尹興,張麗娟,李博文,劉文菊,郭艷杰,李玉濤
?
氮肥與雙氰胺配施對(duì)溫室番茄生產(chǎn)及活性氮排放的影響
尹興1,張麗娟1,李博文1,劉文菊1,郭艷杰1,李玉濤2
(1河北農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院/河北省農(nóng)田生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室/河北農(nóng)業(yè)大學(xué)邸洪杰土壤與環(huán)境實(shí)驗(yàn)室,河北保定 071000;2秸稈控股有限公司,北京 100026)
【目的】研究田間條件下氮肥與硝化抑制劑雙氰胺(dicyandiamide,DCD)配施對(duì)溫室番茄產(chǎn)量、品質(zhì)及活性氮損失的影響,明確DCD在棚室蔬菜生產(chǎn)體系中的作用及其硝化抑制效果,為氮肥減施增效提供依據(jù)?!痉椒ā吭囼?yàn)在河北省永清縣番茄主產(chǎn)區(qū)北岔口村進(jìn)行,供試作物為番茄。試驗(yàn)設(shè)5個(gè)處理,分別為不施氮對(duì)照(N0)、傳統(tǒng)施氮(Con)、傳統(tǒng)施氮+雙氰胺(Con+DCD)、減量施氮(Opt)和減量施氮+雙氰胺(Opt+DCD),定期對(duì)溫室番茄追肥期間土壤無(wú)機(jī)氮、N2O排放量和NH3揮發(fā)損失量等指標(biāo)進(jìn)行測(cè)定。利用流動(dòng)分析儀測(cè)定土壤無(wú)機(jī)氮含量,氣相色譜儀測(cè)定N2O排放量,-標(biāo)準(zhǔn)稀酸滴定法測(cè)定NH3揮發(fā)量。應(yīng)用SAS軟件對(duì)不同處理的產(chǎn)量、品質(zhì)和各個(gè)指標(biāo)進(jìn)行方差分析?!窘Y(jié)果】氮肥與DCD配施可以提高番茄產(chǎn)量,Con+DCD較Con、Opt+DCD較Opt處理分別提高了20.2%和2.4%,其中Con+DCD產(chǎn)量顯著高于Con;同時(shí),Con+DCD和Opt+DCD的氮肥農(nóng)學(xué)效率(NAE)和氮肥偏生產(chǎn)力(PFP)均顯著高于Con和Opt,其中Con+DCD較Con、Opt+DCD較Opt處理的NAE分別提高了176.7%和22.3%;此外,配施DCD顯著降低了棚室番茄果實(shí)的硝酸鹽含量,Con+DCD較Con、Opt+DCD較Opt處理分別降低了28.6%和19.3%,其他品質(zhì)指標(biāo)處理間差異不顯著。氮肥與DCD配施顯著降低了NO3--N在0—100 cm土層的累積,Con+DCD和Opt+DCD的NO3--N累積量分別為607.1和441.8 kg·hm-2,較Con(708.4 kg·hm-2)和Opt(524.2 kg·hm-2)降低了14.3%和15.7%。各處理N2O排放通量和NH3揮發(fā)速率的峰值分別出現(xiàn)在施肥后第3天和第2天,總體來(lái)看,DCD能有效降低N2O排放和NH3揮發(fā)損失,Con+DCD較Con、Opt+DCD較Opt處理的N2O累積排放量和NH3揮發(fā)累積量分別降低了51.2%、75.4%和17.2%、21.9%?!窘Y(jié)論】在本試驗(yàn)條件下,氮肥與DCD配施提高了溫室番茄的產(chǎn)量、氮肥農(nóng)學(xué)效率和氮肥偏生產(chǎn)力,減少了土壤NO3--N在0—100 cm土層的累積,降低了N2O排放量和NH3揮發(fā)損失量,且以減氮50%并配施DCD(Opt+DCD)的效果最好。因此,在溫室番茄生產(chǎn)中,適當(dāng)減氮并配施DCD是一種科學(xué)有效的施肥管理方式。
氮肥;雙氰胺;活性氮;溫室番茄
【研究意義】中國(guó)是世界蔬菜生產(chǎn)第一大國(guó),2014年種植面積達(dá)2 140.5×104hm2,較2007年增加了20.8%[1]。近年來(lái),由于設(shè)施蔬菜具有反季節(jié)、短周期、高效益等優(yōu)點(diǎn),已成為中國(guó)蔬菜生產(chǎn)發(fā)展的主要趨勢(shì),平均以每年10%以上的速度增長(zhǎng),預(yù)計(jì)2020年將超過(guò)700×104hm2,占中國(guó)蔬菜種植面積的25%強(qiáng)[1-2]。經(jīng)濟(jì)利益的驅(qū)動(dòng)及“大肥大水”的傳統(tǒng)觀念,設(shè)施菜田的施氮量遠(yuǎn)高于當(dāng)?shù)赝扑]施氮量,由此帶來(lái)的環(huán)境問(wèn)題也日益嚴(yán)重[3-4]。大量研究表明,設(shè)施菜田的氮肥利用率遠(yuǎn)低于水田和旱作農(nóng)業(yè),僅14.5%—22.5%[5],損失的氮肥主要以硝酸鹽形式流失或淋溶到土壤深層,或經(jīng)氨揮發(fā)、硝化-反硝化作用,以氨(NH3)、氮氧化物(NOX)等氣體形式進(jìn)入大氣,大量活性氮的排放最終導(dǎo)致土壤、水體氮素富營(yíng)養(yǎng)化,土壤酸化,陸地、海洋生態(tài)系統(tǒng)生物多樣性降低等一系列嚴(yán)重問(wèn)題[6-8]。因此,明確設(shè)施菜田合理施氮量并尋求降低蔬菜生產(chǎn)中活性氮損失的有效措施,是當(dāng)前設(shè)施蔬菜生產(chǎn)亟待解決的問(wèn)題?!厩叭搜芯窟M(jìn)展】硝化抑制劑雙氰胺(DCD)含氮量高、易溶于水且降解產(chǎn)物無(wú)污染,施入土壤后,通過(guò)降低酶活性而抑制土壤硝化作用,進(jìn)而減少土壤氮素殘留量、降低溫室氣體排放及提高氮肥利用率[9-11]。國(guó)內(nèi)外研究表明,氮肥與DCD配施可以顯著降低土壤N2O排放,且具有一定的增產(chǎn)作用。試驗(yàn)發(fā)現(xiàn),DCD可以降低麥季32.6%—49%、玉米季20.1—31.8%的土壤N2O排放,增產(chǎn)幅度分別達(dá)到9.0%—26.9%和9.1%—34.5%[12-16]。相比于大田作物,設(shè)施菜田的研究相對(duì)較少。張婧等[17]研究得出,DCD可以降低設(shè)施蔬菜N2O周年排放的37.2%;張琳等[18]研究發(fā)現(xiàn),DCD能減少溫室黃瓜生長(zhǎng)季42.1%—64.1%的土壤N2O排放,增產(chǎn)率達(dá)5.0%—17.8%。目前,DCD的施用對(duì)土壤氨揮發(fā)的影響還存在爭(zhēng)議。皮荷杰等[19]通過(guò)室內(nèi)培養(yǎng)試驗(yàn)得出,配施DCD的土壤比對(duì)照土壤中氨揮發(fā)總量增加了5倍以上,張琳等[18]的研究也表明,配施DCD使土壤氨揮發(fā)增加了34.3%—40.4%;但CLAY等[20]認(rèn)為配施DCD并不能使氨揮發(fā)量增加,聶文靜等[21]在棚室黃瓜上的研究同樣得出,配施DCD后土壤氨揮發(fā)量降低了43.7%—66.5%。本課題組近年來(lái)針對(duì)設(shè)施蔬菜體系中DCD的施用效果進(jìn)行了深入研究,基本得出了減氮控水且配施15%DCD效果最佳的結(jié)論[18]?!颈狙芯壳腥朦c(diǎn)】綜合國(guó)內(nèi)外研究,目前關(guān)于氮肥與DCD配施對(duì)設(shè)施蔬菜的田間研究結(jié)果尚較少,且對(duì)于配施DCD后土壤氨揮發(fā)的結(jié)果還不清楚。關(guān)于減施氮肥及配施DCD后,設(shè)施蔬菜的產(chǎn)量、品質(zhì)、氮肥農(nóng)學(xué)效率及活性氮損失的系統(tǒng)研究還需進(jìn)一步加強(qiáng)?!緮M解決的關(guān)鍵問(wèn)題】本研究以日光溫室果菜類——番茄為供試對(duì)象,基于常規(guī)、減氮兩種施肥模式,研究配施DCD對(duì)溫室番茄生產(chǎn)及活性氮損失的影響,為中國(guó)北方設(shè)施蔬菜的氮肥高效管理提供科學(xué)指導(dǎo)。
試驗(yàn)于2013年9月至2014年3月在河北省永清縣番茄主產(chǎn)區(qū)北岔口村(東經(jīng)116°25′,北緯39°13′)進(jìn)行。試驗(yàn)所在地為暖溫帶大陸性季風(fēng)氣候,年平均氣溫11.5℃,年均日照時(shí)間為2 740 h,年均降水量509 mm。土壤基本理化性質(zhì)見(jiàn)表1。
表1 供試棚室土壤基本理化性質(zhì)
本研究供試作物為番茄,共設(shè)置5個(gè)處理,分別為:(1)不施氮對(duì)照(N0);(2)傳統(tǒng)施氮(Con),施氮量為600 kgN·hm-2;(3)傳統(tǒng)施氮+雙氰胺(Con+DCD),施氮量同處理Con,DCD添加量為所施氮肥含氮量的15%;(4)減量施氮(Opt),施氮量為300 kg N·hm-2;(5)減量施氮+雙氰胺(Opt+DCD),施氮量同處理Opt,DCD添加量為所施氮肥含氮量的15%。磷鉀施用量相同,P2O5施用量為225 kg·hm-2,K2O施用量為600 kg·hm-2。本試驗(yàn)于2013年9月30日定植,2014年3月5日收獲。番茄定植前施用基肥并翻耕,其中有機(jī)肥為雞糞,氮肥施用量為施肥總量的30%,磷鉀肥一次性施入;追肥分4次進(jìn)行,氮肥施用量依次為施肥總量的25%、25%、10%、10%。試驗(yàn)地總面積為586.9 m2,番茄栽培模式采用常規(guī)的畦栽方式,3畦為1個(gè)小區(qū),小區(qū)間距1.2 m,株行距0.3 m×0.8 m,種植密度為4.5×104株/hm2左右。在番茄整個(gè)生長(zhǎng)季灌水(畦灌)及其他田間管理措施按照當(dāng)?shù)爻R?guī)習(xí)慣管理模式進(jìn)行。
1.3.1 土壤基本理化性質(zhì)的測(cè)定 土壤容重采用環(huán)刀法;機(jī)械組成采用吸管法;有機(jī)質(zhì)采用重鉻酸鉀容量法;無(wú)機(jī)氮用1.0 mol·L-1KCl浸提,流動(dòng)分析儀測(cè)定;速效磷用1.0 mol·L-1NaHCO3浸提,鉬銻抗比色法測(cè)定;速效鉀用1.0 mol·L-1NH4OAc浸提,火焰光度法測(cè)定[22]。
1.3.2 產(chǎn)量的測(cè)定 自番茄第一次收獲至采摘結(jié)束期間,對(duì)各試驗(yàn)小區(qū)番茄進(jìn)行全部采收,稱重后以小區(qū)為單位記錄番茄產(chǎn)量。
1.3.3 品質(zhì)的測(cè)定 硝酸鹽含量采用濃H2SO4-水楊酸比色法測(cè)定;Vc含量采用鉬藍(lán)比色法測(cè)定;可溶性蛋白質(zhì)含量采用考馬斯亮藍(lán)G-250染色法測(cè)定;可溶性糖含量采用濃硫酸-蒽酮比色法測(cè)定;可滴定酸采用堿測(cè)定法測(cè)定[22]。
1.3.4 N2O的測(cè)定 采用密閉式靜態(tài)箱法測(cè)定,每次灌水施肥后第一天開(kāi)始,連續(xù)一周進(jìn)行采樣(若施肥間隔時(shí)間較長(zhǎng),酌情加密采樣),采樣時(shí)間為每天上午9:00—11:00,每隔15 min采樣1次,在0、15、30 min時(shí)共采集3次氣體樣品并同步測(cè)定箱內(nèi)溫度。N2O氣體樣品利用Agilent 7890A型氣相色譜儀進(jìn)行分析。N2O檢測(cè)器為電子捕獲檢測(cè)器(ECD),載氣為氮?dú)?,流量? mL·min-1,分離柱內(nèi)填充料為80—100目PorpakQ,分離柱溫度為55℃,檢測(cè)器溫度設(shè)定為330℃。
1.3.5 NH3的測(cè)定 采用密閉室法測(cè)定,與N2O氣體同步監(jiān)測(cè)。試驗(yàn)時(shí)將20 mL的硼酸溶液加入到50 mL的蒸發(fā)皿中,吸收24 h后用標(biāo)準(zhǔn)硫酸滴定硼酸中所吸收的氨。
氮肥農(nóng)學(xué)效率(NAE,kg·kg-1)= (施氮區(qū)產(chǎn)量-不施氮區(qū)產(chǎn)量)/施氮量;
氮肥偏生產(chǎn)力(PFP,kg·kg-1)=施氮區(qū)產(chǎn)量/施氮量;
土壤硝態(tài)氮累積量(kg·hm-2)=土層厚度(cm)×土壤容重(g·cm-3)×土壤硝態(tài)氮含量(mg·kg-1)/10;
N2O的排放通量計(jì)算公式為:
F = p×V/A×dc/dt ×273/( 273 + T) ×60
式中,F(xiàn)為N2O排放通量(μg·m-2·h-1);p為標(biāo)準(zhǔn)狀態(tài)下N2O的密度,其值是1.25 kg·m-3;V表示密閉箱內(nèi)溫室氣體所能容納的有效體積(m3);A為箱內(nèi)土面面積(m2);dc/dt表示單位時(shí)間內(nèi)密閉箱內(nèi)N2O體積分?jǐn)?shù)的變化量(10-9/min ),T為測(cè)定時(shí)密閉箱內(nèi)平均溫度(℃)。
氨揮發(fā)速率計(jì)算公式為:
NH3--N (kg·hm-2·d-1)=M·A-1·D-1·10-2
式中,M為密閉法單個(gè)裝置每次測(cè)得的氨量(NH3--N,mg);A為捕獲裝置的橫截面積(m2);D為每次連續(xù)捕獲的時(shí)間(d)。
凈排放系數(shù)=(施氮區(qū)排放量-不施氮區(qū)排放量)/施氮量
試驗(yàn)數(shù)據(jù)采用Excel 2007進(jìn)行處理,用SPSS18.0、SAS 8.0軟件進(jìn)行顯著性及相關(guān)性分析。
從表2可以看出,與N0相比,各施氮處理產(chǎn)量均顯著提高,傳統(tǒng)施氮(Con)、傳統(tǒng)施氮+雙氰胺(Con+DCD)、減量施氮(Opt)和減量施氮+雙氰胺(Opt+DCD)的增產(chǎn)率分別達(dá)到12.9%、35.8%、11.9%和14.6%;配施DCD后,Con+DCD較Con、Opt+DCD較Opt處理的產(chǎn)量分別增加了20.2%和2.4%,其中Con+DCD顯著高于Con處理;與Con相比,Opt+DCD的施氮量雖減少了50%,但產(chǎn)量增加了1.5%。
氮肥偏生產(chǎn)力(PFP)隨著施氮量的降低而增高,且配施DCD的效果更好;Con+DCD和Opt+DCD的PFP分別為190和321 kg·kg-1,顯著高于Con和Opt的158和313 kg·kg-1;與Con相比,Opt+DCD的PFP增加了102.9%,處于最高水平。Con+DCD和Opt+DCD的氮肥農(nóng)學(xué)效率(NAE)顯著高于Con和Opt,Opt+ DCD的NAE較Con增加了125.5%,達(dá)到顯著水平。
表2 配施DCD對(duì)溫室番茄產(chǎn)量、品質(zhì)及氮肥效率的影響
N0:不施氮對(duì)照;Con:傳統(tǒng)施氮;Con+DCD:傳統(tǒng)施氮+雙氰胺;Opt:減量施氮;Opt+DCD:減量施氮+雙氰胺;NAE:氮肥農(nóng)學(xué)效率;PFP:氮肥偏生產(chǎn)力
N0: Control treatment; Con: Conventional N fertilization rate; Con+DCD: Conventional N fertilization plus nitrification inhibitor; Opt: Optimal N fertilization rate; Opt+DCD: Optimal N fertilization plus nitrification inhibitor; NAE: Agronomy efficiency of nitrogen fertilizer; PFP: nitrogen partial factor product
各處理品質(zhì)指標(biāo)中,N0的Vc和硝酸鹽含量極低,僅82.6和30.0 mg·kg-1,顯著低于其他各施氮處理,可溶性糖、可滴定酸和可溶性蛋白質(zhì)在各處理間差異不顯著;配施DCD可顯著降低果實(shí)中的硝酸鹽含量,Con+DCD較Con,Opt+DCD較Opt分別降低了28.6%和19.3%。綜合來(lái)看,減施氮肥并配施DCD(Opt+ DCD)的產(chǎn)量、PFP和NAE均處于較高水平,且品質(zhì)沒(méi)有降低(>0.05)。
不同施氮模式0—100 cm土層NO3--N含量差異較大(圖1),傳統(tǒng)施氮(Con)、傳統(tǒng)施氮+雙氰胺(Con+DCD)、減量施氮(Opt)和減量施氮+雙氰胺(Opt+DCD)在0—100 cm土層的NO3--N累積量分別為708.4、607.1、524.2和441.8 kg·hm-2,均顯著高于N0的360.9 kg·hm-2;Con+DCD較Con、Opt+DCD較Opt分別降低了14.3%和15.7%;與Con相比,減氮50%并配施DCD(Opt+DCD)的NO3--N累積量降低了37.6%。各土層NO3--N含量在不同施氮模式的累積量也存在較大差異,0—60 cm土層中,N0的NO3--N含量呈逐漸降低趨勢(shì),而其他各處理NO3--N累積量均逐漸升高,且在40—60 cm處達(dá)到峰值;與Con、Con+DCD相比,推薦施肥Opt、Opt+DCD在各土層的累積量較平均,且NO3--N累積量在最高的40—60 cm處分別較Con、Con+DCD降低了40.9%和59.5%;60—100 cm土層中,Opt+DCD的NO3--N累積量最低(171.6kg·hm-2),較Con降低了16.6%。總體來(lái)看,NO3--N在0—100 cm土層有較高的殘留,減氮并配施DCD可以顯著降低NO3--N的累積量及各土層的分布,降低了NO3--N向下層的淋失風(fēng)險(xiǎn)。
2.3.1 對(duì)土壤N2O排放通量的影響 施氮顯著增加了N2O的排放速率,在施氮后一周內(nèi)N2O排放速率維持在一個(gè)較高水平,7 d后顯著降低,各施氮處理的N2O排放峰值均出現(xiàn)在施氮后的第3天(圖2)。試驗(yàn)期間,N0的N2O排放通量變化范圍為2.1—74.2 μg·m-2·h-1,平均25.3 μg·m-2·h-1;施氮處理Con、Con+DCD、Opt和Opt+DCD的N2O排放范圍分別為104.3—2 645.2、46.0—1 584.8、13.8—765.6和4.9—263.0 μg·m-2·h-1,平均值分別為670.4、327.2、179.2和44.1 μg·m-2·h-1。Con+DCD較Con、Opt+DCD較Opt的N2O排放峰值分別降低了40.1%和65.6%;與Con相比,Opt+DCD的N2O排放峰值降低了90.1%??梢?jiàn),減氮并配施DCD可以顯著降低N2O的排放速率。
圖1 土壤0—100 cm剖面硝態(tài)氮?dú)埩袅?/p>
圖2 不同施氮模式土壤氧化亞氮排放動(dòng)態(tài)變化
2.3.2 對(duì)土壤N2O累積排放量和凈排放系數(shù)的影響 分析番茄追肥期間土壤N2O累積排放量(圖3),結(jié)果表明,N0的N2O累積排放量為0.18 kg·hm-2,顯著低于常規(guī)施肥Con(4.83 kg·hm-2)和Con+DCD(2.36 kg·hm-2),與減氮處理Opt(1.29 kg·hm-2)和Opt+DCD(0.32 kg·hm-2)差異不顯著; Con+DCD較Con、Opt+DCD較Opt的N2O累積排放量分別降低了51.2%和75.4%;與Con相比,Opt+DCD 的N2O累積排放量下降了93.4%。表3為不同處理N2O凈排放系數(shù),Con的N2O凈排放系數(shù)為0.78%,顯著高于其他各處理;Opt+DCD的N2O凈排放系數(shù)最低,僅為0.05%。可見(jiàn),推薦施氮管理同時(shí)配施DCD能夠顯著降低土壤的N2O累積排放量。
圖3 溫室番茄生育期內(nèi)土壤氧化亞氮的累積排放量
表3 配施DCD對(duì)N2O凈排放系數(shù)的影響
2.4.1 對(duì)土壤氨揮發(fā)速率的影響 對(duì)番茄追肥期間NH3揮發(fā)速率的動(dòng)態(tài)變化監(jiān)測(cè)表明(圖4),各施氮處理的NH3揮發(fā)速率在施肥灌水后均呈現(xiàn)出先升高后降低的趨勢(shì),7 d后趨于穩(wěn)定。在整個(gè)監(jiān)測(cè)期間,各處理NH3揮發(fā)速率均較低,N0的NH3揮發(fā)速率變化范圍為0.02—0.09 kg·hm-2·d-1,施氮處理Con、Con+DCD、Opt和Opt+DCD的NH3揮發(fā)速率變化范圍分別為0.04—0.38、0.04—0.36、0.04—0.13和0.02—0.08 kg·hm-2·d-1。Con+DCD較Con、Opt+DCD較Opt的NH3揮發(fā)峰值分別降低了5.3%和38.5%;與Con相比, Opt+DCD的NH3揮發(fā)峰值降低了78.9%。可見(jiàn),減氮并配施DCD可以顯著降低土壤NH3揮發(fā)速率。
圖4 不同施氮模式土壤氨揮發(fā)速率
2.4.2 對(duì)土壤氨揮發(fā)損失量的影響 圖5為番茄追肥期間土NH3揮發(fā)累積排放量,結(jié)果表明,N0的NH3揮發(fā)累積排放量為1.46 kg·hm-2,顯著低于常規(guī)施肥Con(3.08 kg·hm-2)和Con+DCD(2.55 kg·hm-2),與減氮處理Opt(1.96 kg·hm-2)和Opt+DCD (1.53 kg·hm-2)差異不顯著;Con+DCD較Con、Opt+DCD較Opt的NH3揮發(fā)累積排放量分別降低了17.2%和21.9%;與Con相比,Opt+DCD 的NH3揮發(fā)累積排放量下降了50.3%。可見(jiàn),推薦施氮管理同時(shí)配施DCD能夠顯著的降低土壤中NH3揮發(fā)損失量。
圖5 溫室番茄生育期內(nèi)土壤氨揮發(fā)的累積排放量
相關(guān)研究表明,設(shè)施蔬菜生產(chǎn)中氮肥的過(guò)量施用導(dǎo)致氮素大部分以NO3--N形式在土壤中累積,極易隨著水分進(jìn)入土壤深層甚至淋出根區(qū),對(duì)地下水造成潛在危害,威脅人類健康[23-25]。本研究中傳統(tǒng)施氮處理Con的氮素投入量為600 kg N·hm-2,NO3--N在0—100 cm土層累積量高達(dá)708.4 kg·hm-2,NO3--N富集現(xiàn)象嚴(yán)重;而減氮50%后,Opt的NO3--N累積量為524.2 kg·hm-2,較Con降低了26.0%。硝化抑制劑DCD可減緩?fù)寥乐蠳H4+-N向NO3--N的轉(zhuǎn)換過(guò)程,從而減少NO3--N在土壤當(dāng)中的累積,降低NO3--N淋失風(fēng)險(xiǎn)[21,26]。郭艷杰等[27]在設(shè)施番茄的研究中表明,DCD可降低0—30 cm土層35.2%—64.9%的NO3--N累積。本研究得出,Con+DCD和Opt+DCD在0—100 cm土層的NO3--N累積量分別為607.1和441.8 kg·hm-2,較Con和Opt降低了14.3%和15.7%;與Con相比,Opt+DCD的NO3--N累積量降低了37.6%。
DCD的施用對(duì)蔬菜產(chǎn)量的提高及降低作物體內(nèi)硝酸鹽含量有一定效果[28-30]。本研究結(jié)果表明,Con+DCD和Opt+DCD產(chǎn)量分別為114和96.2 t·hm-2,較Con和Opt增加了20.2%和2.4%;同時(shí),配施DCD降低了番茄果實(shí)的硝酸鹽含量,Con+DCD和Opt+DCD番茄果實(shí)的硝酸鹽含量分別較Con和Opt降低了28.6%和19.3%。但本研究中DCD對(duì)番茄果實(shí)硝酸鹽的降低效果較低,與郭艷杰等研究得出降低51.9%—62.8%的結(jié)果存在一定差距[27],這可能與本研究中施氮處理番茄果實(shí)體內(nèi)的硝酸鹽含量(210—294 mg·kg-1)均較高有關(guān)。
氮肥易以氨形式揮發(fā)損失,或通過(guò)硝化過(guò)程和反硝化過(guò)程生成氧化亞氮[31-32]。本研究中,所有施氮處理的氨揮發(fā)和氧化亞氮排放量均高于不施氮(N0),說(shuō)明氮肥可明顯促進(jìn)土壤氨揮發(fā)和氧化亞氮排放;DCD可以降低土壤的NH3揮發(fā)累積量,Con+DCD和Opt+DCD的NH3揮發(fā)累積排放量為2.55和1.53kg·hm-2,分別較Con(3.08kg·hm-2)和Opt(1.96kg·hm-2)降低了17.2%和21.9%,與聶文靜[21]在棚室黃瓜上的結(jié)論一致,但低于其得出降低43.7%—66.5%的結(jié)果,其原因?yàn)镈CD添加量(10%)及水氮管理均不同導(dǎo)致;但張琳等[18]認(rèn)為,DCD的施用使土壤較長(zhǎng)時(shí)間保持較高的銨態(tài)氮濃度,從而提高了氨揮發(fā)的威脅,使土壤氨揮發(fā)增加了34.3%—40.4%,與本試驗(yàn)結(jié)果相左,其原因在于作物體系和土壤理化性質(zhì)的不同。
但是,要完全評(píng)價(jià)棚室菜田向大氣的NH3排放,作物冠層是不可忽視的。PING等[33]利用同位素示蹤法對(duì)施肥后小麥田NH3排放進(jìn)行的研究表明,兩次施肥后小麥冠層對(duì)NH3排放均有一定的吸收情況。FENILLI等[34]同樣研究得出,咖啡植物可以吸收約40%的NH3排放。因此,在棚室菜田相對(duì)密閉的環(huán)境中,植物冠層對(duì)于排放出來(lái)的NH3會(huì)有一定的吸收,從而降低向棚室外的排放。
設(shè)施菜田的N2O排放具有峰值短促且峰值較高的現(xiàn)象,N2O排放高峰一般出現(xiàn)在施氮后的1—3 d[17-18,35]。本試驗(yàn)期間,施氮處理土壤N2O排放高峰均出現(xiàn)在施肥灌水后的第3天,且最高峰值達(dá)2 645 μg·m-2·h-1。郝小雨[36]等的研究發(fā)現(xiàn),N2O排放高峰出現(xiàn)在施肥灌水后第1天,與本研究結(jié)果有所差異,其原因?yàn)榍锒九飪?nèi)溫度較低,土壤N2O排放量降低且高峰期推遲[37]。DCD抑制了銨的硝化作用,導(dǎo)致N2O的排放強(qiáng)度降低。本研究中,Con+DCD和Opt+DCD的N2O排放峰值分別較Con和Opt降低了40.1%和65.6%,N2O累積排放量降低了51.2%和75.4%。
綜上可知,本研究配施DCD的Con+DCD、Opt+DCD處理在產(chǎn)量、品質(zhì)和氮肥農(nóng)學(xué)效率均顯著高于Con和Opt,且降低了土壤NO3--N累積、N2O排放和NH3揮發(fā)損失。其中,Opt+DCD處理在保證番茄產(chǎn)量、品質(zhì)的同時(shí),減少了活性氮的損失,對(duì)降低環(huán)境污染起到了一定作用,可以說(shuō)是解決北方設(shè)施蔬菜生產(chǎn)的合理氮肥管理和DCD調(diào)控手段。
4.1 DCD增加了溫室番茄的產(chǎn)量,兩種施氮模式(Con、Opt)下配施DCD的增產(chǎn)率分別為20.2%和2.4%;同時(shí),DCD顯著提高了氮肥農(nóng)學(xué)效率(NAE),Con+DCD較Con、Opt+DCD較Opt的NAE分別提高了176.7%和22.3%。
4.2 DCD顯著降低了番茄果實(shí)的硝酸鹽含量,Con+DCD較Con、Opt+DCD較Opt番茄果實(shí)的硝酸鹽含量分別降低了28.6%和19.3%。
4.3 減氮并配施DCD顯著降低了土壤N2O排放速率和累積排放量,Con+DCD較Con、Opt+DCD較Opt的N2O排放峰值分別降低了40.1%和65.6%,N2O累積排放量降低了51.2%和75.4%;與Con相比,Opt+DCD的N2O排放峰值和累積排放量分別降低了90.1%和93.4%。
4.4 DCD顯著降低了土壤NH3揮發(fā)損失,Con+DCD較Con、Opt+DCD較Opt的NH3揮發(fā)峰值分別降低了5.3%和38.5%,NH3揮發(fā)累積排放量降低了17.2%和21.9%;與Con相比,Opt+DCD的NH3揮發(fā)峰值和NH3揮發(fā)累積排放量分別降低了78.9%和50.3%。
[1] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2015.
National Bureau of Statistics of the People’s Republic of China.Beijing: China Statistics Press, 2015. (in Chinese)
[2] 喻景權(quán). “十一五”我國(guó)設(shè)施蔬菜生產(chǎn)和科技進(jìn)展及其展望. 中國(guó)蔬菜, 2011(2): 11-23.
YU J Q. Progress in protected vegetable production and research during ‘The Eleventh Five-year Plan’ in China.2011(2):11-23. (in Chinese)
[3] JU X T, KOU C L, ZHANG F S, CHRISTIE P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain., 2006, 143(1):117-25.
[4] JU X T, KOU C L, CHRISTIE P, DOU Z X, ZHANG F S. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain., 2007, 145(2):497-506.
[5] 曹兵, 賀發(fā)云, 徐秋明, 尹斌, 蔡貴信. 南京郊區(qū)番茄地中氮肥的氣態(tài)氮損失. 土壤學(xué)報(bào), 2006, 43(1): 62-68.
CAO B, HE F Y, XU Q M, YIN B, CAI G X. Gaseous losses from fertilizers applied to a tomato field in nanjing suburbs.2006, 43(1):62-68. (in Chinese)
[6] 張麗娟, 巨曉棠, 劉辰琛, 寇長(zhǎng)林. 北方設(shè)施蔬菜種植區(qū)地下水硝酸鹽來(lái)源分析——以山東省惠民縣為例. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(21): 4427-4436.
ZHANG L J, JU X T, LIU C C, KOU C L. A study on nitrate contamination of ground water sources in areas of protected vegetables-growing fields-a case study in Huimin county, Shandong Province., 2010, 43(21): 4427-4436. (in Chinese)
[7] JU X T, LIU X J, ZHANG F S, ROELCKE M. Nitrogen fertilization, soil nitrate accumulation and policy recommendations in several agricultural regions of China.2004, 33(6): 300-305.
[8] HE F F, JIANG R F, CHEN Q, ZHANG F S, SU F. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China., 2009, 157(5): 1666-1672.
[9] DI H J, CAMERON K C, SHERLOCK R R. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions.2007, 23(1): 1-9.
[10] 孫志梅, 武志杰, 陳利軍, 馬星竹. 硝化抑制劑的施用效果、影響因素及其評(píng)價(jià). 應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(7): 1611-1618.
SUN Z M, WU Z J, CHEN L J, MA X Z. Application effect, affecting factors, and evaluation of nitrification inhibitor: A review., 2008, 19(7) : 1611-1678. (in Chinese)
[11] 曾后清, 朱毅勇, 王火焰, 沈其榮. 生物硝化抑制劑——一種控制農(nóng)田氮素流失的新策略. 土壤學(xué)報(bào), 2012, 49(2): 382-388.
ZENG H Q, ZHU Y Y, WANG H Y, SHEN Q R. Biological nitrification inhibitor-A new strategy for controlling nitrogen loss from farmland.2012, 49(2): 382-388. (in Chinese)
[12] BOECKX P, XU X, CLEEMPUT O V. Mitigation of N2O and CH4emission from rice and wheat cropping systems using dicyandiamide and hydroquinone.2005, 72(1): 41-49.
[13] DING W X, YU H Y, CAI Z C. Impact of urease and nitrification inhibitors on nitrous oxide emissions from fluvo-aquic soil in the North China Plain., 2011, 47(1): 91-99.
[14] 王艷群, 李迎春, 彭正萍, 王朝東, 劉亞男. 氮素配施雙氰胺對(duì)冬小麥-夏玉米輪作系統(tǒng)N2O排放的影響及效益分析. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(7): 1999-2006.
WANG Y Q, LI Y C, PENG Z P, WANG C D, LIU Y N. Effects of dicyandiamide combined with nitrogen fertilizer on N2O emission and economic benefit in winter wheat and summer maize rotation system., 2015, 26(7): 1999-2006. (in Chinese)
[15] 吳得峰, 姜繼韶, 高兵, 劉燕, 王蕊, 王志齊, 黨延輝, 郭勝利, 巨曉棠. 添加DCD對(duì)雨養(yǎng)區(qū)春玉米產(chǎn)量、氧化亞氮排放及硝態(tài)氮?dú)埩舻挠绊? 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2016, 22(1): 30-39.
WU D F, JIANG J S, GAO B, LIU Y, WANG R, WANG Z Q, DANG Y H, GUO S L, JU X T. Effects of DCD addition on grain yield, N2O emission and residual nitrate-N of spring maize in rain-fed agriculture., 2016, 22(1): 30-39. (in Chinese)
[16] 劉建濤, 張會(huì)永, 王雪, 崔少雄, 孫志梅. 氮肥調(diào)控劑施用對(duì)小麥生長(zhǎng)、氮素利用及氮素表觀平衡的影響. 水土保持學(xué)報(bào), 2014, 28(1): 209-214.
LIU J T, ZHANG H Y, WANG X, CUI S X, SUN Z M. Effects of nitrogen regulator on wheat growth, nitrogen use efficiency and apparent nitrogen balance., 2014, 28(1): 209-214. (in Chinese)
[17] 張婧, 李虎, 王立剛, 邱建軍. 京郊典型設(shè)施蔬菜地土壤N2O排放特征. 生態(tài)學(xué)報(bào), 2014, 34(14): 4088-4098.
ZHANG J, LI H,WANG L G, QIU J J. Characteristics of nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs.,2014, 34(14): 4088-4098. (in Chinese)
[18] 張琳, 孫卓玲, 馬理, 吉艷芝, 巨曉棠, 張麗娟. 不同水氮條件下雙氰胺(DCD)對(duì)溫室黃瓜土壤氮素?fù)p失的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2015, 21(1): 128-137.
ZHANG L, SUN Z L, MA L, JI Y Z, JU X T, ZHANG L J. Effects of dicyandiamide on nitrogen loss from cucumber planting soil in intensive greenhouse under different irrigation and nitrogen conditions., 2015, 21(1): 128-137. (in Chinese)
[19] 皮荷杰, 曾清如, 蔣朝暉, 奉小優(yōu), 孫毓臨. 兩種硝化抑制劑對(duì)不同土壤中氮素轉(zhuǎn)化的影響. 水土保持學(xué)報(bào), 2009, 23(1): 68-72.
PI H J, ZENG Q R, JIANG Z H, FENG X Y, SUN Y L. Effects of nitrification on transformation of urea in different soils., 2009, 23(1): 68-72. (in Chinese)
[20] CLAY D E, MALZER G L, ANDERSON J L. Ammonia volatilization from urea as influenced by soil temperature, soil water content, and nitrification and hydrolysis inhibitors.1990, 54(1): 263-266.
[21] 聶文靜, 李博文, 郭艷杰, 王小敏, 韓曉莉. 氮肥與DCD配施對(duì)棚室黃瓜土壤NH3揮發(fā)損失及N2O排放的影響. 環(huán)境科學(xué)學(xué)報(bào), 2012, 32(10): 2500-2508.
NIE W J, LI B W, GUO Y J, WANG X M, HAN X L. Effects of nitrogen fertilizer and DCD application on ammonia volatilization and nitrous oxide emission from soil with cucumber growing in greenhouse., 2012, 32(10): 2500-2508. (in Chinese)
[22] 鮑士旦.土壤農(nóng)化分析.北京: 中國(guó)農(nóng)業(yè)科技出版社, 2005.
BAO S D.. Beijing: China Agriculture Scientech Press, 2005. (in Chinese)
[23] HUANG S W, JIN J Y. Status of heavy metals in agricultural soils as affected by different patterns of land use., 2008, 139(1/3): 317-327.
[24] CHEN Q, ZHANG X S, ZHANG H Y, CHRISTIE P, LI X L, HORLACHER D, LIEBIG H P. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region., 2004, 69(1): 51-58.
[25] SONG X Z, ZHAO C X, WANG X L, LI J. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China.2009, 332: 385-392.
[26] CUI M, SUN X C, HU C X, DI H J, TAN Q L, ZHAO C S. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide.2011, 11(5): 722-730.
[27] 郭艷杰, 李博文, 張麗娟, 楊威. 不同水氮條件下雙氰胺對(duì)設(shè)施番茄生長(zhǎng)發(fā)育和土壤氮素淋失的影響. 水土保持學(xué)報(bào), 2013, 27(1): 6-11.
GUO Y J, LI B W, ZHANG L J, YANG W. Effects of dicyandiamide on tomato growth and nitrogen leaching from soil in intensive greenhouse under different irrigation and nitrogen managements., 2013, 27(1): 6-11. (in Chinese)
[28] 余光輝, 張楊珠. 三種硝化抑制劑對(duì)小白菜產(chǎn)量及品質(zhì)的影響. 土壤通報(bào), 2006, 37(4): 737-740.
YU G H, ZHANG Y Z. Yield and nutrition qualities of pakchoi as affected by three types of nitrification inhibitors.2006, 37(4):737-740. (in Chinese)
[29] 周博, 陳竹君, 周建斌. 水肥調(diào)控對(duì)日光溫室番茄產(chǎn)量、品質(zhì)及土壤養(yǎng)分含量的影響. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 34(4): 58-62.
ZHOU B, CHEN Z J, ZHOU J B. Effect of different fertilizer and water managements on the yield and quality of tomatoes and nutrient accumulations in soil cultivated in sunlight greenhouse., 2006, 34(4): 58-62. (in Chinese)
[30] ZHOU J B, CHEN Z J, LIU X J, ZHAI B N, POWLSON D S. Nitrate accumulation in soil profiles under seasonally open ‘sunlight greenhouses’ in northwest China and potential for leaching loss during summer fallow., 2010, 26(3): 332-339.
[31] 蔡延江, 丁維新, 項(xiàng)劍. 土壤N2O和NO產(chǎn)生機(jī)制研究進(jìn)展. 土壤, 2012, 44(5): 712-718.
CAI Y J, DING W X, XIANG J. Mechanisms of nitrous oxide and nitric oxide production in soils: A review.2012, 44(5): 712-718. (in Chinese)
[32] 李鑫, 巨曉棠, 張麗娟, 萬(wàn)云靜, 劉樹(shù)慶. 不同施肥方式對(duì)土壤氨揮發(fā)和氧化亞氮排放的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(1): 99-104.
LI X, JU X T, ZHANG L J, WAN Y J, LIU S Q. Effects of different fertilization modes on soil ammonia volatilization and nitrous oxide emission., 2008, 19(1): 99-104. (in Chinese)
[33] PING J, BREMER E, HENRY H. Foliar uptake of volatilized ammonia from surface‐applied urea by spring wheat.2000, 31(1/2): 165-172.
[34] FENILLI T A B, REICHARDT K, TRIVELIN P C O, FAVARIN J L. Volatilization of ammonia derived from fertilizer and its reabsorption by coffee plants., 2007, 38(13/14): 1741-1751.
[35] 楊威, 郭艷杰, 李博文, 張麗娟, 楊榕. 氮肥與DCD配施對(duì)溫室番茄膨果期土壤N2O排放和產(chǎn)量的影響. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 36(3): 25-29.
YANG W, GUO Y J, LI B W, ZHANG L J, YANG R. Effects of nitrogen fertilizer and DCD application on nitrous oxide emission from soil during expanding fruit stage and tomato yield., 2013, 36(3): 25-29. (in Chinese)
[36] 郝小雨, 高偉, 王玉軍, 金繼運(yùn), 黃紹文, 唐繼偉, 張志強(qiáng). 有機(jī)無(wú)機(jī)肥料配合施用對(duì)設(shè)施菜田土壤N2O排放的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2012, 18(5): 1073-1085.
HAO X Y, GAO W, WANG Y J, JIN J Y, HUANG S W, TANG J W. Effect of combined application of organic manure and chemical fertilizers on N2O emissions from greenhouse vegetable soil., 2012, 18(5): 1073-1085. (in Chinese)
[37] 邱煒紅, 劉金山, 胡承孝, 趙長(zhǎng)盛, 孫學(xué)成, 譚啟玲. 不同施氮水平對(duì)菜地土壤N2O排放的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2010, 29(11): 2238-2243.
QIU W H, LIU J S, HU C X, ZHAO C S, SUN X C, TAN Q L. Effects of nitrogen application rates on nitrous oxide emission from a typical intensive vegetable cropping system.2010, 29(11): 2238-2243. (in Chinese)
(責(zé)任編輯 李云霞)
Effects of Nitrogen Fertilizer and Dicyandiamide Application on Tomato Growth and Reactive Nitrogen Emissions in Greenhouse
YIN Xing1, ZHANG LiJuan1, LI BoWen1, LIU WenJu1, GUO YanJie1, LI YuTao2
(1College of Resources and Environmental Sciences, Agricultural University of Hebei/Key Laboratory for Farmland Eco-Environment of Hebei Province/Di Hongjie Soil and Environmental Laboratory of Agricultural University of Hebei, Baoding 071000, Hebei;2Straw Holding Co., Ltd., Beijing 100026)
【Objective】Effects of nitrogen (N) fertilizer and inhibitor (dicyandiamide, DCD) application on tomato yields, quality and reactive nitrogen loss were studied under field condition, clearing the function and nitrification inhibitory effect of DCD in greenhouse vegetable production systems, to provide scientific basis for reducing nitrogen fertilization and increasing efficiency, and prevention and control of pollution. 【Method】A field experiment was conducted in the Yongqing County of Hebei Province and the test crop was tomato. The experiment consisted of 5 N fertilization treatments with three replicates: control treatment (N0), conventional N fertilization rate (Con), conventional N fertilization plus nitrification inhibitor (Con+DCD), optimal N fertilization rate (Opt), and optimal N fertilization plusnitrification inhibitor (Opt+DCD). By field-situ tracking method, soil inorganic nitrogen, N2O emissions, ammonia volatilization loss and other indicators were measured during the top dressing of greenhouse tomato; N2O samples were measured using a gas chromatograph, and soil inorganic nitrogen samples were analyzed by using a continuous flow analytical system; ammonia volatilization samples were measured by boric acid absorption-standard acid; SAS software were applied on the yield, quality and various indicators of different treatments for variance analysis.【Result】Nitrogen fertilizer combined with DCD could increase tomato yield, namely, the Con+DCD and Opt+DCD increased the yields by 20.2% and 2.4% compared with the Con and Opt, respectively. Tomato yield of Con+DCD was significantly higher than that of the Con treatment. Simultaneously, the NAE and PFP for the Con+DCD and Opt+DCD were significantly higher than the Con and Opt. Compared with the Con and Opt, the NAE for the Con+DCD and Opt+DCD was increased by 176.7% and 22.3%, respectively. In addition, the NO3--N content in tomato was significantly decreased after combination of nitrogen fertilizer and DCD, thus, compared with Con and Opt, Con+DCD and Opt+DCD decreased the NO3--N content by 28.6% and 19.3%, respectively. There was no significant difference among other quality indicators. The NO3--N accumulation at 0-100 cm soil depth under Con+DCD and Opt+DCD treatments were 607.1 kg·hm-2and 441.8 kg·hm-2, which were 14.3% and 15.7% lower than NO3--N accumulation under Con (708.4 kg·hm-2) and Opt (524.2 kg·hm-2), respectively. N2O emission flues and ammonia volatilization rate reached peak values on second and third day after fertilization. Overall, N2O emissions and NH3volatilization loss were reduced under the DCD treatment. Compared with the Con and Opt, N2O accumulative emission and accumulative N loss by NH3volatilization for the Con+DCD and Opt+DCD decreased by 51.2%, 75.4% and 17.2%, 21.9%, respectively. 【Conclusion】Under the experimental conditions, combination of nitrogen fertilizer and DCD increased tomato yields, NAE and PFP, and decreased the NO3--N accumulation at 0-100 cm depth, emission flue of N2O and ammonia volatilization loss. Opt+DCD showed the best effect among the treatments. Therefore, reducing Nitrogen and combined application of DCD is a scientific and effective fertilizer management in greenhouse tomato production.
nitrogen fertilizer; dicyandiamide; reactive nitrogen; greenhouse tomato
10.3864/j.issn.0578-1752.2018.09.010
2017-06-29;
2017-09-29
國(guó)家科技支撐計(jì)劃(2015BAD23B01)、蔬菜體系安全用藥與質(zhì)量控制(1004013)
尹興,E-mail:
張麗娟,Tel:0312-7528210;E-mail:lj_zh2001@163.com