• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A method to obtain soil-moisture estimates over bare agricultural fields in arid areas by using multi-angle RADARSAT-2 data

    2018-05-09 07:36:36JunZhanWangJianJunQuLiHaiTanKeCunZhang
    Sciences in Cold and Arid Regions 2018年2期

    JunZhan Wang , JianJun Qu , LiHai Tan , KeCun Zhang

    Dunhuang Gobi and Desert Ecology and Environment Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    1 Introduction

    Surface soil moisture (Ms) is an important factor in many fields of study, such as meteorology,hydrology, and ecology (Pultzet al., 1997; Dirmeyer,2000; Le Hégarat-Mascleet al., 2002; Yanget al.,2016); it also has important applications in estimating crop yield and drought monitoring (McNairnet al., 2012). With the development of the economy in the arid area of Northwest China, where rainfall is scant, the shortage of water resources is becoming more and more severe, making it more important to obtain timely distribution of the soil moisture in a certain range. Remote-sensing technology has shown great ability to estimate soil moisture, as compared to optical and passive microwave remote sensing. Active remote sensing has its own special advantage in soil-moisture estimation, and many empirical and semi-empirical models have been developed to estimate soil moisture (Ohet al., 1992; Duboiset al., 1995;Shiet al., 1997). Current empirical and semi-empirical models are suitable for a certain range of surface roughness. Recently, the integral equation model(IEM) was developed and widely used in simulating backscattering of bare soil or sparsely vegetated landscapes. Based on the model, surface soil-moisture in-formation can be obtained (Fung, 1994; Rahmanet al., 2008). Based on IEM, Chenet al. (2003)developed the Advance Integral Equation Model(AIEM) to simulate backscattering of bare soil or sparsely vegetated landscapes, with a good result showing that it is useful for soil-moisture estimation over a bare soil surface. Generally, when using AIEM to simulate backscattering of bare soil, two important input parameters—soil moisture and surface roughness—are unknown; and other input parameters such as radar configuration are known. To estimate soil moisture, the impact of surface roughness on backscattering must be removed, using multi-angle and multi-polarized data to establish the relationship between backscattering and surface roughness(Zribi and Dechambre, 2003; Baghdadiet al., 2006;Gherboudjet al., 2011). The objective of this study is to present a method to estimate soil moisture over bare agricultural fields, using RADARSAT-2 high- and low-incidence-angle mode data, based on the AIEM.

    2 Study area and data processing

    2.1 Study area

    The study area is located in the city of Dunhuang,west of the Hexi Corridor, in Northwest China(Figure 1a). Dunhuang falls in an arid climatic zone,with an annual average rainfall of about 39.9 mm; but the annual mean evaporation reaches 2,486 mm. Dunhaung oasis is surrounded by the Gobi Desert, water needed for both daily and irrigation depending on glacier-melt water from the Qilian Mountains. The shortage of water resources has become an important problem in this area, making it important to be able to estimate surface soil moisture over agricultural fields in this arid area (Liuet al., 2017).

    Figure 1 Location of the study area of Dunhuang (a) and the satellite remote-sensing experiment plot (b)(Landsat TM imagery, bands 4, 3, 2)

    2.2 RADARSAT-2 data processing

    RADARSAT-2 was launched in December of 2007 by the Canadian Space Agency. It is an earth-observing satellite offering powerful technical advancements that enhance marine surveillance, ice monitoring, disaster management, environmental monitoring,resource management, and mapping, RADARSAT-2 works at C-band (5.405GHZ), providing 11 kinds of beam mode data, with different resolutions and incidence angles. The incidence angles range from 10° to 60°. Two RADARSAT-2 images were acquired over the Dunhuang study area: the high-incidence-angle mode data (May 13, 2015), with a 53.3° average incidence angle, HH polarization; and the low-incidentangle mode data (May 12, 2015), with a 16.5° average incidence angle, HH polarization. The image data are single-look complex (SLC) data; the image digital numbers (DN) are in units of amplitude; and theDNvalue should be converted to backscattering values (σ) before using. The computation ofσis

    whereσis the radar backscattering coefficient in decibel units (dB),DNis the image digital numbers,A0andA1are the automatic gain control, andIis the incidence angle. The NEST (Next ESA SAR Toolbox)software was used on the image for radiometric calibration.

    A median filter consisting of a 9-pixel moving window was applied to reduce RADARAT-2 SAR data speckle (Thomaet al., 2006). Based on the 1:50,000 relief maps, ground control points were chosen; and the RADARSAT-2 backscattering image data were georectified.

    2.3 Ground observations

    Field campaign measurements of soil-surface roughness and soil moisture were conducted when the RADARSAT-2 satellite passed over on May 12,2015. Soil-surface roughness was measured using a 1.5-m profile of a pin meter. For the 26 experimental sites, roughness was computed by averaging the roughness parameters (the root mean square height (s)and the correlation length (l)) obtained from three sparsely distributed measurement points. Soil moisture at the surface was measured for three depths:0–7.5 cm, 0–12 cm and 0–20 cm using the TDR300 at the time of the RADARSAT2 overpasses. The three different depths of soil moisture were also computed by averaging the soil-moisture readings obtained from three sparsely distributed measurement points.

    The correlation between radar backscattering and soil moisture of different depths was analyzed, as shown in Table 1. It is shown that low-incidenceangle SAR data are more sensitive to soil moisture.For high- and low-incidence-angle radar backscattering, there is a better relationship between SAR data and moisture in the top 0–20 cm of soil.

    3 Soil-moisture retrieval from RADARSAT-2 data

    3.1 Inversion algorithm based on AIEM

    In this paper, we use AIEM to simulate radar backscattering. The values of the main input parameters—including soil moisture, roughness, incidence angle, and soil temperature—were set based on the ground experiment. The soil temperature was set at 20 °C. The incidence angle was set according to low-incidence-mode RADARSAT-2 data, which was 16.5°. Seven differentsvalues were chosen, ranging from 0.1 cm to 1.3 cm; three differentlvalues were chosen, ranging from 5 cm to 11 cm; and five differentMsvalues were chosen, ranging from 10% to 60%.Based on the input parameters, the HH polarization backscattering was simulated using AIEM.

    Table 1 The correlation coefficient between backscattering of two incidence-angle mode data and soil moisture of three different depths

    In earlier studies, the influence of soil roughness on backscattering considered only the root mean square height (s), neglecting the effect ofl. Based on comprehensive consideration of the influence ofsandlon the radar backscattering, a roughness parameter was used, whereZs=s2/l(Zribi and Dechambre, 2003).Figure 2 shows the effect ofs(Figure 2a) andZs(Figure 2b) on radar backscattering; the mixed-roughness parameterZsis more accurate to simulate radar backscattering.

    Figure 2 Illustration of the effect of root mean square (a) and soil roughness Zs(b) on radar-signal simulations at 16.5° incidence angle

    To analyze the influence of soil moisture and soil roughness on radar backscattering, thelwas set to one value (l=8 cm), which can simplify the analysis of the relationship. Considering one value for thelhas no influence on our conclusions in this section. Then, the influence of soil moisture and roughness on radar backscattering is simulated, as shown in Figure 3.

    Figure 3 Illustration of the influence of soil moisture and roughness on radar-backscattering simulations

    As shown in Figure 3, the influence of soil moisture on backscattering is approximately independent of the soil-roughness parameter; and the influence of roughness on radar backscattering is also approximately independent of the soil moisture. Our conclusions are similar to those of Zribiet al. (2005). We also find that the relationship is logarithmic between the radar backscattering (σ) and soil moisture (Ms) and soil roughness (Zs) for the RADARSAT-2; and radar backscattering (σ) can expressed as a function ofMsandZs, where

    In section2.3, we found that low-incident-angle mode data are more suitable for obtaining soil moisture; so the RADARSAT-2 low-incident-angle radar backscattering can be written by

    Based on AIEM, the high-and low-incidence-angle SAR backscattering was simulated. It was also found that the difference in backscattering with two different incidence angles, independent of soil moisture,has a relationship on its own with soil roughness, as shown in Figure 4. Our conclusions are similar to those of Zribi and Dechambre (2003). For the RADARSAT-2 high- and low-incident-angle mode simulated data, the difference (Δσ=σlow?σhigh)between low-incidence-angle radar backscattering(σlow) and high-incidence-angle radar backscattering(σhigh) shows a logarithmic relationship withZs, where

    Figure 4 Relationship between Δσ (σlow–σhigh) and Zs with five soil-moisture values

    Therefore, the ln(Ms) can be written as Equations(3)and(4):

    wherek1,k2, andk3are the coefficients; andk4is the constant. The ln(Ms) is the function ofσlowand Δσ(σlow–σhigh); the coefficients and constant can be calculated by the least-square fitting method, based on the measured data and RADARSAT-2 high- and low-incidence-angle backscattering data.

    Based on Equation(6),Msis obtained using Equation(7).

    3.2 Soil-moisture estimation

    In section 1.3, the low-incidence-angle SAR backscattering has a better relationship with moisture in the top 20 cm of the soil. Based on the measured data of 26 sites in the Dunhuang study area and the RADARSAT-2 data,k1,k2,k3, andk4are calculated using SPSS19.0. The ln(Ms) is given by

    Then, the soil moisture of the top 20 cm of soil is obtained by Equation(9):

    As shown in Figure 5a, the coefficient of determination between obtained soil moisture and measured soil moisture is 0.85; the RMSE is 4.02%. A linear empirical model describing the relationship between soil moisture and low-incident-angle backscattering data was also built by a regression method based on the 26 plot measurements. The model obtained an RMSE of 7.11% and a correlation coefficient of 0.51.The results show the potential of this method to estimate soil moisture with a high accuracy.

    Figure 5 Comparison of soil moisture estimates obtained by the model put forward in this paper (a)and the linear empirical model (b)

    4 Conclusions

    A simple soil-moisture estimation method is proposed in this paper. Radar backscattering is mainly influenced by soil moisture and roughness, so soil moisture is a function of radar backscattering and soil roughness. For bare agricultural fields in an arid area, the backscattering of low-incidence-angle RADARSAT-2 data is more sensitive to soil moisture; and a better relationship is found between radar backscattering and the amount of moisture in the top 20 cm of soil. The difference between low- and high-incident-angle radar backscattering shows a logarithmic relationship with soil roughness. Therefore, the estimate of soil moisture is a function of low-incidence-angle backscattering and the difference of low- and high-incident-angle radar backscattering. The natural logarithm of soil moisture is deduced by combining the roughness model and the backscattering model based on the simulated data. By expanding the natural logarithm of soil moisture into a Taylor series, soil moisture can be obtained using the least-square method without having soil-roughness measurements. The results show that the method is useful for estimating soil moisture.Further study is needed with regard to the accuracy of roughness measurements.

    The study was supported by the National Natural Science Foundation of China (41401408 and 41371027) and the Opening Fund of Key Laboratory of Desert and Desertification, Chinese Academy of Sciences. The authors would like to thank all the experts and editors.

    Baghdadi N, Holah N, Zribi M, 2006. Soil moisture estimation using multi-incidence and multi-polarization ASAR data. International Journal of Remote Sensing, 27(10): 1907–1920. DOI:10.1080/01431160500239032.

    Chen KS, Wu TD, Tsang L,et al., 2003. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Transactions on Geoscience and Remote Sensing, 41(1): 90–101. DOI:10.1109/TGRS.2002.807587.

    Dirmeyer PA, 2000. Using a global soil wetness dataset to improve seasonal climate simulation. Journal of Climate, 13(16):2900–2922. DOI: 10.1175/1520-0442(2000)013<2900:UAGSWD>2.0.CO;2.

    Dubois PC, van Zyl J, Engman T, 1995. Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33(4): 915–926. DOI: 10.1109/36.406677.

    Fung AK, 1994. Microwave scattering and emission models and their applications. Norwood, MA, USA: Artech House, pp. 10–45.

    Gherboudj I, Magagi R, Berg AA,et al., 2011. Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data. Remote Sensing of Environment,115(1): 33–43. DOI: 10.1016/j.rse.2010.07.011.

    Le Hégarat-Mascle S, Zribi M, Alem F,et al., 2002. Soil moisture estimation From ERS/SAR data: toward an operational methodology.IEEE Transactions on Geoscience and Remote Sensing, 40(12):2647–2658. DOI: 10.1109/TGRS.2002.806994.

    Liu YS, Qin X, Du WT, 2017. Changes of glacier area in the Xiying River Basin, East Qilian Mountain, China. Sciences in Cold and Arid Regions, 9(5): 432–437. DOI: 10.3724/SP.J.1226.2017.00432.

    McNairn H, Merzouki A, Pacheco A,et al., 2012. Monitoring soil moisture to support risk reduction for the agriculture sector using RADARSAT-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3): 824–834. DOI:10.1109/JSTARS.2012.2192416.

    Oh Y, Sarabandi K, Ulaby FT, 1992. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 370–381.DOI: 10.1109/36.134086.

    Pultz TJ, Crevier Y, Brown RJ,et al., 1997. Monitoring local environmental conditions with SIR-C/X-SAR. Remote Sensing of Environment, 59(2): 248–255. DOI: 10.1016/S0034-4257(96)00157-5.

    Rahman MM, Moran MS, Thoma DP,et al., 2008. Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sensing of Environment, 112(2):391–402. DOI: 10.1016/j.rse.2006.10.026.

    Shi JC, Wang J, Hsu AY,et al., 1997. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Transactions on Geoscience and Remote Sensing,35(5): 1254–1266. DOI: 10.1109/36.628792.

    Thoma DP, Moran MS, Bryant R,et al., 2006. Comparison of four models to determine surface soil moisture from C-band radar imagery in a sparsely vegetated semiarid landscape. Water Resources Research, 42(1): W01418. DOI: 10.1029/2004WR003905.

    Yang JJ, He ZB, Zhao WJ,et al., 2016. Assessing artificial neural networks coupled with wavelet analysis for multi-layer soil moisture dynamics prediction. Sciences in Cold and Arid Regions, 8(2):116–124. DOI: 10.3724/SP.J.1226.2016.00116.

    Zribi M, Dechambre M, 2003. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sensing of Environment, 84(1): 42–52. DOI: 10.1016/S0034-4257(02)00069-X.

    Zribi M, Baghdadi N, Holah N,et al., 2005. New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion. Remote Sensing of Environment, 96(3–4): 485–496. DOI: 10.1016/j.rse.2005.04.005.

    久久午夜福利片| 多毛熟女@视频| 日韩 亚洲 欧美在线| 日韩中字成人| 国产高清不卡午夜福利| 国产片特级美女逼逼视频| 久久国产精品大桥未久av | 成人亚洲精品一区在线观看| 看非洲黑人一级黄片| 久久久久国产精品人妻一区二区| 久久久精品94久久精品| 久久久午夜欧美精品| 亚洲久久久国产精品| 成人无遮挡网站| 国产一区亚洲一区在线观看| 久久久久久久久久久久大奶| 欧美日本中文国产一区发布| 91成人精品电影| 人妻少妇偷人精品九色| 亚洲色图综合在线观看| 精品久久久久久电影网| 亚洲欧美精品自产自拍| 欧美老熟妇乱子伦牲交| 午夜精品国产一区二区电影| 亚洲欧美清纯卡通| av一本久久久久| 久久精品久久久久久噜噜老黄| 日本黄大片高清| 在线天堂最新版资源| 人妻制服诱惑在线中文字幕| 免费看不卡的av| 亚洲欧美一区二区三区国产| 精品国产乱码久久久久久小说| 亚洲精品日韩在线中文字幕| 人人妻人人添人人爽欧美一区卜| 国产熟女午夜一区二区三区 | 精品人妻一区二区三区麻豆| 国产 精品1| 亚洲欧美日韩卡通动漫| 亚洲av福利一区| 免费观看a级毛片全部| 亚洲第一区二区三区不卡| 99re6热这里在线精品视频| 观看免费一级毛片| 99热全是精品| 最近手机中文字幕大全| 99九九线精品视频在线观看视频| 2018国产大陆天天弄谢| 精品人妻偷拍中文字幕| 大香蕉久久网| 秋霞伦理黄片| 中文字幕亚洲精品专区| 曰老女人黄片| 国产成人免费无遮挡视频| 精品久久久久久久久av| 久久午夜综合久久蜜桃| 精品国产一区二区久久| 只有这里有精品99| 一级毛片黄色毛片免费观看视频| 国产毛片在线视频| 精品亚洲成a人片在线观看| 天堂俺去俺来也www色官网| 老司机影院成人| 国产精品久久久久成人av| 99久国产av精品国产电影| 最近最新中文字幕免费大全7| 精品久久久噜噜| 夜夜爽夜夜爽视频| 色5月婷婷丁香| h视频一区二区三区| 在线观看人妻少妇| 亚洲成人一二三区av| 亚洲熟女精品中文字幕| 国产美女午夜福利| 日韩av不卡免费在线播放| 黄色欧美视频在线观看| 亚洲久久久国产精品| 中国美白少妇内射xxxbb| 人人妻人人澡人人爽人人夜夜| 男女免费视频国产| 国产精品成人在线| 97超视频在线观看视频| 欧美少妇被猛烈插入视频| 好男人视频免费观看在线| 老司机亚洲免费影院| 亚洲精品日本国产第一区| 成年人午夜在线观看视频| 日韩亚洲欧美综合| 99久国产av精品国产电影| 男人爽女人下面视频在线观看| 韩国av在线不卡| 精品亚洲成国产av| 久久亚洲国产成人精品v| 黄色配什么色好看| 国产av码专区亚洲av| 永久免费av网站大全| 成人毛片a级毛片在线播放| 亚洲欧美精品自产自拍| 精品人妻偷拍中文字幕| 日韩制服骚丝袜av| 日韩大片免费观看网站| 高清av免费在线| 一级a做视频免费观看| √禁漫天堂资源中文www| 精品久久国产蜜桃| 精品一区在线观看国产| 色哟哟·www| 亚洲av电影在线观看一区二区三区| 少妇的逼好多水| 中国三级夫妇交换| 国产一区亚洲一区在线观看| 免费久久久久久久精品成人欧美视频 | 精品亚洲成a人片在线观看| 欧美一级a爱片免费观看看| 久久国产精品男人的天堂亚洲 | 97超视频在线观看视频| 九色成人免费人妻av| 国产亚洲午夜精品一区二区久久| 人人澡人人妻人| 日日爽夜夜爽网站| 大片免费播放器 马上看| 春色校园在线视频观看| 男人和女人高潮做爰伦理| 婷婷色综合www| 午夜91福利影院| 日本欧美国产在线视频| 麻豆成人午夜福利视频| 麻豆乱淫一区二区| 日韩 亚洲 欧美在线| 熟女人妻精品中文字幕| 国产精品一二三区在线看| 妹子高潮喷水视频| 水蜜桃什么品种好| 妹子高潮喷水视频| 97在线人人人人妻| 久久精品熟女亚洲av麻豆精品| 两个人免费观看高清视频 | 免费不卡的大黄色大毛片视频在线观看| 亚洲美女视频黄频| 日韩大片免费观看网站| 狂野欧美激情性xxxx在线观看| 99热网站在线观看| 日韩av免费高清视频| 国产精品女同一区二区软件| 91精品伊人久久大香线蕉| 国产亚洲精品久久久com| 亚洲av成人精品一二三区| 亚洲精品第二区| 久久国内精品自在自线图片| 国产亚洲5aaaaa淫片| 在线观看av片永久免费下载| 永久网站在线| 只有这里有精品99| 爱豆传媒免费全集在线观看| 校园人妻丝袜中文字幕| 少妇被粗大猛烈的视频| 日本欧美视频一区| 国产美女午夜福利| 国产片特级美女逼逼视频| 婷婷色av中文字幕| 国产精品久久久久久久久免| 亚洲av不卡在线观看| 丁香六月天网| 两个人免费观看高清视频 | 黄片无遮挡物在线观看| 亚洲av.av天堂| 日日撸夜夜添| 在线观看三级黄色| 搡老乐熟女国产| 午夜福利视频精品| 热99国产精品久久久久久7| 2021少妇久久久久久久久久久| 一本大道久久a久久精品| 久久精品夜色国产| 欧美日韩亚洲高清精品| 国产高清三级在线| 人人妻人人爽人人添夜夜欢视频 | av在线观看视频网站免费| 国产午夜精品久久久久久一区二区三区| 国产一区二区在线观看av| 久久久精品94久久精品| 久久午夜福利片| 中文字幕亚洲精品专区| 一个人看视频在线观看www免费| freevideosex欧美| a级毛片免费高清观看在线播放| 男人和女人高潮做爰伦理| 91成人精品电影| 欧美最新免费一区二区三区| 99热国产这里只有精品6| 日本爱情动作片www.在线观看| 国产视频内射| 少妇被粗大的猛进出69影院 | 一本大道久久a久久精品| 十八禁高潮呻吟视频 | 91精品国产国语对白视频| 国产亚洲一区二区精品| 欧美老熟妇乱子伦牲交| 精品国产一区二区三区久久久樱花| 在线观看av片永久免费下载| 国产极品粉嫩免费观看在线 | 少妇高潮的动态图| 日韩欧美 国产精品| 久久精品久久久久久噜噜老黄| 午夜久久久在线观看| 99九九在线精品视频 | 亚洲欧美精品自产自拍| 国产 一区精品| 色吧在线观看| 伦理电影免费视频| 黄色毛片三级朝国网站 | 人体艺术视频欧美日本| av在线观看视频网站免费| 国产一区二区在线观看av| 综合色丁香网| 人妻少妇偷人精品九色| 中文乱码字字幕精品一区二区三区| 久久精品久久久久久久性| 欧美精品高潮呻吟av久久| 免费看光身美女| 99精国产麻豆久久婷婷| 国产永久视频网站| 少妇人妻 视频| 激情五月婷婷亚洲| 一区二区三区免费毛片| 国产精品一二三区在线看| 国产一区有黄有色的免费视频| 亚洲无线观看免费| 天堂中文最新版在线下载| 最黄视频免费看| 丰满乱子伦码专区| 精品国产国语对白av| 欧美精品亚洲一区二区| 国产在线一区二区三区精| 国产精品不卡视频一区二区| 久久久久久久久久人人人人人人| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产av玫瑰| 亚洲,一卡二卡三卡| 欧美日韩综合久久久久久| .国产精品久久| 汤姆久久久久久久影院中文字幕| 一本—道久久a久久精品蜜桃钙片| 久久精品久久精品一区二区三区| 国产精品熟女久久久久浪| 国产亚洲一区二区精品| 精品久久久噜噜| 国产男女超爽视频在线观看| 日韩av在线免费看完整版不卡| 久久精品久久久久久噜噜老黄| 搡老乐熟女国产| 老司机亚洲免费影院| 精品亚洲乱码少妇综合久久| 久久久欧美国产精品| 免费观看在线日韩| av免费观看日本| 亚洲av电影在线观看一区二区三区| 五月天丁香电影| 精品亚洲成国产av| 成人亚洲精品一区在线观看| 交换朋友夫妻互换小说| av免费观看日本| 精品久久久久久久久av| 免费大片18禁| 国产老妇伦熟女老妇高清| 久久久久久久久久久丰满| 在线播放无遮挡| 蜜臀久久99精品久久宅男| 亚洲美女视频黄频| 校园人妻丝袜中文字幕| 少妇熟女欧美另类| 精品一品国产午夜福利视频| 国产黄片美女视频| 一区二区三区精品91| 久久久国产一区二区| 国模一区二区三区四区视频| 免费看日本二区| 久久毛片免费看一区二区三区| 免费观看av网站的网址| 精品久久久久久久久亚洲| 亚洲,欧美,日韩| 国产高清有码在线观看视频| 51国产日韩欧美| 99久久精品一区二区三区| 女人久久www免费人成看片| 汤姆久久久久久久影院中文字幕| 久久久国产一区二区| 最后的刺客免费高清国语| 九九爱精品视频在线观看| 99久久精品一区二区三区| 亚洲成人av在线免费| 国产一区二区在线观看日韩| 国产综合精华液| 免费在线观看成人毛片| 亚洲人成网站在线观看播放| 人妻夜夜爽99麻豆av| 草草在线视频免费看| 亚洲国产精品一区三区| 国产老妇伦熟女老妇高清| 中文在线观看免费www的网站| 日韩,欧美,国产一区二区三区| 纵有疾风起免费观看全集完整版| 一区在线观看完整版| av天堂久久9| 狂野欧美白嫩少妇大欣赏| 久久精品熟女亚洲av麻豆精品| 亚洲成色77777| 观看av在线不卡| 亚洲国产精品一区三区| 一级黄片播放器| 日韩视频在线欧美| 高清午夜精品一区二区三区| 亚洲怡红院男人天堂| 精品少妇内射三级| 纯流量卡能插随身wifi吗| 不卡视频在线观看欧美| 亚洲熟女精品中文字幕| 少妇的逼好多水| 99久久综合免费| 国产欧美日韩一区二区三区在线 | 狂野欧美白嫩少妇大欣赏| 亚洲国产精品国产精品| 五月开心婷婷网| 最黄视频免费看| 日本av手机在线免费观看| 最近的中文字幕免费完整| 日本欧美视频一区| 男的添女的下面高潮视频| 国产男女内射视频| 国产淫片久久久久久久久| 大又大粗又爽又黄少妇毛片口| 国产免费福利视频在线观看| 一区在线观看完整版| 18禁在线播放成人免费| 国产精品一二三区在线看| 亚洲精华国产精华液的使用体验| 久久热精品热| 高清av免费在线| 狂野欧美激情性bbbbbb| 久久久欧美国产精品| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 超碰97精品在线观看| www.av在线官网国产| 男女免费视频国产| 日韩三级伦理在线观看| 一本大道久久a久久精品| 在线观看人妻少妇| 看十八女毛片水多多多| 最黄视频免费看| 国产成人免费无遮挡视频| av线在线观看网站| 男人狂女人下面高潮的视频| 日韩电影二区| 两个人的视频大全免费| 国产精品三级大全| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 在线看a的网站| 国产精品免费大片| 国产日韩欧美视频二区| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品乱久久久久久| 日本欧美国产在线视频| 日韩电影二区| 国产精品国产三级专区第一集| 日韩强制内射视频| 日韩一区二区三区影片| 内射极品少妇av片p| 精品久久久久久久久亚洲| 久久午夜福利片| 国产色爽女视频免费观看| 亚洲中文av在线| 国产精品秋霞免费鲁丝片| 久久国内精品自在自线图片| 国产欧美日韩精品一区二区| av在线观看视频网站免费| 国产精品久久久久久av不卡| 亚洲图色成人| 亚洲第一区二区三区不卡| 国产精品欧美亚洲77777| 少妇熟女欧美另类| a级一级毛片免费在线观看| av网站免费在线观看视频| 人人澡人人妻人| 久久久a久久爽久久v久久| 国产爽快片一区二区三区| 久久韩国三级中文字幕| 三上悠亚av全集在线观看 | 夜夜看夜夜爽夜夜摸| 中文欧美无线码| 久久97久久精品| 国产精品麻豆人妻色哟哟久久| 人妻夜夜爽99麻豆av| 一级毛片久久久久久久久女| 极品少妇高潮喷水抽搐| 汤姆久久久久久久影院中文字幕| 王馨瑶露胸无遮挡在线观看| 人人妻人人看人人澡| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 看免费成人av毛片| 一边亲一边摸免费视频| 亚洲精品456在线播放app| 亚洲电影在线观看av| 一级毛片电影观看| 久久久久久人妻| 亚洲av国产av综合av卡| 成人无遮挡网站| 高清视频免费观看一区二区| 极品人妻少妇av视频| 国产中年淑女户外野战色| 女人久久www免费人成看片| 一级片'在线观看视频| 啦啦啦啦在线视频资源| 寂寞人妻少妇视频99o| 高清不卡的av网站| 亚洲丝袜综合中文字幕| 精品久久久久久电影网| 国产精品一二三区在线看| 高清黄色对白视频在线免费看 | 男人添女人高潮全过程视频| 精品国产乱码久久久久久小说| 简卡轻食公司| 波野结衣二区三区在线| 国产亚洲最大av| 91成人精品电影| 亚洲精品,欧美精品| 9色porny在线观看| 嘟嘟电影网在线观看| 永久免费av网站大全| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av免费高清在线观看| 久久久久国产网址| 欧美另类一区| 亚洲精品一区蜜桃| 亚洲精品,欧美精品| 我要看黄色一级片免费的| 亚洲久久久国产精品| 精品久久久久久久久av| 国产在线一区二区三区精| 在线观看免费日韩欧美大片 | 一级毛片我不卡| 中文资源天堂在线| 精品午夜福利在线看| 三上悠亚av全集在线观看 | 曰老女人黄片| 黄色配什么色好看| 亚洲欧洲精品一区二区精品久久久 | 超碰97精品在线观看| 亚洲欧美一区二区三区黑人 | 丝袜脚勾引网站| 国产白丝娇喘喷水9色精品| 久久国产亚洲av麻豆专区| 国产69精品久久久久777片| 三级国产精品欧美在线观看| 最近中文字幕高清免费大全6| 少妇的逼水好多| xxx大片免费视频| 亚洲精品国产av蜜桃| 蜜臀久久99精品久久宅男| av不卡在线播放| 亚洲av二区三区四区| 欧美性感艳星| 夜夜爽夜夜爽视频| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久久久免| 久久免费观看电影| 国产在视频线精品| 九草在线视频观看| 成人漫画全彩无遮挡| 日韩电影二区| 日韩大片免费观看网站| 在线亚洲精品国产二区图片欧美 | 精品人妻一区二区三区麻豆| 人妻夜夜爽99麻豆av| 久久国产亚洲av麻豆专区| 国产伦在线观看视频一区| xxx大片免费视频| 丝袜喷水一区| 日韩中字成人| 少妇熟女欧美另类| 欧美精品人与动牲交sv欧美| 国产在视频线精品| h日本视频在线播放| 欧美日韩视频高清一区二区三区二| 国产av一区二区精品久久| xxx大片免费视频| 国产日韩欧美亚洲二区| 少妇人妻 视频| 香蕉精品网在线| 免费高清在线观看视频在线观看| 欧美 亚洲 国产 日韩一| 亚洲成色77777| 91在线精品国自产拍蜜月| 赤兔流量卡办理| 亚洲精品色激情综合| 国产色爽女视频免费观看| 精品久久久久久电影网| 特大巨黑吊av在线直播| 日本与韩国留学比较| 亚洲欧美日韩另类电影网站| 日本黄大片高清| 久久国内精品自在自线图片| 欧美区成人在线视频| 中文字幕av电影在线播放| 国产一区二区三区综合在线观看 | 伦精品一区二区三区| 国产欧美日韩综合在线一区二区 | 成人漫画全彩无遮挡| 亚洲av不卡在线观看| 亚洲真实伦在线观看| 最近2019中文字幕mv第一页| 在线看a的网站| 国产亚洲精品久久久com| 熟女电影av网| 插阴视频在线观看视频| av福利片在线观看| 国产精品久久久久久av不卡| 不卡视频在线观看欧美| 偷拍熟女少妇极品色| 国产又色又爽无遮挡免| 夫妻午夜视频| 久久久精品免费免费高清| 日韩av免费高清视频| 精品一品国产午夜福利视频| 国产国拍精品亚洲av在线观看| 91成人精品电影| 各种免费的搞黄视频| 中文在线观看免费www的网站| 精品久久久久久电影网| 免费黄网站久久成人精品| 美女主播在线视频| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 欧美3d第一页| 只有这里有精品99| 成人二区视频| 深夜a级毛片| 性色av一级| 国产 一区精品| 性色av一级| 深夜a级毛片| 男人狂女人下面高潮的视频| 欧美日韩视频精品一区| 亚洲成人一二三区av| 亚洲熟女精品中文字幕| 国产精品久久久久久久久免| 亚洲天堂av无毛| 中文字幕制服av| 26uuu在线亚洲综合色| 免费黄网站久久成人精品| 最新中文字幕久久久久| 老熟女久久久| av免费在线看不卡| 国产色婷婷99| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美亚洲二区| av线在线观看网站| 日本黄大片高清| 国产在视频线精品| 在线看a的网站| 精品人妻偷拍中文字幕| 亚洲va在线va天堂va国产| 永久网站在线| 在现免费观看毛片| 美女大奶头黄色视频| 欧美日韩av久久| 亚洲一区二区三区欧美精品| 三级国产精品片| 亚洲美女黄色视频免费看| 久久精品夜色国产| 国产黄色免费在线视频| 热re99久久精品国产66热6| 国产欧美日韩综合在线一区二区 | 成人综合一区亚洲| 久久久精品94久久精品| 久久亚洲国产成人精品v| 综合色丁香网| 国产精品.久久久| 人妻人人澡人人爽人人| 免费观看在线日韩| 中文乱码字字幕精品一区二区三区| 男的添女的下面高潮视频| 少妇 在线观看| 亚洲精品日韩av片在线观看| 99热这里只有精品一区| 十分钟在线观看高清视频www | 亚洲国产精品一区二区三区在线| 久久久久网色| freevideosex欧美| 91精品国产九色| 国产伦精品一区二区三区视频9| 日本91视频免费播放| 久久久国产一区二区| 午夜免费观看性视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一区二区三区不卡| 热99国产精品久久久久久7| 日韩人妻高清精品专区| 亚洲成人一二三区av| 亚洲av成人精品一二三区| 老女人水多毛片| 欧美另类一区| 国产在线视频一区二区| 99九九在线精品视频 | 欧美日韩av久久| 久久久国产欧美日韩av| 日日撸夜夜添| 两个人免费观看高清视频 | 欧美日韩亚洲高清精品| 肉色欧美久久久久久久蜜桃| 黄色视频在线播放观看不卡| 欧美日韩视频精品一区| 狠狠精品人妻久久久久久综合|