• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relationship between the haplotype distribution of Artemisia halodendron (Asteraceae) and hydrothermal regions in Horqin Sandy Land, northern China

    2018-05-09 07:36:37WenDaHuangXueYongZhaoYuLinLiYuQiangLiYaYongLuo
    Sciences in Cold and Arid Regions 2018年2期

    WenDa Huang , XueYong Zhao , YuLin Li , YuQiang Li , YaYong Luo

    1. Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    2. Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    3. Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    1 Introduction

    Artemisia halodendronTurcz. ex Bess. (Asteraceae, Anthemideae, Subgen.Dracunculus) is one of the most common semishrub species in the Horqin Sandy Land in Northeast China. It is important for vegetation rehabilitation in Horqin Sandy Land because of its high ecological value, including that (1) it is the key species of the plant communities and landscapes studies in Horqin Sandy Land (Li, 1991); (2) it plays a key role in the vegetation-restoration process due to its high drought tolerance, anti-wind erosion properties, and sand-burial resistance (Donget al., 2000; Liet al., 2002; Zhaoet al., 2006). Previous studies onA.halodendronfocused on aspects of population-distribution patterns (Chaoet al., 1999; Caoet al., 2008),biomass allocation (Liet al., 2005), breeding distribution (Liet al., 2005), morphological characteristics and physiological adaptations (Zhouet al., 1999), root longevity (Huanget al., 2009), genetic diversity(Huanget al., 2011, 2014), and establishment (Liet al., 2002) in Horqin Sandy Land. However, systemat-ic comparison of genetic relationships ofA. halodendronamong populations from different hydrothermal regions has not yet been reported.

    Horqin Sandy Land is located in the agropastoral transitional zone between the Inner Mongolian Plateau and the Northeast Plains (42°41′N–45°45′N,118°35′E–123°30′E) and is one of the four largest sandy areas in northern China; it covers an area of approximately 139,300 km2, of which up to 71,884 km2is desertified sandy land (Wang, 2003; Zhaoet al.,2003). Landscape in this area is characterized by sand dunes that alternate with gently undulating lowland areas (Liet al., 2005). This area belongs to the continental semi-arid monsoon climate and is in the temperate zone, with a mean annual temperature (AMT) of 3–7 °C and mean annual rainfall (AP) of 350–500 mm(Zhaoet al., 2003). Over recent decades, this region has undergone severe desertification (Liet al., 2000,2004) and has displayed the northern-moving phenomenon of the interlocked agropasturing area of North China in the most recent hundred years (Zhaoet al., 2000, 2002).

    In the present study, we used chloroplast DNA(cpDNA)trnL–F to examine the genetic diversity ofA. halodendron. We specifically aimed to address the following questions: (1) What is the level of nucleotide diversity inA. halodendronfrom different hydrothermal regions? (2) How are the identified haplotypes distributed within and among populations? In particular, is there subdivision in the different hydrothermal-level populations (according to hydrothermal synthesis index)? We attempted to interpret the results to provide baseline genetic information pertinent to the restoration and management of degraded ecosystems in arid and semi-arid areas.

    2 Materials and methods

    2.1 Sampling

    Table 1 The average monthly rainfall in 10 years of 10 populations of Artermisia halodendron in Horqin Sandy Land

    2.2 Molecular methods

    Total genomic DNA was extracted using AxyPrep Genomic DNA Mini Kits (Axygen Inc., Beijing,China) following the manufacturer's instructions.DNA quality was checked on a 1.0% agarose gel.Several pairs of cpDNA primers designed by Hamilton (1999), Taberletet al. (1991), and Sanget al. (1997) were used in the initial screening. Two pairs of primers,trnL (5'-CGGAATTGGTAGACGCTACG-3') andtrnF (5'-ATTTGAACTGGTGACACGAG-3') (Sanget al., 1997), identified sequence variations in the sampled individuals and therefore were used for all remaining individuals. Polymerase chain reaction (PCR) was performed in a 25-μL reaction volume, containing 40 ng of genomic DNA, 1.0 U of Taq polymerase (Axygen Inc., Beijing, China),3 mmol/L MgCl2, 500 μmol/L each dNTP, 20 mmol/L Tris-HCl (pH 8.3), 100 mmol/L KCl, and 0.3 μmol/L primer. The amplification condition was an initial denaturation step at 94 °C for 3 min, followed by 30 cycles of 30 s at 94 °C, 30 s at 55 °C, 1 min at 72 °C,and a final 5-min extension step at 72 °C. The PCR products were determined by 1.0% agarose gel electrophoresis. The amplification products were purified using an AxyPrep PCR Purification Kit, following the manufacturer's protocol (Axygen Inc., Beijing,China). Purified DNA was sequenced by the MEIJI sequencing company in Shanghai, China, applying the PCR-primers as sequencing primers.

    Table 2 The monthly mean temperature in 10 years of 10 populations for Artermisia halodendron in Horqin Sandy Land

    2.3 Data analyses

    DNA sequences were aligned using the CLUSTAL X program (Thompsonet al., 1997), with subsequent manual adjustments in MEGA4 (Tamuraet al., 2007). A matrix of combined sequences was constructed for the 243 individuals that we examined,and different cpDNA sequences were identified as haplotypes.

    Basic population genetic parameters were estimated for three groups of populations: the low-hydrothermal-level region (populations 1–6); the high-hydrothermal-level region (populations 7–10); and finally, all populations. All parameters were calculated with DNASP 5.10.01 (Librado and Rozas, 2009), including the number of segregating sites (S), the number of haplotypes (Nh), the haplotype diversity (Hd),the average number of nucleotide differences per site between two sequences in a sample, π (Nei and Li,1979; Nei, 1987), and the average number of pairwise nucleotide differences (k).

    Phylogenetic analyses of cpDNA haplotypes were performed with maximum parsimony (MP), using PAUP version 4.0 (Swofford, 2002). Heuristic search was implemented with 100 random additional sequence replicates, tree-bisection-reconnection (TBR)branch swapping, MULPARS option, and ACCTRAN optimization. To evaluate the relative robustness of the clades found in the most parsimonious tree, bootstrap analysis was conducted using 1,000 replicates with a simple taxon addition. Genetic differentiation among populations at the three different sampling levels was estimated by pairwiseFSTvalues (Wright,1951). AMOVA was performed to analyze the source of variation among populations, using Arlequin 3.0 (Excoffieret al., 2005) with 1,000 replicates of bootstrap.

    3 Results

    3.1 Haplotype distribution and genetic diversity

    Sequence data were obtained for one loci from on average 101, 142, and 243 individuals from the low-hydrothermal-level region, the high-hydrothermal-level region, and the entire species' range, respectively. The length of the alignedtrnL–trnF DNA sequences (includingtrnL and thetrnF spacer region)ranged between 849 and 863 bp with two insertions.The analysis of cpDNA variation identified seven haplotypes (HapA-HapG) (Table 4). Haplotype C was the most abundant, occurring in three populations, followed by haplotypes A, B, D, and G, which occurred in two populations; and the remaining haplotypes were found in only a single population (Table 3 and Figure 1). We confirmed the division of the native range into two areas using hydrothermal synthesis index data (Table 3). Six populations in the low-hydrothermal-level region of the species were dominated by four different haplotypes. The other four populations in the high-hydrothermal-level region of the species were dominated by three different haplotypes (Table 3 and Figure 1).

    ?

    Table 4 Variable sites of the aligned sequences of trnL-F in seven haplotypes of Artemisia halodendron in the Horqin Sandy Land

    Notes: Sequences are numbered from the 5' to the 3' end in each region; – indicates lack.

    Figure 1 Geographic distribution of the seven haplotypes found on 243 individuals for trnL–F observed in Artemisia halodendron of the Horqin Sandy Land. Pie charts indicate the frequency of haplotypes within each population, and unique alleles are indicated by different colours.NDRS indicates Naiman Desertification Research Station, China Academy of Sciences. Base map data produced in 2000

    We identified a total of two, three, and three segregating sites for the low-hydrothermal-level region, the high-hydrothermal-level region, and all populations,respectively. Summary statistics of sequence variationare given in Table 5. Overall haplotype diversity (Hd)and nucleotide sequence (π) diversity forA. halodendronwere 0.706±0.001 and 0.0013±0.0001, respectively. At the regional level, haplotype diversity and nucleotide diversity between two regions varied between 0.318 (low-hydrothermal-level region) and 0.671 (high-hydrothermal-level region), and between 0.0006 (low-hydrothermal-level region) and 0.0015(high-hydrothermal-level region), respectively. The population from the high-hydrothermal-level region had higher haplotype diversity and nucleotide diversity than the population from the low-hydrothermal-level region.

    3.2 Phylogenetic analyses and genetic structure

    Maximum parsimony analysis resulted in a single tree (length=14 and consistency index =0.5834). Two clades with low bootstrap support were identified: one consisting of the Hap C, G, F, E, and D, with four haplotypes (Hap C, G, F, and Hap D) distributed in the low-hydrothermal-level region and one haplotype(Hap E) in the high-hydrothermal-level region; and the other consisting of the rest of Hap A and Hap B,both occurring in the high-hydrothermal-level region(Figure 2).

    Figure 2 Phylogenetic relationships of the identified haplotypes of Artemisia halodendron in Horqin Sandy Land

    The analysis of molecular variance (AMOVA)showed that around 17.54% of the variation was attributed to the low-/high-hydrothermal-level regions differentiation, and between- populations variation accounted for just over one-half (55%) of the total variation, indicating very strong differentiation and little gene flow between regions and populations (Table 6).Within the low- and high-hydrothermal-level regions,between-populations differentiation was respectively 81.52% and 93.77% (Table 6). Overall, these results strongly indicate that haplotypes are geographically structured across the species' distribution range.FSTvalues were 0.728, 0.815, and 0.938 at the species level, low-hydrothermal-level region, and high-hydrothermal-level region, respectively.

    Table 5 Nucleotide variation and haplotype diversity at trnL-F in 10 populations of Artemisia halodendron from the low-hydrothermal-level region (populations 1–6), high-hydrothermal-level region (populations 7–10),and entire species' range (all populations) in the Horqin Sandy Land

    Table 6 Results of analyses of molecular variance (AMOVAs) of haplotype frequencies for populations and regional populations of Artemisia halodendron in Horqin Sandy Land

    Note: d.f., degrees of freedom.

    4 Discussion and conclusion

    In this study, we examined nucleotide variation at two nuclear loci ofA. halodendronsampled from the Horqin Sandy Land. We confirmed the division of the native range into two areas, using hydrothermal synthesis index data (Table 3). The analysis of cpDNA variation identified seven haplotypes (Table 4 and Figure 2). Six populations in the low-hydrothermal-level region of the species were dominated by four different haplotypes. The other four populations in the high-hydrothermal-level region of the species were dominated by three different haplotypes (Table 3 and Figure 2).

    Many studies have demonstrated that endemic species tend to possess high levels of genetic diversity (Wanget al., 2010; Geet al., 2011). Compared with similar studies (Wanget al., 2011), the level of haplotype diversity (Hd=0.706) and the nucleotide diversity (π=0.0013) within the whole populations ofA. halodendronwere somewhat lower than that of the endemic plants in northern of China. Such a lowHdvalue and π value indicated that this species was very adapted to the sandy land environment, and this character might have made it become the dominant and constructive species in Horqin Sandy Land.At the same time, the populations from the low-hydrothermal-level region exhibited lower haplotype diversity and more limited nucleotide diversity, and were a subset of that observed in the populations from the the high-hydrothermal-level region. These results lend support to the scenario described by Huanget al.(2011) using ISSR markers and Huanget al. (2013)usingpsbA-trnH. This fact might be due to environmental differences (Liet al., 2009; Baoet al., 2010;Liuet al., 2010; Li and Wu, 2011). The low-hydrothermal-level region is a region of severe desertification (Zhaoet al., 2000; Baoet al., 2010). In the process of ecological restoration, species increasing adapt to the local environment, which, in turn, reduces the genetic diversity (Wanget al., 2009; Huanget al.,2011).

    Phylogenetic relationships analysis of the cpDNA sequences collected fromA. halodendronin the different hydrothermal-level regions in Horqin Sandy Land did not entirely cluster according to populations or hydrothermal-level regions. This result is similar to that of some other studies (Chenet al., 2009; Huet al., 2010; Zhouet al., 2010; Zhanget al., 2015). The MP tree indicated that the seven haplotypes formed two clades: the haplotypes in clade I all came from the high-hydrothermal-level region (63% bootstrap support); the haplotypes (except Hap E) in clade II came from the low-hydrothermal-level region (58%bootstrap support). This cluster process was closely related to the hydrothermal gradients in Horqin Sandy Land. The results of phylogenetic relationships analysis show that hydrothermal conditions change determines the increase of the haplotypes distribution difference.

    The spatial analyses of genetic variation inA.halodendronin the different hydrothermal-level regions in Horqin Sandy Land indicate that the between-populations genetic differentiations are high within the low-, the high-hydrothermal-level region,and the total distribution range (Table 6). Our data revealed significant genetic differences among populations in different hydrothermal level regions. The increase in population genetic differentiation might be related to strong human disturbance, high rates of habitat fragmentation, and decreasing population size in Horqin Sandy Land (Zhaoet al., 2000; Wanget al.,2010). It is generally accepted that genetic differentiation would have increased among the native populations due to the changed environment (Wanget al.,2009).

    In conclusion, there are significant genetic differences betweenA. halodendronpopulations from different hydrothermal-level regions. This information about genetic variation has important implications for restoring and managing the degraded ecosystems in arid and semi-arid areas. It is particularly important to understand the genetic variation of extant populations over the entire range of the species' distribution. Additional research is needed to determine levels of genetic variation inA. halodendronthroughout its entire distributional range.

    The authors thank all the members of Naiman Desertification Research Station, China Academy of Sciences (CAS), for their help in the field work. We acknowledge the China Meteorological Administration (Beijing, China) for help on the meteorological data information support. This study was financially supported by research projects 2016YFC0500907, 2017FY100205, 41201561,Y551821001, and 145RJYA269.

    Bailey HP, 1979. Semi-arid climates: their definition and distribution.In: Hall AE, Cannell GH, Lawton HW (eds.). Agriculture in Semi-Arid Environments Berlin, Heidelberg: Springer, pp. 73–97. DOI:10.1007/978-3-642-67328-3_3.

    Bao HJ, Guo J, Yan L, 2010. Study on ecological footprint of the human activity intensity in Horqin sandy—A case of Naiman Banner.Journal of Arid Land Resources and Environment, 24(2): 126–131.DOI: 10.13448/j.cnki.jalre.2010.02.012.

    Cao YN, Shi LS, Han S,et al., 2008. Point pattern analysis for a population ofArtemisia halodendronin a Kerqin Sandlot. Chinese Bulletin of Botany, 25(4): 437–442. DOI: 10.3969/j.issn.1674-3466.2008.04.007.

    Chao LM, Piao SJ, Zhi RN,et al., 1999. The distribution patterns ofArtemisia halodendronin different sandland types. Journal of Desert Research, 19(S1): 45–48.

    Chen FJ, Wang AL, Chen KM,et al., 2009. Genetic diversity and population structure of the endangered and medically importantRheum tanguticum(Polygonaceae) revealed by SSR Markers. Biochemical Systematics and Ecology, 37(5): 613–621. DOI:10.1016/j.bse.2009.08.004.

    Dong ZB, Wang XM, Liu LY, 2000. Wind erosion in arid and semiarid China: an overview. Journal of Desert Research, 20(2): 134–139.DOI: 10.3321/j.issn:1000-694X.2000.02.007.

    Excoffier L, Laval G, Schneider S, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis.Evolutionary Bioinformatics Online, 1: 47–50.

    Ge XJ, Hwang CC, Liu ZH,et al., 2011. Conservation genetics and phylogeography of endangered and endemic shrubTetraena mongolica(Zygophyllaceae) in Inner Mongolia, China. BMC Genetics,12: 1. DOI: 10.1186/1471-2156-12-1.

    Hamilton MB, 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology, 8(3): 521–523.

    Hu YP, Wang L, Xie XL,et al., 2010. Genetic diversity of wild populations ofRheum tanguticumendemic to China as revealed by ISSR analysis. Biochemical Systematics and Ecology, 38(3):264–274. DOI: 10.1016/j.bse.2010.01.006.

    Huang G, Zhao XY, Huang YX,et al., 2009. The root longevity ofArtemisia halodendroninhabiting two sandy land habitats. Chinese Journal of Plant Ecology, 33(4): 755–763. DOI: 10.3773/j.issn.1005-264x.2009.04.014.

    Huang WD, Zhao XY, Zhao X,et al., 2011. A combined approach using ISSR and ITS analysis for the characterization ofArtemisia halodendronfrom Horqin sandy land, northern China. Biochemical Systematics and Ecology, 39(4–6): 346–351. DOI: 10.1016/j.bse.2011.04.011.

    Huang WD, Zhao XY, Zhao X,et al., 2013. Genetic diversity inArtemisia halodendron(Asteraceae) based on chloroplast DNApsbA-trnH region from different hydrothermal conditions in Horqin sandy land, northern China. Plant Systematics and Evolution, 299:107–113. DOI: 10.1007/s00606-012-0707-4..

    Huang WD, Zhao XY, Zhao X,et al., 2014. Relationship between the genetic diversity ofArtemisia halodendronand climatic factors.Acta Oecologica, 55: 97–103. DOI: 10.1016/j.actao.2013.12.005.

    Li FR, Zhang AS, Duan SS,et al., 2005. Patterns of reproductive allocation inArtemisia halodendroninhabiting two contrasting habitats.Acta Oecologica, 28(1): 57–64. DOI: 10.1016/j.actao.2005.02.005.Li FR, Zhao LY, Zhang H,et al., 2004. Wind erosion and airborne dust deposition in farmland during spring in the Horqin Sandy Land of eastern Inner Mongolia, China. Soil and Tillage Research,75(2): 121–130. DOI: 10.1016/j.still.2003.08.001.

    Li J, 1991. The distribution ofArtemisia halodendronand its status in the natural vegetation succession. Journal of Desert Research,11(2): 55–60.

    Li SG, Harazono Y, Oikawa T,et al., 2000. Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agricultural and Forest Meteorology, 102(2–3):125–137. DOI: 10.1016/S0168-1923(00)00101-5.

    Li SG, Harazono Y, Zhao HL,et al., 2002. Micrometeorological changes following establishment of artificially established artemisia vegetation on desertified sandy land in the Horqin Sandy Land, China and their implication on regional environmental change. Journal of Arid Environments, 52(1): 101–119. DOI: 10.1006/jare.2001.0983.

    Li Y, Wulantuya, 2011. Evaluation on forestry suitability in the Horqin Sandy Land—A case study in Horqinzuoyihouqi Banner. Research of Soil and Water Conservation, 18(6): 236–239, 244.

    Li YQ, Zhao HL, Li YL,et al., 2009. Soil nitrogen mineralization and nitrification in different habitats, Horqin sandy land. Journal of Desert Research, 29(3): 438–444.

    Librado P, Rozas J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11):1451–1452. DOI: 10.1093/bioinformatics/btp187.

    Liu Y, Zhang DY, Yang HL,et al., 2010. Fine-scale genetic structure ofEremosparton songoricumand implication for conservation.Journal of Arid Land, 2(1): 26–32. DOI: 10.3724/SP.J.1227.201000026.

    Nei M, 1987. Molecular Evolutionary Genetics. New York: Columbia University Press.

    Nei M, Li WH, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America,76(10): 5269–5273.

    Sang T, Crawford DJ, Stuessy TF, 1997. Chloroplast DNA phylogeny,reticulate evolution, and biogeography ofPaeonia(Paeoniaceae).American Journal of Botany, 84(8): 1120–1136. DOI:10.2307/2446155.

    Swofford DL, 2002. PAUP*: Phylogenetic analysis using parsimony(*and other methods), version 4. 0b10. Sunderland, Massachusetts,USA: Sinauer Associates.

    Taberlet P, Gielly L, Pautou G,et al., 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA.Plant Molecular Biology, 17(5): 1105–1109. DOI: 10.1007/BF 00037152.

    Tamura K, Dudley J, Nei M,et al., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8): 1596–1599. DOI:10.1093/molbev/msm092.

    Thompson JD, Plewniak F, Poch O, 1997. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Research, 27(13): 2682–2690. DOI: 10.1093/nar/27.13.2682.

    Wang CH, Li SF, Fu CZ,et al., 2009. Molecular genetic structure and evolution in native and colonized populations of the Chinese mitten crab,Eriocheir sinensis. Biological Invasions, 11(2): 389–399.DOI: 10.1007/s10530-008-9256-8.

    Wang JF, Pan YZ, Gong X,et al., 2011. Chloroplast DNA variation and phylogeography ofLigularia tongolensis(Asteraceae), a species endemic to the Hengduan Mountains region of China. Journal of Systematics and Evolution, 49(2): 108–119. DOI: 10.1111/j.1759-6831.2011.00117.x.

    Wang T, 2003. Desert and Desertification in China. Shijiazhuang:Hebei Science and Technology Press.

    Wang TJ, Li WQ, Zhang SY,et al., 2010. Genetic diversity and differentiation of five natural populations ofArtemisia halodendron. Scientia Silvae Sinicae, 46(12): 171–175.

    Wright S, 1951. The genetical structure of populations. Annals of Human Genetics, 15(1): 323–354. DOI: 10.1111/j.1469-1809.1949.tb02451.x.

    Zhang HX, Zhang ML, Wang LN, 2015. Genetic structure and historical demography ofMalus sieversiiin the Yili Valley and the western mountains of the Junggar Basin, Xinjiang, China. Journal of Arid Land, 7(2): 264–271. DOI: 10.1007/s40333-014-0044-2.

    Zhao HL, Su YZ, Zhou RL, 2006. Restoration mechanism of degraded vegetation in sandy areas of northern China. Journal of Desert Research, 26(3): 323–328. DOI: 10.3321/j.issn:1000-694X.2006.03.001.

    Zhao HL, Zhao XY, Zhang TH, 2000. Causes, processes and countermeasures of desertification in the interlocked agro-pasturing area of North China. Journal of Desert Research, 20(S1): 22–28.

    Zhao HL, Zhao XY, Zhang TH,et al., 2002. Boundary line on agropasture zigzag zone in North China and its problems on eco-environment. Advance in Earth Sciences, 17(5): 739–747. DOI:10.3321/j.issn:1001-8166.2002.05.017.

    Zhao HL, Zhao XY, Zhang TH,et al., 2003. Desertification Process and Its Recovery Mechanism in Horqin Sandy Land. Beijing:China Ocean Press.

    Zhou GY, Yang LC, Li CL,et al., 2010. Genetic diversity in endangeredNotopterygium forbesiiBoissieu based on intraspecies sequence variation of chloroplast DNA and implications for conservation. Biochemical Systematics and Ecology, 38(5): 911–916.DOI: 10.1016/j.bse.2010.09.012.

    Zhou RL, Wang HO, Zhao HL, 1999. Response of protective enzymatic system in desert plants grown in different kinds of dunes to atmosphere dehydration and high temperature. Journal of Desert Research, 19(S1): 49–54.

    香蕉国产在线看| 久久精品国产亚洲av香蕉五月| 成人国语在线视频| 色综合站精品国产| 少妇粗大呻吟视频| 国产午夜精品论理片| 在线看三级毛片| АⅤ资源中文在线天堂| 女同久久另类99精品国产91| 久久午夜综合久久蜜桃| 两个人视频免费观看高清| 此物有八面人人有两片| 欧美最黄视频在线播放免费| 成人手机av| 亚洲18禁久久av| ponron亚洲| 观看免费一级毛片| 精品久久久久久久末码| 人妻夜夜爽99麻豆av| 国产高清videossex| 色播亚洲综合网| 国产不卡一卡二| 一本大道久久a久久精品| 精品久久蜜臀av无| 免费看美女性在线毛片视频| 老司机在亚洲福利影院| 国产精品 欧美亚洲| 国产一区二区三区在线臀色熟女| 国产熟女xx| 色精品久久人妻99蜜桃| 全区人妻精品视频| 国产精品 国内视频| 啦啦啦韩国在线观看视频| or卡值多少钱| 特大巨黑吊av在线直播| 网址你懂的国产日韩在线| 久久九九热精品免费| 国产精品久久久久久精品电影| www.av在线官网国产| 男人狂女人下面高潮的视频| 青春草亚洲视频在线观看| 日韩人妻高清精品专区| 国产免费男女视频| 中文字幕人妻熟人妻熟丝袜美| 国产视频内射| 男人狂女人下面高潮的视频| 91aial.com中文字幕在线观看| 此物有八面人人有两片| 婷婷色综合大香蕉| 爱豆传媒免费全集在线观看| 美女黄网站色视频| 高清午夜精品一区二区三区 | 婷婷六月久久综合丁香| 日韩中字成人| 黄色日韩在线| 一个人看的www免费观看视频| h日本视频在线播放| 国产伦精品一区二区三区四那| 最近2019中文字幕mv第一页| 我的女老师完整版在线观看| 欧美区成人在线视频| 国产亚洲av片在线观看秒播厂 | 99久久久亚洲精品蜜臀av| 麻豆乱淫一区二区| 亚洲自拍偷在线| 欧美潮喷喷水| www.色视频.com| 又粗又爽又猛毛片免费看| 老熟妇乱子伦视频在线观看| av.在线天堂| 天堂中文最新版在线下载 | 欧美zozozo另类| 观看美女的网站| 狂野欧美激情性xxxx在线观看| 岛国在线免费视频观看| 99久久无色码亚洲精品果冻| 免费观看a级毛片全部| 变态另类成人亚洲欧美熟女| 亚洲三级黄色毛片| 国产人妻一区二区三区在| 少妇裸体淫交视频免费看高清| 哪个播放器可以免费观看大片| 少妇丰满av| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清有码在线观看视频| 国产一区二区亚洲精品在线观看| 97人妻精品一区二区三区麻豆| 色哟哟哟哟哟哟| 成人高潮视频无遮挡免费网站| 91精品一卡2卡3卡4卡| 精品久久久久久久人妻蜜臀av| 国产伦精品一区二区三区四那| 成人综合一区亚洲| 成人亚洲精品av一区二区| 夜夜夜夜夜久久久久| 亚洲av熟女| 久久6这里有精品| or卡值多少钱| 色哟哟·www| 丰满的人妻完整版| 久久亚洲精品不卡| 99国产极品粉嫩在线观看| 欧美日韩一区二区视频在线观看视频在线 | 成人午夜高清在线视频| av国产免费在线观看| 日本黄大片高清| 成人午夜精彩视频在线观看| 成人一区二区视频在线观看| 国产激情偷乱视频一区二区| 亚洲国产精品合色在线| 亚洲性久久影院| 老熟妇乱子伦视频在线观看| 小说图片视频综合网站| 欧美精品一区二区大全| 男的添女的下面高潮视频| 亚洲自拍偷在线| 久久久久久久久大av| 国产男人的电影天堂91| 久久99热这里只有精品18| 久久久久久久久久黄片| 一级毛片电影观看 | 免费av观看视频| 国产又黄又爽又无遮挡在线| 国产av一区在线观看免费| 国产麻豆成人av免费视频| 久久国内精品自在自线图片| 日本熟妇午夜| 亚洲av成人精品一区久久| 亚洲不卡免费看| 一级av片app| 麻豆乱淫一区二区| 亚洲人与动物交配视频| 一本一本综合久久| 一级毛片我不卡| 卡戴珊不雅视频在线播放| 国产精品女同一区二区软件| 一级二级三级毛片免费看| 一夜夜www| 校园人妻丝袜中文字幕| 亚洲五月天丁香| 欧美xxxx黑人xx丫x性爽| 在线观看午夜福利视频| 禁无遮挡网站| 亚洲高清免费不卡视频| 国产三级在线视频| 在线观看66精品国产| 国产欧美日韩精品一区二区| 国产人妻一区二区三区在| av又黄又爽大尺度在线免费看 | kizo精华| 一级av片app| 搡老妇女老女人老熟妇| 国产亚洲5aaaaa淫片| 久久这里有精品视频免费| 熟女人妻精品中文字幕| 美女内射精品一级片tv| 最近手机中文字幕大全| 国产亚洲精品久久久com| 在现免费观看毛片| 能在线免费观看的黄片| 国产淫片久久久久久久久| 日本爱情动作片www.在线观看| 床上黄色一级片| 青春草亚洲视频在线观看| 最近中文字幕高清免费大全6| 亚洲国产欧美在线一区| www.色视频.com| 亚州av有码| 国内揄拍国产精品人妻在线| av国产免费在线观看| 婷婷六月久久综合丁香| 日韩欧美精品v在线| 国产一级毛片七仙女欲春2| 美女被艹到高潮喷水动态| 精品久久久久久久人妻蜜臀av| 天堂av国产一区二区熟女人妻| 亚洲精品456在线播放app| 国产人妻一区二区三区在| 国内精品宾馆在线| 亚洲四区av| 一进一出抽搐动态| 一区二区三区免费毛片| av在线天堂中文字幕| 噜噜噜噜噜久久久久久91| 麻豆国产97在线/欧美| 亚洲内射少妇av| 国产精品一区二区三区四区久久| 亚洲av免费在线观看| 日韩欧美一区二区三区在线观看| 热99在线观看视频| av在线观看视频网站免费| 国产三级中文精品| 全区人妻精品视频| 少妇高潮的动态图| 久久精品国产亚洲av涩爱 | 日本黄大片高清| 国产午夜福利久久久久久| 人妻夜夜爽99麻豆av| 日韩,欧美,国产一区二区三区 | 一夜夜www| 亚洲最大成人手机在线| 非洲黑人性xxxx精品又粗又长| 国产精品一二三区在线看| 成人二区视频| 欧美极品一区二区三区四区| 99久久人妻综合| 日本三级黄在线观看| 别揉我奶头 嗯啊视频| 午夜久久久久精精品| 中文在线观看免费www的网站| 亚洲av成人精品一区久久| 免费人成在线观看视频色| 中文字幕av在线有码专区| 亚洲,欧美,日韩| 亚洲最大成人中文| 免费无遮挡裸体视频| 婷婷亚洲欧美| 91精品一卡2卡3卡4卡| 日本撒尿小便嘘嘘汇集6| 狂野欧美白嫩少妇大欣赏| 国产69精品久久久久777片| 狂野欧美白嫩少妇大欣赏| 国产精品美女特级片免费视频播放器| 特大巨黑吊av在线直播| 高清毛片免费看| 国产高清三级在线| 小蜜桃在线观看免费完整版高清| 国产亚洲精品av在线| 免费无遮挡裸体视频| 大香蕉久久网| 亚洲成人av在线免费| 亚洲激情五月婷婷啪啪| 国产极品精品免费视频能看的| 午夜激情福利司机影院| 如何舔出高潮| 欧美一级a爱片免费观看看| 18禁黄网站禁片免费观看直播| 国产成人精品一,二区 | 在线播放无遮挡| 亚洲精品456在线播放app| 国内精品宾馆在线| 99久国产av精品国产电影| 精品人妻熟女av久视频| 国产人妻一区二区三区在| 日本一二三区视频观看| 一本一本综合久久| 日韩 亚洲 欧美在线| 99热6这里只有精品| 午夜精品国产一区二区电影 | 亚洲乱码一区二区免费版| 午夜久久久久精精品| 亚洲不卡免费看| 成人鲁丝片一二三区免费| 少妇猛男粗大的猛烈进出视频 | 亚洲精品久久久久久婷婷小说 | 免费观看a级毛片全部| 女人被狂操c到高潮| 国产一区亚洲一区在线观看| 少妇被粗大猛烈的视频| 亚洲欧美精品自产自拍| 欧美激情久久久久久爽电影| 成人午夜高清在线视频| www日本黄色视频网| 国产成人freesex在线| 国产日韩欧美在线精品| 校园春色视频在线观看| 99热6这里只有精品| 日韩 亚洲 欧美在线| 在线观看美女被高潮喷水网站| 91久久精品国产一区二区三区| 少妇丰满av| 校园春色视频在线观看| 亚洲四区av| 简卡轻食公司| 哪个播放器可以免费观看大片| 少妇裸体淫交视频免费看高清| 五月伊人婷婷丁香| 中文欧美无线码| 精品久久久久久久人妻蜜臀av| 精品久久久久久久末码| 插逼视频在线观看| 人人妻人人看人人澡| 日本黄色片子视频| 搡老妇女老女人老熟妇| 看免费成人av毛片| 亚洲欧美日韩高清在线视频| 国产色爽女视频免费观看| 老司机福利观看| 亚洲熟妇中文字幕五十中出| 波多野结衣高清作品| 亚洲18禁久久av| av在线观看视频网站免费| 国产 一区精品| 亚洲精品日韩av片在线观看| 3wmmmm亚洲av在线观看| 美女国产视频在线观看| 国国产精品蜜臀av免费| 超碰av人人做人人爽久久| 天美传媒精品一区二区| 一区福利在线观看| 黄片wwwwww| 色吧在线观看| 亚洲国产欧美人成| av视频在线观看入口| 我要搜黄色片| 国产亚洲av嫩草精品影院| 色播亚洲综合网| 国产精华一区二区三区| 一级毛片我不卡| 乱系列少妇在线播放| 干丝袜人妻中文字幕| 国产精品久久久久久久久免| 丝袜喷水一区| 在线国产一区二区在线| 亚洲最大成人中文| 悠悠久久av| 天堂√8在线中文| 在线免费观看不下载黄p国产| 少妇人妻精品综合一区二区 | 久久99蜜桃精品久久| 亚洲一区二区三区色噜噜| 看十八女毛片水多多多| 在线播放国产精品三级| 欧美激情久久久久久爽电影| 少妇被粗大猛烈的视频| 色噜噜av男人的天堂激情| 亚洲精品成人久久久久久| 精品久久国产蜜桃| 亚洲av一区综合| 欧美激情在线99| 国产高清有码在线观看视频| 97人妻精品一区二区三区麻豆| 深夜a级毛片| 午夜a级毛片| 日韩欧美一区二区三区在线观看| 国产一区亚洲一区在线观看| 欧美成人a在线观看| 美女高潮的动态| 少妇的逼水好多| 不卡一级毛片| 91麻豆精品激情在线观看国产| 亚洲五月天丁香| 夜夜夜夜夜久久久久| 18+在线观看网站| 此物有八面人人有两片| av又黄又爽大尺度在线免费看 | 亚洲激情五月婷婷啪啪| 精品一区二区免费观看| 久久久国产成人精品二区| 1000部很黄的大片| 成人性生交大片免费视频hd| h日本视频在线播放| 成人特级av手机在线观看| 日韩视频在线欧美| 丰满的人妻完整版| 在线播放国产精品三级| 高清日韩中文字幕在线| 乱码一卡2卡4卡精品| 菩萨蛮人人尽说江南好唐韦庄 | 又爽又黄无遮挡网站| 国产三级中文精品| 国产亚洲欧美98| 2021天堂中文幕一二区在线观| 日韩 亚洲 欧美在线| 国内少妇人妻偷人精品xxx网站| av女优亚洲男人天堂| 国内精品美女久久久久久| 在线观看午夜福利视频| 欧美最新免费一区二区三区| 97热精品久久久久久| 成人亚洲欧美一区二区av| 六月丁香七月| 亚洲国产高清在线一区二区三| 午夜免费激情av| 大香蕉久久网| 长腿黑丝高跟| 99久国产av精品国产电影| 18禁裸乳无遮挡免费网站照片| 91精品一卡2卡3卡4卡| 最新中文字幕久久久久| 美女内射精品一级片tv| 国产成人a区在线观看| 日本与韩国留学比较| 69av精品久久久久久| 欧美一级a爱片免费观看看| 久久人人精品亚洲av| 精品免费久久久久久久清纯| 中文字幕久久专区| 日本色播在线视频| 日韩欧美精品v在线| 村上凉子中文字幕在线| 91久久精品国产一区二区三区| 99久国产av精品| 欧美日本视频| 国产欧美日韩精品一区二区| 亚洲中文字幕日韩| 国产成人精品婷婷| 成人无遮挡网站| 中国美白少妇内射xxxbb| av国产免费在线观看| 女人十人毛片免费观看3o分钟| 国产精品野战在线观看| avwww免费| 熟女人妻精品中文字幕| 国语自产精品视频在线第100页| 99热只有精品国产| 男人狂女人下面高潮的视频| av在线蜜桃| 欧美zozozo另类| 精品人妻一区二区三区麻豆| 日本黄色视频三级网站网址| 91久久精品国产一区二区三区| 欧美丝袜亚洲另类| 亚洲av二区三区四区| 床上黄色一级片| 99热这里只有是精品在线观看| 伊人久久精品亚洲午夜| av天堂在线播放| 好男人视频免费观看在线| a级一级毛片免费在线观看| 亚洲激情五月婷婷啪啪| 日韩成人av中文字幕在线观看| 九九爱精品视频在线观看| 久久久午夜欧美精品| 亚洲av熟女| 亚洲精品乱码久久久v下载方式| 波野结衣二区三区在线| 国产精品一区二区三区四区久久| 国产麻豆成人av免费视频| 免费看光身美女| 色哟哟·www| 久久精品国产鲁丝片午夜精品| av天堂在线播放| 99久久精品国产国产毛片| 看黄色毛片网站| 久久久久久久久大av| 久99久视频精品免费| 亚洲av中文av极速乱| 又爽又黄无遮挡网站| 少妇丰满av| 日韩欧美国产在线观看| 麻豆国产97在线/欧美| 国产成人午夜福利电影在线观看| 搡老妇女老女人老熟妇| 欧美区成人在线视频| 日本欧美国产在线视频| 99国产极品粉嫩在线观看| 极品教师在线视频| 色综合亚洲欧美另类图片| 亚洲人成网站高清观看| 久久久久久久午夜电影| 欧美+日韩+精品| 国产精品久久久久久av不卡| 国产精品一区二区性色av| 午夜激情欧美在线| 亚洲精品日韩av片在线观看| 亚洲天堂国产精品一区在线| АⅤ资源中文在线天堂| 色5月婷婷丁香| 99国产精品一区二区蜜桃av| 国产熟女欧美一区二区| 国产美女午夜福利| 日本色播在线视频| 国产综合懂色| 99热网站在线观看| 国产精品蜜桃在线观看 | 非洲黑人性xxxx精品又粗又长| 久久精品国产亚洲av涩爱 | 丰满的人妻完整版| 在现免费观看毛片| 三级经典国产精品| 校园人妻丝袜中文字幕| 日韩在线高清观看一区二区三区| 国产精品一区二区三区四区久久| 国产乱人偷精品视频| 看非洲黑人一级黄片| 亚洲精品456在线播放app| 最好的美女福利视频网| 少妇人妻精品综合一区二区 | 亚洲自偷自拍三级| 日韩视频在线欧美| 成人漫画全彩无遮挡| 成年版毛片免费区| 国产老妇伦熟女老妇高清| 日本五十路高清| 欧美高清性xxxxhd video| 国产精品一区二区三区四区久久| 国产精品不卡视频一区二区| av卡一久久| 色哟哟哟哟哟哟| 日韩一区二区三区影片| 久久这里只有精品中国| 精品国内亚洲2022精品成人| 免费观看人在逋| 在线观看免费视频日本深夜| 中文字幕精品亚洲无线码一区| www日本黄色视频网| 日本在线视频免费播放| 国国产精品蜜臀av免费| 伦理电影大哥的女人| 老司机影院成人| 亚洲自拍偷在线| 天堂影院成人在线观看| 狂野欧美激情性xxxx在线观看| 成年版毛片免费区| a级毛片免费高清观看在线播放| 在线国产一区二区在线| 亚洲高清免费不卡视频| 亚洲成av人片在线播放无| 狠狠狠狠99中文字幕| 日本-黄色视频高清免费观看| 午夜激情欧美在线| 午夜福利在线在线| 日本撒尿小便嘘嘘汇集6| 成年免费大片在线观看| 一级黄色大片毛片| 两个人视频免费观看高清| 精品久久久噜噜| 99久久精品热视频| 老司机福利观看| 五月伊人婷婷丁香| 亚洲av电影不卡..在线观看| 日韩欧美精品v在线| 嘟嘟电影网在线观看| 哪个播放器可以免费观看大片| 国产精品伦人一区二区| 精品久久久久久久久亚洲| 国产精品伦人一区二区| 日本色播在线视频| 成人亚洲精品av一区二区| 26uuu在线亚洲综合色| 国产69精品久久久久777片| 高清在线视频一区二区三区 | 成年av动漫网址| 中文欧美无线码| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看| 国产亚洲av嫩草精品影院| 日本-黄色视频高清免费观看| 日韩亚洲欧美综合| 麻豆久久精品国产亚洲av| 国产精品一区www在线观看| 国产爱豆传媒在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久亚洲av鲁大| 狂野欧美白嫩少妇大欣赏| 只有这里有精品99| 女的被弄到高潮叫床怎么办| 在线观看一区二区三区| 国产久久久一区二区三区| www.色视频.com| 国产大屁股一区二区在线视频| 黑人高潮一二区| 啦啦啦观看免费观看视频高清| 色哟哟·www| 久久亚洲国产成人精品v| 日本免费a在线| 久久久久久久久久久免费av| 一区二区三区免费毛片| 九九在线视频观看精品| 国内精品宾馆在线| 日韩人妻高清精品专区| 麻豆精品久久久久久蜜桃| 国产 一区精品| 直男gayav资源| 99热网站在线观看| 成人综合一区亚洲| 成人一区二区视频在线观看| 欧美在线一区亚洲| ponron亚洲| 亚洲美女搞黄在线观看| 欧美性猛交黑人性爽| av福利片在线观看| 久久久久性生活片| 日韩三级伦理在线观看| 久久久久国产网址| 狂野欧美白嫩少妇大欣赏| 亚洲综合色惰| 麻豆成人av视频| 久久九九热精品免费| 18禁黄网站禁片免费观看直播| 免费黄网站久久成人精品| 久久亚洲精品不卡| 免费看美女性在线毛片视频| 亚洲av不卡在线观看| 欧美日韩精品成人综合77777| 男人狂女人下面高潮的视频| www日本黄色视频网| 午夜精品国产一区二区电影 | 欧美日韩一区二区视频在线观看视频在线 | 麻豆成人av视频| 91久久精品国产一区二区成人| 人人妻人人澡人人爽人人夜夜 | 国内精品一区二区在线观看| 国产成人a∨麻豆精品| 国产极品精品免费视频能看的| 亚洲欧美中文字幕日韩二区| 亚洲欧美精品专区久久| 欧洲精品卡2卡3卡4卡5卡区| 美女黄网站色视频| 国产在线男女| 午夜亚洲福利在线播放| av福利片在线观看| 在线免费十八禁| 久久国产乱子免费精品| 亚洲国产精品国产精品| 精品久久久久久久久av| 国产伦在线观看视频一区| 国产精品久久久久久av不卡| 边亲边吃奶的免费视频| 婷婷色av中文字幕| 国产精品国产三级国产av玫瑰| 免费一级毛片在线播放高清视频| 欧美日韩乱码在线| 一级黄色大片毛片|