• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wave propagation characteristics in frozen saturated soil

    2018-05-09 07:36:29ChengChengDuDongQingLiFengMingYuHangLiuXiangYangShi
    Sciences in Cold and Arid Regions 2018年2期

    ChengCheng Du , DongQing Li , Feng Ming , YuHang Liu , XiangYang Shi

    1. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    2. University of Chinese Academy of Sciences, Beijing 100049, China

    1 Introduction

    According to the classical wave theory, wave velocity is inextricably interwoven with physical and mechanical parameters of the medium (Li and Li,1989). The study of wave propagation in different materials has always been an important research subject.It not only has important theoretical and academic value, but also has an important guiding significance for engineering applications. In recent years, with the development of engineering construction in permafrost regions, dynamic characteristics of frozen soils has garnered increased attention for academics and engineers. A porous medium is a material containing pores, with the skeletal portion of the material called the "matrix" or "frame". The pores fill with a fluid(liquid or gas). Many natural substances such as rocks and soil, zeolites, biological tissues, and man-made materials such as cements and ceramics can be considered as porous media. Frozen soil is a porous medium composed of soil particles, pore ice, pore water and gas. Therefore, the propagation theory in porous media is an effective way to study wave propagation characteristics in frozen soil.

    Mixture theory and continuum method can used to deal with the problems of multiphase porous media with irregular and complex internal structures (Yang and Yu, 2000). Therefore, Vardoulakis and Beskos(1986) established dynamic equations of unsaturated porous media based on mixture theory, and discussed the wave propagation characteristics of nearly saturated soil in low frequency ranges. Based on the mixture theory, Lu and Hanyga (2004, 2005) established the three-phase dynamic control equations of unsaturated soil, and analyzed the velocity and attenuation characteristics in unsaturated soil by numerical examples. Albers (2006, 2009) established a macro linear model based on the simplified mixture model and focused on analysis of the effects of saturation and excitation frequency on wave velocity and attenuation coefficient in unsaturated porous media. Assuming that the skeleton displacement, water head and temperature are the basic variables, Lu (2001) established two coupling seepage–elastic models,thermal–elastic and thermal–seepage. In addition, the propagation characteristics of saturated soil and unsaturated soil is studied in different angles, and the application of the mixture theory in wave problems is promoted to some extent (Zhouet al., 2008; Chenet al., 2012; Liuet al., 2014, 2017; Heet al., 2016). On the base of existing research of frozen soil, Miaoet al.(1995) introduced the mixture theory into the study of the thermodynamic properties of frozen soil to establish a complete constitutive relation.

    Based on the Continuum Theory of Mixture, Zhou and Lai (2011) established the elastic wave dispersion equation of porous medium for frozen saturated soil and derived analytical expressions for propagation velocity and attenuation of elastic waves in frozen saturated soil. This theory applied the Bishop effective stress principle and ignored the coupling between components.

    Based on the aforementioned results, mixture theory and continuum method play an important role in the study of wave propagation in unsaturated porous media, but most of the coupling between porous media is considered inadequate (Laiet al., 2003; Xuet al., 2011). With a porous medium consisting of soil skeleton, pore water, pore ice and gas, the equilibrium, deformation compatibility and energy balance conditions of frozen soil is influenced by the coupling of each component. Thus, the coupling between the components cannot be neglected. In this paper, by introducing entropy inequality to describe the coupling between the three-phase saturated soil material and using continuum porous medium method and mixture theory, we derived an analytical expression of wave velocity and attenuation and discussed the wave propagation characteristics in frozen saturated soils.

    2 Wave equation for wave propagation in frozen saturated soil

    In this paper, frozen saturated soils is considered as a three-phase porous media composed of soil skeleton, pore water and pore ice, designated by the superscripts "s", "w", and "i", respectively. The volume fraction of three-phase composition can be expressed as:

    2.1 Continuity equation

    According to the assumption of small deformation and no moment of momentum transfer between the phases, the continuity equation requires that the mass of any matter domain is a constant, so that the continuity equation of frozen saturated soil is:

    whereβis used to denote an individual phase,β=w,i;

    2.2 Motion equation

    2.3 Entropy inequality

    Considering the coupling between three phases of frozen saturated soil, entropy is introduced into the second law of thermodynamics in order to express the irreversibility of deformation process. For linear dynamic process of frozen saturated soil, the entropy inequality assumes the following form:

    2.4 Constitutive relations

    According to previous studies (Wei and Muraleetharan, 2006), Helmholtz free energy of frozen saturated soil can be written as:

    For simplicity, the free energy equations of each component are solved with the following polynomials by the sum decomposition method:

    The material derivative of pore water and pore ice are rewritten as:

    Substituting Equations(4)–(6)into Equation(3),we obtained the control inequalities of thermodynamics:

    To make Equation(7)absolutely valid, the following hypothesis needs to be satisfied:

    Neglecting the free energy produced by strain deviator, the increment of specific free energy of each phase medium can be described as:

    The state of frozen saturated soil before and after the treatment of external force (static equilibrium state

    Assuming that the frozen soil deformation is in the small strain range, Equation(1)can be formulated as a linear mass conservation equation:

    Using Equation(8)–(10), the following stressstrain relations is obtained:

    2.5 Wave equation

    The Bishop's effective stress formula for frozen saturated soil is expressed as:

    In addition, to make Equation(7)absolutely established, capillary pressure can be expressed as:

    If the volume ice content of frozen saturated soil is given, the relation between capillary pressure and pore water can be described as (Van Genuchten,1980):

    We assume that the incremental form of capillary pressure can be described as:

    By combining Equation(2), with(10)–(16), we can obtain wave equation of wave propagation in frozen saturated soil:

    3 Elastic wave solution

    The following general form for the dilatations can be assumed:

    wherekpandksare complex number of P and S waves;ωis the excitation frequency.

    Substituting Equation(19)into Equation(18)gives:

    Assuming that Equation(20)has nonzero solutions, the characteristic equations of compressional wave and shear wave can be obtained:

    Rearranging Equation(21)gives:

    As is shown in Equation(22), three types of compressional (P1, P2 and P3) waves and one kind of shear wave (S) are found in frozen saturated soil. If the excitation frequencyωis given, velocity and attenuation coefficient can be obtained:

    where Re and Im denote real and imaginary parts of the complex number, respectively.

    4 Numerical results and analysis

    Sections 2 and 3 indicate that the propagation velocity in frozen saturated soil is related to excitation frequency and volume ice content separately. In order to evaluate the influence of excitation frequency and volume ice content on propagation characteristics of frozen saturated soil, the physical parameters are listed in Table 1. Meanwhile, the following parameters are assumed: porosityns=0.2, excitation frequency range 0–1016Hz, volume ice content range 0.001–0.999, respectively.

    Table 1 Physical parameters

    Figure 1 Change law of P1, P2, P3 and S wave propagation velocity under different excitation frequency

    Figure 2 shows the variation curves of P1, P2, P3 and S wave attenuation with excitation frequency in frozen saturated soil. One can see that with increasing excitation frequency, all wave attenuations of the four wave types increases, in which the attenuation of P2 and P3 is larger than that of P1 and S. The attenuation law of P1 and S waves is similar to that of magnitude, and it decays rapidly in intermediate-frequency. Take the condition of the excitation fre-

    Figure 2 Change law of P1, P2, P3 and S wave attenuation under different excitation frequency

    Figure 3 Change law of P1, P2, P3 and S wave propagation velocity under different volume ice content

    Figure 4 Change law of P1, P2, P3 and S wave attenuation under different volume ice content

    5 Conclusions

    This paper is based on continuum porous medium method and mixture theory and considers soil skeleton, pore water and pore ice as fundamental quantities.By introducing entropy inequality to describe the coupling between the three-phase saturated soil material, we derived the analytical expressions of wave velocity and attenuation and discussed the propagation characteristics of waves in frozen saturated soils.

    (1) There are three types of compressional waves(P1, P2, P3) and shear wave (S) in frozen saturated soil. The velocity of P1 and S is larger, attenuation is smaller, followed by P2, and P3 wave decays rapidly to zero.

    (2) Under increasing excitation frequency, all velocities of four wave types increases and increases sharply in the excitation frequency range of 103–109Hz, but the wave velocity is almost unchanged outside this excitation frequency range. The attenuation of P2 and P3 waves is larger than that of P1 and S waves. The attenuation law of P1 and S waves is similar to that of magnitude, and the attenuation rate is greatly influenced by volume ice content.

    (3) Under increasing volume ice content, the wave propagation velocity of P1 and S waves decreases dramatically when the volume ice content reached 0.6, and the velocity of P2 is increasing gradually. But the P3 wave velocity increases first and then decreases to zero with increasing saturation. The attenuation coefficient of P1 and S waves begins to increase gradually when the volume ice content is about 0.4. The attenuation coefficient of P2 wave increases first and then decreases with the increase of volume ice content. The attenuation coefficient of P3 wave increases with the volume ice content and decreases rapidly from extreme to zero.

    (4) Due to the existence of ice particles in frozen soil, the wave propagation characteristics of frozen soil are different from those of unfrozen saturated soil. The wave propagation velocity in frozen saturated soil increases with volume ice content because waves travel faster in ice than in water. Under the one volume ice content, the phenomenon of the existence of an inflection point in the velocity curve of S wave is related to the characteristics of shear wave. As a result, in frozen saturated soils, volume ice content has an intimate relationship with the wave propagation characteristics.

    This work is supported by the National Natural Science Foundation of China (No. 41271080 and No.41701060) and the funding of the State Key Labor-atory of Frozen Soil Engineering (No. SKLFSE-ZT-17).

    Albers B, 2006. On results of the surface wave analyses in poroelastic media by means of the Simple Mixture Model and the Biot model.Soil Dynamics and Earthquake Engineering, 26(6–7): 537–547.DOI: 10.1016/j.soildyn.2006.01.007.

    Albers B, 2009. Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic model. Transport in Porous Media, 80(1): 173–192. DOI:10.1007/s11242-009-9360-y.

    Chen WY, Xia TD, Chen W,et al., 2012. Propagation of plane P-waves at the interface between an elastic solid and an unsaturated poroelastic medium. Applied Mathematics and Mechanics, 33(7):781–795. DOI: 10.3879/j.issn.1000-0887.2012.07.001.

    Hanyga A, 2004. Two-fluid porous flow in a single temperature approximation. International Journal of Engineering Science,42(13–14): 1521–1545. DOI: 10.1016/j.ijengsci.2004.04.001.

    He PF, Xia TD, Liu ZJ,et al., 2016. Reflection of P1 wave from free surfaces of double-porosity media. Rock and Soil Mechanics,37(6): 1753–1761. DOI: 10.16285/j.rsm.2016.06.028.

    Lai YM, Zhang LX, Xu WZ,et al., 2003. Temperature features of broken rock mass embankment in the Qinghai-Tibetan railway.Journal of Glaciology and Geocryology, 25(3): 291–296. DOI:10.3969/j.issn.1000-0240.2003.03.009.

    Li DQ, Wu ZW, Fang JH,et al., 1998. Heat stability analysis of embankment on the degrading permafrost district in the East of the Tibetan Plateau, China. Cold Regions Science and Technology,28(3): 183–188. DOI: 10.1016/S0165-232X(98)00018-4.

    Li XW, Li XY, 1989. Wave propagation with mass-coupling effect in fluid-saturated porous media. Applied Mathematics and Mechanics, 10(4): 321–327. DOI: 10.1007/BF02017772.

    Liu B, Su Q, Zhao WH,et al., 2017. Reflection and transmission of P waves at interfaces of saturated sandwiched coarse granular structure. Journal of Southwest Jiaotong University, 52(2): 280–287.DOI: 10.3969/j.issn.0258-2724.2017.02.010.

    Liu ZJ, Xia TD, Zhang QF,et al., 2014. Parametric studies of propagation characteristics of bulk waves in two-phase porous media. Rock and Soil Mechanics, 35(12): 3443–3450. DOI: 10.16285/j.rsm.2014.12.001.

    Lu HL, 2001. Continuum theory of mixture for freezing and thawing of water-saturated porous media. Journal of Southwest Jiaotong University, 36(6): 599–603. DOI: 10.3969/j.issn.0258-2724.2001.06.011.

    Lu JF, Hanyga A, 2005. Linear dynamic model for porous media saturated by two immiscible fluids. International Journal of Solids and Structures, 42(9–10): 2689–2709. DOI: 10.1016/j.ijsolstr.2004.09.032.

    Miao TD, Zhu JJ, Ding BY, 1995. Essay on constitutive relation of wave propagation in saturated porous media. Chinese Journal of Theoretical and Applied Mechanics, 27(5): 536–543. DOI:10.6052/0459-1879-1995-5-1995-464.

    Ming F, Zhang Y, Li DQ, 2016. Experimental and theoretical investigations into the formation of ice lenses in deformable porous media.Geosciences Journal, 20(5): 667–679. DOI: 10.1007/s12303-016-0005-1.

    Van Genuchten, 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(44): 892–898.

    Vardoulakis I, Beskos DE, 1986. Dynamic behavior of nearly saturated porous media. Mechanics of Materials, 5(1): 87–108. DOI:10.1016/0167-6636(86)90017-7.

    Wei CF, Muraleetharan KK, 2006. Acoustical characterization of fluidsaturated porous media with local heterogeneities: theory and application. International Journal of Solids and Structures, 43(5):982–1008. DOI: 10.1016/j.ijsolstr.2005.06.008.

    Xu XT, Lai YM, Liu F,et al., 2011. A study of mechanical test methods of frozen soil. Journal of Glaciology and Geocryology, 33(5):1132–1138.

    Yang SY, Yu MH, 2000. Constitutive descriptions of multiphase porous media. Acta Mechanica Sinica, 32(1): 11–24. DOI:10.3321/j.issn:0459-1879.2000.01.002.

    Zhou FX, Lai YM, 2011. Propagation characteristics of elastic wave in saturated frozen soil. Rock and Soil Mechanics, 32(9): 2669–2674.DOI: 10.3969/j.issn.1000-7598.2011.09.018.

    Zhou XM, Sun MY, Xia TD,et al., 2008. Effect of the fluid on propagation characteristics of compressible waves in saturated soils. Journal of Harbin Institute of Technology, 40(6): 974–977.DOI: 10.3321/j.issn:0367-6234.2008.06.031.

    久久婷婷人人爽人人干人人爱 | 最近最新中文字幕大全免费视频| 午夜a级毛片| 侵犯人妻中文字幕一二三四区| 欧美最黄视频在线播放免费| 亚洲精品国产色婷婷电影| 国产单亲对白刺激| 大香蕉久久成人网| 亚洲熟妇中文字幕五十中出| 在线观看免费视频网站a站| 亚洲一区二区三区色噜噜| 国产精品亚洲一级av第二区| 午夜日韩欧美国产| av天堂久久9| 无人区码免费观看不卡| 免费人成视频x8x8入口观看| 亚洲精品美女久久av网站| 乱人伦中国视频| 中文字幕精品免费在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 真人一进一出gif抽搐免费| 日日干狠狠操夜夜爽| 90打野战视频偷拍视频| 黄片小视频在线播放| 欧美黑人精品巨大| 丝袜在线中文字幕| 日韩大尺度精品在线看网址 | 成人三级做爰电影| 欧美中文日本在线观看视频| 很黄的视频免费| 国产成人影院久久av| 高清黄色对白视频在线免费看| 久久天堂一区二区三区四区| 91成人精品电影| 很黄的视频免费| 啪啪无遮挡十八禁网站| 两个人视频免费观看高清| 欧美激情极品国产一区二区三区| 韩国精品一区二区三区| 亚洲专区国产一区二区| 亚洲一区中文字幕在线| 欧美日本视频| 九色国产91popny在线| 欧美成人免费av一区二区三区| 久9热在线精品视频| 夜夜爽天天搞| 黄频高清免费视频| 国产一区二区三区综合在线观看| 国产真人三级小视频在线观看| 777久久人妻少妇嫩草av网站| 久久人人爽av亚洲精品天堂| 校园春色视频在线观看| 久久午夜亚洲精品久久| 亚洲精品中文字幕一二三四区| 久久久久久久午夜电影| 午夜免费观看网址| 国产蜜桃级精品一区二区三区| 久久婷婷成人综合色麻豆| 国产视频一区二区在线看| 欧美不卡视频在线免费观看 | 曰老女人黄片| 老汉色av国产亚洲站长工具| 亚洲专区中文字幕在线| 亚洲欧美激情在线| 97人妻天天添夜夜摸| 欧美乱码精品一区二区三区| 久久人人爽av亚洲精品天堂| svipshipincom国产片| 国产单亲对白刺激| 免费不卡黄色视频| 人人妻人人澡人人看| 久久久久国内视频| 一个人观看的视频www高清免费观看 | 免费高清视频大片| 成人av一区二区三区在线看| 国产精品98久久久久久宅男小说| 精品卡一卡二卡四卡免费| 久久影院123| av天堂久久9| 自拍欧美九色日韩亚洲蝌蚪91| 一进一出抽搐动态| 国内精品久久久久久久电影| e午夜精品久久久久久久| 久久精品国产99精品国产亚洲性色 | 51午夜福利影视在线观看| 成人亚洲精品一区在线观看| 国产成年人精品一区二区| 亚洲男人天堂网一区| 男女做爰动态图高潮gif福利片 | 中文字幕人妻丝袜一区二区| 搡老岳熟女国产| 在线视频色国产色| 国产野战对白在线观看| 婷婷精品国产亚洲av在线| 人人妻,人人澡人人爽秒播| 国产av在哪里看| 此物有八面人人有两片| 97碰自拍视频| 亚洲 国产 在线| 国产精品综合久久久久久久免费 | 国产三级在线视频| 亚洲中文字幕一区二区三区有码在线看 | 少妇的丰满在线观看| 国产麻豆69| 国产麻豆成人av免费视频| 精品久久蜜臀av无| 熟女少妇亚洲综合色aaa.| 九色国产91popny在线| 淫妇啪啪啪对白视频| 国产1区2区3区精品| 国产1区2区3区精品| 精品一区二区三区av网在线观看| 中文字幕最新亚洲高清| 久久人妻av系列| 脱女人内裤的视频| 无限看片的www在线观看| 亚洲国产精品合色在线| 久热爱精品视频在线9| 丝袜在线中文字幕| 人人妻,人人澡人人爽秒播| 免费av毛片视频| 精品国产美女av久久久久小说| 久久狼人影院| 丁香欧美五月| 日韩欧美一区视频在线观看| 国产野战对白在线观看| 婷婷精品国产亚洲av在线| 日本五十路高清| 人人妻人人澡欧美一区二区 | 女性生殖器流出的白浆| 免费高清视频大片| 久久久久久久午夜电影| 黄色视频不卡| 国产精品自产拍在线观看55亚洲| 久久久水蜜桃国产精品网| 日韩av在线大香蕉| 男人的好看免费观看在线视频 | 老司机福利观看| 日韩欧美在线二视频| 亚洲男人的天堂狠狠| 久久午夜综合久久蜜桃| 可以在线观看毛片的网站| 国产精品乱码一区二三区的特点 | 久久久水蜜桃国产精品网| 男女之事视频高清在线观看| 桃红色精品国产亚洲av| 午夜老司机福利片| 久久精品国产99精品国产亚洲性色 | 欧美最黄视频在线播放免费| 午夜成年电影在线免费观看| 99精品在免费线老司机午夜| 香蕉久久夜色| 色婷婷久久久亚洲欧美| 国产精品一区二区精品视频观看| 久久久久国产精品人妻aⅴ院| av免费在线观看网站| 日本免费一区二区三区高清不卡 | 18美女黄网站色大片免费观看| 亚洲成av人片免费观看| 欧美人与性动交α欧美精品济南到| 制服诱惑二区| 操美女的视频在线观看| 国产精品 欧美亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产中文字幕在线视频| 国产亚洲精品综合一区在线观看 | 日韩欧美一区视频在线观看| 久久精品国产清高在天天线| 成人亚洲精品一区在线观看| 高清黄色对白视频在线免费看| 丝袜美腿诱惑在线| 日本免费a在线| a级毛片在线看网站| 午夜福利视频1000在线观看 | 夜夜看夜夜爽夜夜摸| 久久人人精品亚洲av| 欧美黄色片欧美黄色片| 国产高清有码在线观看视频 | 三级毛片av免费| 狂野欧美激情性xxxx| svipshipincom国产片| 在线国产一区二区在线| 亚洲专区国产一区二区| av天堂在线播放| 欧美黑人欧美精品刺激| 亚洲精品中文字幕一二三四区| 嫁个100分男人电影在线观看| 国产成人av教育| 成人三级做爰电影| 亚洲在线自拍视频| 女性被躁到高潮视频| 国产精品免费视频内射| 悠悠久久av| 在线观看一区二区三区| 亚洲第一青青草原| 免费观看人在逋| 青草久久国产| 欧美一级毛片孕妇| 一区二区三区国产精品乱码| 国产精品一区二区精品视频观看| 91成年电影在线观看| 满18在线观看网站| 这个男人来自地球电影免费观看| 国产亚洲av嫩草精品影院| 老司机福利观看| 亚洲午夜理论影院| 老熟妇仑乱视频hdxx| 神马国产精品三级电影在线观看 | 两个人视频免费观看高清| 欧美人与性动交α欧美精品济南到| 两人在一起打扑克的视频| 久久影院123| 美国免费a级毛片| 国产视频一区二区在线看| 97人妻精品一区二区三区麻豆 | 成年版毛片免费区| 国产精品影院久久| 国产av一区二区精品久久| 99在线人妻在线中文字幕| 最近最新免费中文字幕在线| 老司机午夜十八禁免费视频| 最新美女视频免费是黄的| 免费在线观看视频国产中文字幕亚洲| 亚洲三区欧美一区| 美女免费视频网站| 日韩三级视频一区二区三区| 一边摸一边抽搐一进一小说| 久久久国产成人精品二区| 久久午夜综合久久蜜桃| 亚洲在线自拍视频| 一本大道久久a久久精品| 18禁观看日本| 日本欧美视频一区| 国产av一区二区精品久久| 老汉色av国产亚洲站长工具| 午夜福利在线观看吧| 成人亚洲精品av一区二区| 香蕉久久夜色| 久久久久久人人人人人| 国产高清激情床上av| 黄频高清免费视频| 别揉我奶头~嗯~啊~动态视频| e午夜精品久久久久久久| 夜夜躁狠狠躁天天躁| 一边摸一边做爽爽视频免费| 亚洲国产精品999在线| 女性生殖器流出的白浆| 黄片大片在线免费观看| 亚洲第一欧美日韩一区二区三区| 九色国产91popny在线| 12—13女人毛片做爰片一| 男人舔女人下体高潮全视频| av有码第一页| 亚洲精品粉嫩美女一区| 18禁裸乳无遮挡免费网站照片 | 亚洲第一青青草原| 视频在线观看一区二区三区| 日本vs欧美在线观看视频| 正在播放国产对白刺激| 老熟妇乱子伦视频在线观看| 男女午夜视频在线观看| 免费高清视频大片| 男人的好看免费观看在线视频 | 777久久人妻少妇嫩草av网站| 久久久久亚洲av毛片大全| 久久精品国产清高在天天线| 精品国产乱码久久久久久男人| 91国产中文字幕| 久久久久国产一级毛片高清牌| 中文字幕av电影在线播放| 手机成人av网站| 亚洲美女黄片视频| 99在线人妻在线中文字幕| 99riav亚洲国产免费| 欧美一级毛片孕妇| 免费在线观看视频国产中文字幕亚洲| 国产成人欧美| 亚洲一区二区三区色噜噜| 男人舔女人下体高潮全视频| 午夜福利免费观看在线| 麻豆国产av国片精品| 级片在线观看| 国产乱人伦免费视频| 欧美av亚洲av综合av国产av| 在线永久观看黄色视频| 亚洲无线在线观看| 日韩大码丰满熟妇| 成人国语在线视频| 日本在线视频免费播放| 美女国产高潮福利片在线看| 嫩草影视91久久| 黄色视频不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 美女 人体艺术 gogo| 亚洲精品av麻豆狂野| 国产精品1区2区在线观看.| 精品一品国产午夜福利视频| 人人妻人人爽人人添夜夜欢视频| 国产一区二区激情短视频| 国产成人影院久久av| 国产成人欧美在线观看| 一本大道久久a久久精品| 好男人电影高清在线观看| 女性生殖器流出的白浆| 后天国语完整版免费观看| 99精品在免费线老司机午夜| 欧美一区二区精品小视频在线| 精品久久久久久,| 久久精品影院6| 亚洲五月天丁香| 女人被狂操c到高潮| netflix在线观看网站| 国产欧美日韩一区二区三区在线| 久热这里只有精品99| 男女下面插进去视频免费观看| 久久九九热精品免费| 久久国产精品人妻蜜桃| 免费在线观看视频国产中文字幕亚洲| 国产高清视频在线播放一区| 久久精品影院6| 精品欧美国产一区二区三| xxx96com| 国产午夜福利久久久久久| 人人妻人人爽人人添夜夜欢视频| 国产成人精品无人区| 国产欧美日韩一区二区精品| 国产成人av激情在线播放| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 久久精品影院6| 99在线视频只有这里精品首页| 欧美大码av| 在线观看66精品国产| 久久亚洲精品不卡| 老鸭窝网址在线观看| 国产精品一区二区在线不卡| 欧美精品啪啪一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| av超薄肉色丝袜交足视频| 丰满人妻熟妇乱又伦精品不卡| 久热爱精品视频在线9| 黄片小视频在线播放| 别揉我奶头~嗯~啊~动态视频| 久久国产亚洲av麻豆专区| 亚洲精品中文字幕在线视频| АⅤ资源中文在线天堂| 日本vs欧美在线观看视频| 午夜福利影视在线免费观看| 久久国产乱子伦精品免费另类| 性色av乱码一区二区三区2| 三级毛片av免费| 欧美 亚洲 国产 日韩一| 亚洲国产精品999在线| 亚洲性夜色夜夜综合| 国产成人av教育| 亚洲色图综合在线观看| 久久久久久免费高清国产稀缺| 欧美在线黄色| 日本a在线网址| 欧美黄色淫秽网站| 亚洲国产日韩欧美精品在线观看 | 视频区欧美日本亚洲| 在线观看日韩欧美| netflix在线观看网站| 亚洲专区中文字幕在线| 淫秽高清视频在线观看| 最新在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 日日爽夜夜爽网站| 亚洲国产欧美日韩在线播放| 长腿黑丝高跟| 国产成人欧美在线观看| 在线观看免费视频日本深夜| 国产一区二区在线av高清观看| 亚洲色图 男人天堂 中文字幕| 国产精品永久免费网站| 好男人电影高清在线观看| 久久精品国产亚洲av高清一级| 国产亚洲欧美精品永久| 美女国产高潮福利片在线看| 18禁国产床啪视频网站| 18禁裸乳无遮挡免费网站照片 | 91精品三级在线观看| 日韩大码丰满熟妇| 亚洲精品av麻豆狂野| 神马国产精品三级电影在线观看 | 国产亚洲精品一区二区www| 国产真人三级小视频在线观看| 一级片免费观看大全| 天堂影院成人在线观看| 男人舔女人的私密视频| av在线天堂中文字幕| 亚洲国产精品久久男人天堂| 国产欧美日韩一区二区三区在线| 露出奶头的视频| 多毛熟女@视频| 悠悠久久av| 亚洲精品中文字幕一二三四区| 国产成人啪精品午夜网站| 亚洲全国av大片| 日韩av在线大香蕉| 久久久久久久久中文| 日韩欧美三级三区| 99久久综合精品五月天人人| 精品国产亚洲在线| 大陆偷拍与自拍| 亚洲第一电影网av| 91字幕亚洲| 69av精品久久久久久| 亚洲欧美日韩高清在线视频| 神马国产精品三级电影在线观看 | 国产1区2区3区精品| 日本五十路高清| 久久久久九九精品影院| 在线观看舔阴道视频| 免费av毛片视频| 黄色片一级片一级黄色片| 成年版毛片免费区| 琪琪午夜伦伦电影理论片6080| 首页视频小说图片口味搜索| 激情在线观看视频在线高清| 久久久久久久午夜电影| 狂野欧美激情性xxxx| 老司机靠b影院| 最近最新免费中文字幕在线| 波多野结衣巨乳人妻| 啦啦啦免费观看视频1| 精品欧美国产一区二区三| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 欧美人与性动交α欧美精品济南到| 精品国产国语对白av| 少妇被粗大的猛进出69影院| 99精品久久久久人妻精品| 激情在线观看视频在线高清| 嫁个100分男人电影在线观看| 天天一区二区日本电影三级 | 欧美色视频一区免费| 99国产精品一区二区三区| 国产成年人精品一区二区| 成年女人毛片免费观看观看9| 国产精品免费视频内射| 黑丝袜美女国产一区| 国产激情久久老熟女| 动漫黄色视频在线观看| 欧美日韩乱码在线| 91老司机精品| 久久久国产欧美日韩av| 久久精品91无色码中文字幕| 午夜日韩欧美国产| 欧美激情 高清一区二区三区| 国产区一区二久久| 999久久久精品免费观看国产| 精品久久久久久久毛片微露脸| 久久精品国产99精品国产亚洲性色 | 黄色丝袜av网址大全| 欧美+亚洲+日韩+国产| 两性夫妻黄色片| 色老头精品视频在线观看| 国产精品av久久久久免费| 一区二区三区国产精品乱码| 日本精品一区二区三区蜜桃| 九色国产91popny在线| 亚洲视频免费观看视频| 免费在线观看亚洲国产| 精品国产超薄肉色丝袜足j| 欧美在线一区亚洲| 亚洲中文日韩欧美视频| 黄片小视频在线播放| 午夜福利成人在线免费观看| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 中文字幕精品免费在线观看视频| 国产免费av片在线观看野外av| 国产极品粉嫩免费观看在线| 我的亚洲天堂| 日韩精品青青久久久久久| 国产精品久久视频播放| 国产免费男女视频| 国产三级黄色录像| 欧美大码av| 一区福利在线观看| 两人在一起打扑克的视频| 老司机靠b影院| av超薄肉色丝袜交足视频| 亚洲国产日韩欧美精品在线观看 | 很黄的视频免费| 久久香蕉精品热| 51午夜福利影视在线观看| 看片在线看免费视频| 岛国视频午夜一区免费看| 成人亚洲精品av一区二区| 韩国精品一区二区三区| 黄色片一级片一级黄色片| 亚洲一区二区三区色噜噜| 亚洲成av人片免费观看| 国产视频一区二区在线看| 亚洲精华国产精华精| 国产乱人伦免费视频| 免费人成视频x8x8入口观看| 欧美日韩精品网址| 亚洲黑人精品在线| 欧美精品亚洲一区二区| 色综合站精品国产| 天堂影院成人在线观看| 女人被躁到高潮嗷嗷叫费观| 19禁男女啪啪无遮挡网站| 日本三级黄在线观看| 国产主播在线观看一区二区| 女人被狂操c到高潮| 亚洲成人免费电影在线观看| 久久精品成人免费网站| 亚洲熟女毛片儿| 禁无遮挡网站| 成人特级黄色片久久久久久久| 麻豆av在线久日| 亚洲成人免费电影在线观看| 一级,二级,三级黄色视频| 国产成人免费无遮挡视频| 美女高潮到喷水免费观看| 黑人操中国人逼视频| 免费高清在线观看日韩| 国产av一区在线观看免费| 国产野战对白在线观看| 美女 人体艺术 gogo| 婷婷精品国产亚洲av在线| 老司机午夜十八禁免费视频| 午夜视频精品福利| 国产麻豆成人av免费视频| 亚洲三区欧美一区| 香蕉国产在线看| 女性被躁到高潮视频| 日本免费a在线| 在线观看舔阴道视频| 国产高清有码在线观看视频 | 亚洲av成人不卡在线观看播放网| 99香蕉大伊视频| 成人av一区二区三区在线看| 99在线视频只有这里精品首页| 亚洲精品在线美女| 嫁个100分男人电影在线观看| 欧美精品亚洲一区二区| 狠狠狠狠99中文字幕| 色播在线永久视频| 淫秽高清视频在线观看| 国产精品野战在线观看| 啦啦啦 在线观看视频| 亚洲在线自拍视频| 亚洲av成人av| 国内精品久久久久精免费| 国产成年人精品一区二区| 成人18禁高潮啪啪吃奶动态图| 日韩精品免费视频一区二区三区| 高清毛片免费观看视频网站| 亚洲色图av天堂| 日韩欧美免费精品| 久久精品亚洲精品国产色婷小说| 91麻豆精品激情在线观看国产| 国产97色在线日韩免费| 不卡一级毛片| 黄片大片在线免费观看| 一边摸一边做爽爽视频免费| 69av精品久久久久久| 91在线观看av| 久久久国产精品麻豆| 非洲黑人性xxxx精品又粗又长| 女性被躁到高潮视频| 亚洲性夜色夜夜综合| 级片在线观看| 欧美av亚洲av综合av国产av| 色综合欧美亚洲国产小说| 18禁观看日本| 精品久久久久久久毛片微露脸| 日日夜夜操网爽| 女性生殖器流出的白浆| 窝窝影院91人妻| 久久久久久国产a免费观看| 中文字幕高清在线视频| 黑丝袜美女国产一区| 真人做人爱边吃奶动态| 美女高潮到喷水免费观看| 午夜日韩欧美国产| 大陆偷拍与自拍| 咕卡用的链子| 国产精品日韩av在线免费观看 | 波多野结衣av一区二区av| 老司机午夜福利在线观看视频| 久久人人精品亚洲av| 一级作爱视频免费观看| 男人舔女人的私密视频| 中文字幕人妻熟女乱码| 999精品在线视频| 久久午夜亚洲精品久久| 12—13女人毛片做爰片一| bbb黄色大片| 国产亚洲精品第一综合不卡| 亚洲成国产人片在线观看| 国产亚洲精品第一综合不卡| 老司机午夜福利在线观看视频| 午夜福利18| 一卡2卡三卡四卡精品乱码亚洲| 一级a爱片免费观看的视频| 午夜福利成人在线免费观看| 久久天堂一区二区三区四区| 怎么达到女性高潮| 女性生殖器流出的白浆| 人人澡人人妻人| 十八禁网站免费在线| 人妻久久中文字幕网| 国产精品久久久久久精品电影 | 97超级碰碰碰精品色视频在线观看| 伊人久久大香线蕉亚洲五| x7x7x7水蜜桃| 欧美黑人精品巨大| 亚洲欧美日韩高清在线视频|