成在线人永久免费视频| 99热只有精品国产| 涩涩av久久男人的天堂| 动漫黄色视频在线观看| 色婷婷久久久亚洲欧美| 啦啦啦观看免费观看视频高清 | 大型黄色视频在线免费观看| 色哟哟哟哟哟哟| 一本大道久久a久久精品| 成人三级做爰电影| 国产黄a三级三级三级人| 乱人伦中国视频| 欧美精品亚洲一区二区| 9191精品国产免费久久| 国产高清videossex| 国产区一区二久久| 成年人黄色毛片网站| av超薄肉色丝袜交足视频| 变态另类丝袜制服| 97人妻精品一区二区三区麻豆 | 少妇的丰满在线观看| 女人精品久久久久毛片| 国产亚洲av嫩草精品影院| av视频在线观看入口| 国产成人精品在线电影| 视频区欧美日本亚洲| 国产一区在线观看成人免费| 一进一出抽搐gif免费好疼| 亚洲一区中文字幕在线| 久久青草综合色| 九色国产91popny在线| 最新在线观看一区二区三区| 国产色视频综合| 亚洲aⅴ乱码一区二区在线播放 | 丝袜美足系列| 久久久久久久久免费视频了| 亚洲精品国产一区二区精华液| 可以免费在线观看a视频的电影网站| 精品熟女少妇八av免费久了| 亚洲精华国产精华精| 免费女性裸体啪啪无遮挡网站| 久久精品影院6| 丰满的人妻完整版| 欧美av亚洲av综合av国产av| 午夜视频精品福利| 又紧又爽又黄一区二区| 国产午夜福利久久久久久| 国产精品国产高清国产av| 亚洲午夜理论影院| 欧美最黄视频在线播放免费| 国产人伦9x9x在线观看| 日韩欧美国产在线观看| 女人精品久久久久毛片| 一本久久中文字幕| 满18在线观看网站| 国产成人精品在线电影| videosex国产| 欧美老熟妇乱子伦牲交| 久久人人精品亚洲av| 亚洲一区中文字幕在线| 一本综合久久免费| 午夜福利影视在线免费观看| 一级毛片精品| 国产成人av激情在线播放| 婷婷丁香在线五月| 女人精品久久久久毛片| 国产麻豆69| 一区在线观看完整版| 久久久久国内视频| 免费观看人在逋| 亚洲人成77777在线视频| 亚洲久久久国产精品| 久久中文看片网| 亚洲精品久久成人aⅴ小说| 男女午夜视频在线观看| 亚洲美女黄片视频| 99久久久亚洲精品蜜臀av| 黑人巨大精品欧美一区二区mp4| 不卡av一区二区三区| 无限看片的www在线观看| 国产精品98久久久久久宅男小说| 99国产精品一区二区三区| 国产熟女xx| 亚洲成人久久性| 女性被躁到高潮视频| 麻豆成人av在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | av天堂久久9| 久久精品国产综合久久久| 欧美成人午夜精品| netflix在线观看网站| 免费一级毛片在线播放高清视频 | 欧美黑人欧美精品刺激| 国产精品二区激情视频| 亚洲成人国产一区在线观看| 国产精品久久久人人做人人爽| 国产主播在线观看一区二区| 亚洲欧美日韩无卡精品| 一区福利在线观看| 老汉色av国产亚洲站长工具| 女生性感内裤真人,穿戴方法视频| 90打野战视频偷拍视频| 久久久久九九精品影院| 中文字幕色久视频| 首页视频小说图片口味搜索| 婷婷丁香在线五月| 高清在线国产一区| 最新美女视频免费是黄的| 欧美最黄视频在线播放免费| netflix在线观看网站| 黑人操中国人逼视频| 男男h啪啪无遮挡| 国产亚洲精品一区二区www| 757午夜福利合集在线观看| 动漫黄色视频在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品在线观看二区| 亚洲美女黄片视频| 精品国产一区二区三区四区第35| 一区二区日韩欧美中文字幕| 久久精品aⅴ一区二区三区四区| 色综合亚洲欧美另类图片| 久久婷婷人人爽人人干人人爱 | 国产麻豆成人av免费视频| 国产精品秋霞免费鲁丝片| 十分钟在线观看高清视频www| 一卡2卡三卡四卡精品乱码亚洲| 国产aⅴ精品一区二区三区波| 精品国内亚洲2022精品成人| 真人做人爱边吃奶动态| 91精品国产国语对白视频| 国产亚洲精品av在线| 午夜福利影视在线免费观看| 女性被躁到高潮视频| 国产精品国产高清国产av| 一二三四在线观看免费中文在| 免费无遮挡裸体视频| 精品一区二区三区视频在线观看免费| 亚洲av成人不卡在线观看播放网| 巨乳人妻的诱惑在线观看| 免费av毛片视频| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久精品电影 | 99re在线观看精品视频| 欧美日本亚洲视频在线播放| 亚洲精品一区av在线观看| 无遮挡黄片免费观看| 午夜a级毛片| 1024香蕉在线观看| 十八禁网站免费在线| 日韩av在线大香蕉| 在线观看免费日韩欧美大片| 99在线视频只有这里精品首页| 久久久久久亚洲精品国产蜜桃av| 黑人操中国人逼视频| 亚洲美女黄片视频| 两个人视频免费观看高清| 在线观看免费午夜福利视频| 精品国内亚洲2022精品成人| 每晚都被弄得嗷嗷叫到高潮| 啦啦啦 在线观看视频| 两性夫妻黄色片| 两个人看的免费小视频| 国产精品1区2区在线观看.| av中文乱码字幕在线| 老汉色av国产亚洲站长工具| 国产精华一区二区三区| av片东京热男人的天堂| 中文字幕久久专区| 亚洲成人免费电影在线观看| 日韩 欧美 亚洲 中文字幕| 91av网站免费观看| 国产亚洲欧美98| 美国免费a级毛片| 手机成人av网站| 老汉色∧v一级毛片| 久久久久久人人人人人| 午夜视频精品福利| 麻豆久久精品国产亚洲av| 12—13女人毛片做爰片一| 激情视频va一区二区三区| 欧美成人午夜精品| 黄色 视频免费看| 麻豆久久精品国产亚洲av| 精品一区二区三区视频在线观看免费| 黄片大片在线免费观看| av天堂久久9| 777久久人妻少妇嫩草av网站| 日本五十路高清| 极品教师在线免费播放| 18禁黄网站禁片午夜丰满| 国产aⅴ精品一区二区三区波| av免费在线观看网站| 久久狼人影院| 久久精品国产清高在天天线| 欧美在线一区亚洲| 桃色一区二区三区在线观看| 丁香六月欧美| 麻豆成人av在线观看| 国产xxxxx性猛交| a级毛片在线看网站| 多毛熟女@视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲第一欧美日韩一区二区三区| 久久国产亚洲av麻豆专区| 麻豆成人av在线观看| 一区二区日韩欧美中文字幕| 黄色视频,在线免费观看| 国产成人影院久久av| 可以免费在线观看a视频的电影网站| 极品人妻少妇av视频| 亚洲av片天天在线观看| 伊人久久大香线蕉亚洲五| 欧美黑人欧美精品刺激| 一级片免费观看大全| 性欧美人与动物交配| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产高清国产av| 日韩免费av在线播放| 天堂√8在线中文| 一区二区三区精品91| av天堂久久9| 日韩中文字幕欧美一区二区| 欧美老熟妇乱子伦牲交| 18禁裸乳无遮挡免费网站照片 | 免费高清在线观看日韩| 欧美色视频一区免费| 久久热在线av| 动漫黄色视频在线观看| 欧美老熟妇乱子伦牲交| 99riav亚洲国产免费| 亚洲男人的天堂狠狠| 久久午夜综合久久蜜桃| 99久久久亚洲精品蜜臀av| 久久久国产欧美日韩av| 美女高潮喷水抽搐中文字幕| 黄频高清免费视频| 在线观看午夜福利视频| 精品第一国产精品| 中文字幕av电影在线播放| 午夜免费成人在线视频| 久热这里只有精品99| or卡值多少钱| 日本撒尿小便嘘嘘汇集6| 国产1区2区3区精品| 色综合亚洲欧美另类图片| 黄色视频不卡| 国产国语露脸激情在线看| 一级毛片高清免费大全| 97碰自拍视频| 国产av精品麻豆| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 亚洲自拍偷在线| 欧美成人性av电影在线观看| 97超级碰碰碰精品色视频在线观看| 一本综合久久免费| 国产精品久久久人人做人人爽| 好男人在线观看高清免费视频 | 在线播放国产精品三级| 午夜激情av网站| 日韩欧美三级三区| 在线观看免费日韩欧美大片| 精品国产一区二区久久| 一本综合久久免费| 欧美日韩黄片免| 日韩 欧美 亚洲 中文字幕| 亚洲人成77777在线视频| 一卡2卡三卡四卡精品乱码亚洲| 一二三四在线观看免费中文在| 宅男免费午夜| 欧美色视频一区免费| 国产99久久九九免费精品| 亚洲专区国产一区二区| 在线免费观看的www视频| 电影成人av| 久久伊人香网站| 亚洲三区欧美一区| 18禁国产床啪视频网站| 久久久久国内视频| √禁漫天堂资源中文www| 又黄又爽又免费观看的视频| 久热这里只有精品99| 亚洲aⅴ乱码一区二区在线播放 | 在线永久观看黄色视频| 久99久视频精品免费| 亚洲自偷自拍图片 自拍| 侵犯人妻中文字幕一二三四区| 日本欧美视频一区| 黄色视频,在线免费观看| 热99re8久久精品国产| 啦啦啦观看免费观看视频高清 | 大型av网站在线播放| www国产在线视频色| 午夜福利影视在线免费观看| 午夜福利高清视频| 精品乱码久久久久久99久播| 亚洲精品久久国产高清桃花| 老司机午夜福利在线观看视频| 搡老熟女国产l中国老女人| 女性生殖器流出的白浆| 1024视频免费在线观看| 99久久99久久久精品蜜桃| 国产av一区二区精品久久| 男人的好看免费观看在线视频 | 99在线人妻在线中文字幕| 十分钟在线观看高清视频www| 日韩精品中文字幕看吧| 久久天堂一区二区三区四区| 视频在线观看一区二区三区| 精品欧美一区二区三区在线| 老司机深夜福利视频在线观看| 国产在线观看jvid| 一边摸一边抽搐一进一小说| 中文字幕久久专区| 久久人人97超碰香蕉20202| 俄罗斯特黄特色一大片| 首页视频小说图片口味搜索| 亚洲色图av天堂| 国产精品一区二区三区四区久久 | 深夜精品福利| 国产色视频综合| 亚洲天堂国产精品一区在线| 亚洲欧美日韩另类电影网站| 长腿黑丝高跟| 欧美色视频一区免费| 在线观看舔阴道视频| 国产xxxxx性猛交| 久久久久久久久久久久大奶| 中文字幕最新亚洲高清| 亚洲全国av大片| 亚洲九九香蕉| 国产精品亚洲av一区麻豆| 久久国产精品影院| 啦啦啦 在线观看视频| 女人被狂操c到高潮| 亚洲五月色婷婷综合| 99在线人妻在线中文字幕| av片东京热男人的天堂| 欧美日韩精品网址| 亚洲av成人av| 国产97色在线日韩免费| 手机成人av网站| 深夜精品福利| 国产区一区二久久| 麻豆成人av在线观看| 亚洲av日韩精品久久久久久密| 大码成人一级视频| 国产一级毛片七仙女欲春2 | 亚洲国产精品sss在线观看| 欧美在线一区亚洲| 黄色丝袜av网址大全| 成年版毛片免费区| 成人免费观看视频高清| 久9热在线精品视频| 久久国产亚洲av麻豆专区| 91字幕亚洲| 女生性感内裤真人,穿戴方法视频| 欧美午夜高清在线| 两个人视频免费观看高清| 亚洲欧洲精品一区二区精品久久久| 99久久久亚洲精品蜜臀av| 少妇裸体淫交视频免费看高清 | 亚洲一区二区三区色噜噜| 亚洲人成77777在线视频| 色尼玛亚洲综合影院| 一进一出抽搐gif免费好疼| 久久久国产精品麻豆| 国内精品久久久久久久电影| 老司机深夜福利视频在线观看| 欧美黑人精品巨大| 久久九九热精品免费| 精品国产国语对白av| 亚洲精品久久成人aⅴ小说| 香蕉国产在线看| 亚洲av成人一区二区三| av欧美777| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕精品免费在线观看视频| 在线永久观看黄色视频| 一级作爱视频免费观看| 成人永久免费在线观看视频| 岛国视频午夜一区免费看| 久久久精品国产亚洲av高清涩受| 熟妇人妻久久中文字幕3abv| 国产一卡二卡三卡精品| 别揉我奶头~嗯~啊~动态视频| 黑人操中国人逼视频| 黄色女人牲交| 精品一区二区三区四区五区乱码| 亚洲自偷自拍图片 自拍| 亚洲激情在线av| bbb黄色大片| 精品福利观看| www.999成人在线观看| av片东京热男人的天堂| 亚洲人成网站在线播放欧美日韩| 国产午夜精品久久久久久| 狂野欧美激情性xxxx| 久久香蕉精品热| 亚洲av日韩精品久久久久久密| 亚洲欧美精品综合久久99| 亚洲 欧美 日韩 在线 免费| 国产一区二区三区在线臀色熟女| 精品久久久久久成人av| 亚洲国产欧美日韩在线播放| 日本免费a在线| 两个人看的免费小视频| 涩涩av久久男人的天堂| 视频在线观看一区二区三区| 精品久久久久久久人妻蜜臀av | 午夜福利免费观看在线| 日本在线视频免费播放| 国产午夜福利久久久久久| 51午夜福利影视在线观看| 91老司机精品| 午夜福利18| 久久久国产成人免费| 亚洲欧美精品综合一区二区三区| 国产黄a三级三级三级人| 多毛熟女@视频| 女人高潮潮喷娇喘18禁视频| 日韩精品中文字幕看吧| 男女床上黄色一级片免费看| 校园春色视频在线观看| 此物有八面人人有两片| 一区二区三区精品91| 岛国在线观看网站| 叶爱在线成人免费视频播放| 久久青草综合色| 在线观看免费视频网站a站| 国产麻豆成人av免费视频| 变态另类成人亚洲欧美熟女 | 日韩欧美国产在线观看| 亚洲国产毛片av蜜桃av| 99在线视频只有这里精品首页| 97人妻天天添夜夜摸| 国内毛片毛片毛片毛片毛片| 欧美久久黑人一区二区| 久久狼人影院| 精品一区二区三区四区五区乱码| 亚洲三区欧美一区| 夜夜爽天天搞| 国产熟女xx| 国产黄a三级三级三级人| 国产av一区在线观看免费| 亚洲欧美日韩无卡精品| 非洲黑人性xxxx精品又粗又长| 亚洲欧美激情综合另类| 国产午夜福利久久久久久| 国产精品久久久久久人妻精品电影| 丝袜美足系列| 变态另类丝袜制服| 久久国产精品人妻蜜桃| 国产高清激情床上av| 91麻豆av在线| 村上凉子中文字幕在线| aaaaa片日本免费| 国产精品综合久久久久久久免费 | 非洲黑人性xxxx精品又粗又长| 精品福利观看| 黄频高清免费视频| 久久人人爽av亚洲精品天堂| 亚洲精品一区av在线观看| 午夜福利视频1000在线观看 | 国产黄a三级三级三级人| 欧美中文综合在线视频| 好男人电影高清在线观看| 国产色视频综合| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看完整版高清| 亚洲精品国产一区二区精华液| 日本五十路高清| 18禁黄网站禁片午夜丰满| 不卡一级毛片| 无遮挡黄片免费观看| 久久久国产成人免费| 黄网站色视频无遮挡免费观看| 大型av网站在线播放| 亚洲自偷自拍图片 自拍| 亚洲人成77777在线视频| 中文字幕av电影在线播放| 日韩欧美三级三区| 高清在线国产一区| 亚洲精品久久成人aⅴ小说| 大码成人一级视频| 国产又爽黄色视频| 性欧美人与动物交配| 亚洲精品一区av在线观看| 日本一区二区免费在线视频| 999久久久精品免费观看国产| 亚洲精品久久国产高清桃花| 日韩精品中文字幕看吧| 亚洲av电影在线进入| 久久 成人 亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 亚洲中文字幕一区二区三区有码在线看 | 欧美+亚洲+日韩+国产| 久久久国产成人免费| 亚洲中文字幕一区二区三区有码在线看 | 久久精品aⅴ一区二区三区四区| 女人被狂操c到高潮| 此物有八面人人有两片| 欧美日韩福利视频一区二区| 亚洲三区欧美一区| 电影成人av| 久久久久国产精品人妻aⅴ院| 免费观看人在逋| 亚洲国产欧美网| 国产精品九九99| 脱女人内裤的视频| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 两个人免费观看高清视频| 欧美另类亚洲清纯唯美| 久久国产精品男人的天堂亚洲| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区蜜桃| 69精品国产乱码久久久| 亚洲欧美激情在线| 视频在线观看一区二区三区| 国产乱人伦免费视频| 亚洲av熟女| www日本在线高清视频| 久久中文字幕人妻熟女|