• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONVERGENCE OF HYBRID VISCOSITY AND STEEPEST-DESCENT METHODS FOR PSEUDOCONTRACTIVE MAPPINGS AND NONLINEAR HAMMERSTEIN EQUATIONS?

    2018-05-05 07:09:32YekiniSHEHU

    Yekini SHEHU

    Department of Mathematics,University of Nigeria,Nsukka,Nigeria

    E-mail:yekini.shehu@unn.edu.ng

    Olaniyi.S.IYIOLA

    Department of Mathematics,Minnesota State University,Moorhead,Minnesota,USA

    E-mail:olaniyi.iyiola@mnstate.edu

    1 Introduction

    Let H be a real Hilbert space and C be a nonempty closed convex subset of H.A mapping T:C → C is called a Lipschitz mapping if there exists L ≥ 0 such that‖Tx?Ty‖≤ L‖x?y‖, ?x,y ∈ C.We say that T is nonexpansive if L=1.Furthermore,T is pseudocontractive if

    for all x,y∈C,where I is the identity mapping.For the rest of this article,the set of fixed point of T is defined by F(T):={x∈C:Tx=x}.

    It is well known that the class of nonexpansive mappings is properly contained in the class of Lipschitz pseudocontractive mappings by this example from[1].

    Example 1.1Let H=R2and suppose C={x∈ R2:‖x‖≤ 1}.Define C1={x∈andIf x=(a,b)∈ R2,we define x⊥ to be(b,?a)∈H.Define a map T:C →C by

    Then,T is a Lipschitz and pseudocontractive mapping but not a nonexpansive mapping.

    Closely related to the class of pseudocontractive mappings is the class of monotone operators in Hilbert spaces.A mapping A:D(A)?H→H is called monotone if?x,y∈D(A),

    We remark here that T is a pseudocontractive mapping if and only if(I?T)is monotone.Interest in such mappings stems from their firm connection with equations of evolution.For more on monotone mappings and connections with evolution equations,the reader may consult any of the following references:Berinde[2,3],Browder[4],Chidume[5],Cioranescu[6],Kato[7],and Reich[8].Consequently,considerable research efforts,especially within the past 20 years or so,have been devoted to iterative methods for approximating the zeros of monotone mapping A or fixed point of pseudocontractive mapping T;see,for example,[9–18]and the references contained therein.

    An iterative process commonly used for finding fixed points of nonexpansive maps is the following:For a convex subset C of a Hilbert space H and T:C → C,the sequenceis defined iteratively by x1∈C,

    (ii)

    The sequence of(1.4)is generally referred to as the Mann sequence in the light of[19].

    It was not known whether or not the Mann iteration process would converge to fixed points of mappings belonging to this important class of Lipschitz pseudocontractive mappings.However,an iteration method which converges to a fixed point of a Lipschitz pseudocontractive self-map T of C was introduced in 1974 by Ishikawa.He proved the following theorem.

    Theorem 1.2(Ishikawa,[20]) If C is a compact convex subset of a Hilbert space H,T:C ?→C is a Lipschitzian pseudocontractive mapping,and x1is any point of C,then the sequence{xn}iteratively defined by

    converges strongly to a fixed point of T,where{αn},{βn}are sequences of positive numbers satisfying the following conditions:

    (i)0≤βn≤ αn<1;

    The question of whether the Mann iteration method can be used in the setting of Theorem 1.2 was eventually resolved in the negative by Chidume and Mutangadura[1]who gave an example of a Lipschitz pseudo-contractive self-map of a compact convex subset of a Hilbert space with unique fixed point for which no Mann sequence converges.

    Motivated by the result of Yamada et al[21],Tian[22]considered the following general viscosity type iterative method for approximating the fixed point of a nonexpansive mapping:

    Under certain approximate conditions,Tian[22]proved that the above sequence{xn}converges strongly to a fixed point of T,which also solves the variational inequality

    In[23],Shahzad and Zegeye introduced the following iterative scheme for approximation of fixed point of a pseudocontractive mapping T in real Hilbert spaces:

    Under some appropriate conditions,they proved that the above sequence{xn}converges strongly to a minimum-norm point of fixed points of a Lipschitz pseudocontractive mapping T in real Hilbert spaces.

    In the first part of this article,motivated by the works of Yamada et al[21],Tian[22],and[23],we introduce a new general viscosity type iterative algorithm for approximation of fixed points of Lipschitz pseudocontractive mappings and establish strong convergence theorem in real Hilbert spaces.In the second part,we shall adapt our iterative scheme for approximation of solution to a nonlinear Hammerstein integral equation.Finally,comparison is made with algorithm proposed in[24]through an example on Hammerstein equation.

    2 Preliminaries

    We shall make use of the following lemmas in the sequel.

    Lemma 2.1Let H be a real Hilbert space.Then for?x,y∈ H,we have

    Lemma 2.2Let H be a real Hilbert space.Then,

    for all x,y∈H.

    Lemma 2.3([17,18]) Let C be a closed convex subset of a real Hilbert space H.Let T:C→C be a continuous pseudocontractive mapping.Then,

    (i)F(T)is a closed convex subset of C;

    (ii)(I?T)is demiclosed at zero,that is,if{xn}is a sequence in C such that xn?x and Txn?xn→0,as n→0,then x=Tx.

    Lemma 2.4([25]) Let λ be a number in(0,1]and letμ > 0.Let F:H → H be a κ-Lipschitz and η-strongly monotone mapping with κ > 0 and η> 0.Associating with a nonexpansive mapping T:H→H,define the mapping Tλ:H→H by

    Then,Tλa contraction providedμ<that is,

    Lemma 2.5(see,for example,[3,26]) Letbe a sequence of nonnegative real numbers satisfying the following relation:

    Lemma 2.6Let H be a real Hilbert space and let x,y∈H and t∈[0,1].Then,

    3 Main Results

    Theorem 3.1Let H be a real Hilbert space.Let F:H → H be a κ-Lipschitz and η-strongly monotone mapping with κ > 0 and η > 0,and V:H → H be a ρ-Lipschitz mapping with ρ > 0.LetwhereLet T:H → H be an L-Lipschitz pseudocontractive mapping such that F(T)/= ?.Suppose that{αn},{βn},and{γn}are sequences in(0,1).Given x1∈ H,let{xn}be defined by

    Assume that the following conditions are satisfied:

    Then,the sequence{xn}converges strongly to x?∈ F(T),where x?=PF(T)(I?μF+γV)x?is the unique solution of the variational inequality:

    ProofLet F:H → H be a κ-Lipschitz and η-strongly monotone mapping,and V:H →H be a ρ-Lipschitz mapping,we have,for all x,y ∈ H,

    This implies that PF(T)(I?μF+γV)is a contraction of H into itself,which implies that there exists the unique element x?∈ H such that x?=PF(T)(I?μF+γV)x?.

    Now,let zn= βnxn+(1? βn)Tyn, ?n ≥ 1.Then,using Lemma 2.6,we have

    By the fact that T is a pseudocontractive mapping,we obtain from(1.1)(noting that x?=Tx?)

    By condition(ii),we have

    This implies from(3.4)that

    Substituting(3.5)into(3.3),we have

    Now,from(3.1)and(3.6),we have

    This implies that{xn}is bounded in H.Consequently,{yn}is bounded in H.

    From(3.1)and Lemma 2.6,we have

    Also,

    By(3.1),(3.8),(3.9),and Lemma 2.2,we obtain(noting that T is a pseudocontractive mapping)

    It then follows that

    As{xn}and{V(xn)}are bounded,there exists M>0 such that

    Therefore,

    The rest of the proof will be divided into two parts.

    Case 1Suppose that there exists n0∈ N such thatis non-increasing.Then,converges and ‖xn? x?‖ ? ‖xn+1? x?‖ → 0 as n → ∞.Then from(3.10),we obtain

    Using condition(ii),we obtain from(3.11)

    This implies from(3.1)that

    from which we obtain

    So,

    Therefore,

    Hence,

    Because{xn}is bounded,there exists{xnk}of{xn}such that xnk?z∈H.From(3.12)and Lemma 2.3,we have z∈F(T).

    Then,we obtain

    Finally,we show that{xn}converges strongly to x?.By(3.1),Lemma 2.4,and Lemma 2.2,we have

    This implies that

    It is easy to see that δn→ 0 asUsing Lemma 2.5 in(3.13),we obtain

    Thus,xn→x?as n→∞.

    Case 2Assume that{‖xn? x?‖}is not monotonically decreasing sequence.Set Γn= ‖xn? x?‖, ?n ≥ 1 and let τ:N → N be a mapping for all n ≥ n0(for some n0large enough)by

    Clearly,τ is a non decreasing sequence such that τ(n)→ ∞ as n → ∞ and

    After a similar conclusion from(3.12),it is easy to see that

    and

    Because{xτ(n)}is bounded,there exists a subsequence of{xτ(n)},still denoted by{xτ(n)}which converges weakly to z∈F(T).By the similar argument as above in Case 1,we conclude immediately thatFrom(3.13),we have

    which implies that(noting that Γτ(n)≤ Γτ(n)+1and ατ(n)> 0)

    This implies that

    Thus,

    Again from(3.14),we obtain

    Therefore,

    Furthermore,for n ≥ n0,it is easy to see that Γτ(n)≤ Γτ(n)+1if n/= τ(n)(that is,τ(n)< n),because Γj≥ Γj+1for τ(n)+1 ≤ j≤ n.As a consequence,we obtain,for all n ≥ n0,

    Hence,limΓn=0,that is,{xn}converges strongly toˉx.This completes the proof.

    4 Application to Integral Equations of Hammerstein Type

    A nonlinear integral equation of Hammerstein type(see,for example,Hammerstein[27])is one of the form

    where dy is a σ- finite measure on the measure space ?;the real kernel k is defined on ? × ?,and f is a real-valued function defined on ?×R and is,in general,nonlinear.If we now define an operator K by

    and the so-called superposition or Nemytskii operator by Gu(y):=f(y,u(y)),then,the integral equation(4.1)can be put in the operator theoretic form as follows:

    Nonhomogeneous Hammerstein integral equation

    can be reduced to the homogeneous equation(4.1)if we set

    Consequently,we can reduce the nonhomogeneous operator equation v+KHv=b,where Hv(y):=g(y,v(y)),to the homogeneous equation(4.2).Hence,it is sufficient to consider the homogeneous problems.

    Interest in equation(4.2)stems mainly from the fact that several problems that arise in differential equations;for instance,elliptic boundary value problems whose linear parts possess Green’s functions can,as a rule,be transformed into the form(4.2).

    Example 4.1Consider the differential equation

    The corresponding Hammerstein integral equation is

    Equations of Hammerstein type play a crucial role in the theory of optimal control systems and in automation and network theory(see,for example,Dolezale[28]).Several existence and uniqueness theorems have been proved for equations of the Hammerstein type(see,for example,Brezis and Browder[29–31],Browder[4],Browder and De Figueiredo[32],Browder and Gupta[33],Chepanovich[34],and De Figueiredo[35]).The Mann iteration scheme(see,for example,Mann[19])has successfully been employed(see,for example,the recent monographs of Berinde[2]and Chidume[5]).The recurrence formulas used involved K?1which is also assumed to be strongly monotone and this,apart from limiting the class of mappings to which such iterative schemes are applicable,is also not convenient in applications.Part of the difficulty is the fact that the composition of two monotone operators need not be monotone.

    Iterative approximation of solutions to nonlinear integral equations of Hammerstein type(4.1)and(4.2)were studied in the literature by several authors under various assumptions on f(·,·)and k(·,·).We refer the reader to,for instance,the articles[36–48]and the references therein.

    We need the following lemma in our next theorem.

    Lemma 4.2([24])Let H be a real Hilbert space.Let K,G:H→H be monotone mappings with D(G)=D(K)=H.Let T:H×H→H×H be defined by T(u,v):=(u?Gu+v,v?Kv?u)for all(u,v)∈H×H,then T is pseudocontractive.Moreover,if the Hammerstein equation u+KGu=0 has a solution in H,then u?is a solution of u+KGu=0 if and only if(u?,v?)∈ F(T),where v?=Gu?.

    We now adapt our iterative scheme(3.1)to solve a nonlinear integral equation of Hammerstein type.

    Let W:=H ×H with the norm ‖w‖W:=(‖u1‖2+‖v1‖2)for arbitrary w=[u1,v1]∈ W and for arbitrary x=[u1,v1],y=[u2,v2]in W,the inner product〈·,·〉Wis given by 〈x,y〉E=〈u1,u2〉H+ 〈v1,v2〉H.

    We make the following obvious remark but we give the details for the sake of completeness.

    Remark 4.3Define F:W→W by Fw=F(u,v):=(f1(u),f2(v)),u,v∈H,where fi:H → H are κi-Lipschitz and ηi-strongly monotone mapping with κi> 0 and ηi> 0 and i=1,2.Observe that if x=[x1,y1],y=[x2,y2]∈W,then we have

    where η :=min{η1,η2}.Thus,F is η-strongly monotone.Furthermore,

    Similarly,define a map V:W→W by V w=V(u,v):=(h1(u),h2(v)),u,v∈H,where hi:H → H is ρi-Lipschitz mapping with ρi> 0,i=1,2.Then,it can be shown that V is ρ-Lipschitz mapping with

    Using the above arguments,we state and prove the following theorem for approximation of solution of a nonlinear integral equation of Hammerstein type.

    Theorem 4.4Let H be a real Hilbert space.Let K,G:H→H be Lipschitz monotone mappings such that D(G)=D(K)=H.Assume that u?∈ H is a solution of Hammerstein equation u+KGu=0 and ? is the set of solutions with v?=Gu?and ? /= ?.Define a mapping T:W→W as

    Let F:W → W be a κ-Lipschitz and η-strongly monotone mapping with κ > 0 and η > 0,and V:W → W be a ρ-Lipschitz mapping with ρ > 0.Let 0 < μ <and 0< γρ < τ,where τ=Let Twn=(un?Gun+vn,vn?Kvn?un),wn=(un,vn)∈ W, ?n≥1.Suppose that{αn},{βn},and{γn}are sequences in(0,1).Given w1=(u1,v1)∈ W,let{wn}be defined by

    Assume that the following conditions are satisfied:

    where L is the Lipschitz rank of T.Then,the sequence{xn}converges strongly to x?∈ F(T),where x?=PF(T)(I?μF+γV)x?is the unique solution of the variational inequality:

    ProofIf K,G:H→H are monotone mappings,then the map T:H×H→H×H defined by T(u,v):=(u?Gu+v,v?Kv?u), ?(u,v)∈H×H=W,by Lemma 4.2,is a pseudocontractive mapping with F(T)=?.Furthermore,if K and G are LKand LGLipschitz mappings,respectively,for all[u1,v1],[u2,v2]∈W and for some d>0,we obtain

    This implies that T is a Lipschitz pseudocontractive mapping on W=H×H.By Theorem 3.1,we have our desired conclusion.

    5 Numerical Example

    In this section,we consider an example related to the Hammerstein equation and numerically show how our algorithm is applicable.We also compare our result with that of Ofoedu and Onyi[24].All codes were written in Matlab 2014b and run on Dell i-5 Dual-Core laptop.

    Example 5.1In our iterative scheme(4.4),let us take F=I,V=12I.Then,ρ=1 and η=1=κ.Hence,

    Let us chooseμ =1 and then we haveAs 0< γρ < τ,we have γ ∈(0,2).Without loss of generality,let us assume that γ =1.

    We shall consider two cases.

    Case ILet H=R with the inner product defined by 〈x,y〉=xy for all x,y ∈ R and the standard norm|·|.Then,W=R×R.Let us consider the Hammerstein equation u+KGu=0 in R with Ku=max{0,u}=Gu.Observe that u?=0 is a solution to the Hammerstein equation.

    The mapping T:R2→R2is defined by Tw=T(u,v)=(u?max{0,u}+v,v?max{0,v}?u),u,v ∈ R.Let

    Then,observe that conditions(i)and(ii)in Theorem 4.4 are satisfied and our iterative scheme(4.4)becomes

    If yn=(tn,sn), ?n≥1,then we have

    For Case I,the scheme(3.15)of Ofoedu and Onyi[24]with T(un,vn)=(un?Gun+vn,vn?Kvn?un)=(un?max{0,un}+vn,vn?max{0,vn}?un),(un,vn)∈R2becomes

    We compare our scheme(5.1)with scheme(5.2)of Ofoedu and Onyi[24]for different choices of w1=(u1,v1) ∈ R × R and usestopping criterion.The results are reported in Table 1 and Figures 1–4.for

    Table 1 Case I:Algorithm 5.1 and Ofoedu and Onyi’s Algorithm 5.2

    Figure 1 Case I:w1=(3.2519,?7.5493)

    Figure 2 Case I:w1=?(1.0224,2.4145)

    Figure 3 Case I:w1=(?10.8906,0.3256)

    Figure 4 Case I:w1=(154.4212,8.5931)

    Case IILet H=L2([0,1])with the inner product defined byfor all x,y ∈ L2([0,1])and the standard normThen,W=L2([0,1])×L2([0,1]).Let us consider the Hammerstein equation u+KGu=0 in L2([0,1])with

    Observe that u?=0 is a solution to the Hammerstein equation.

    The mapping T:L2([0,1])×L2([0,1])→ L2([0,1])×L2([0,1])is defined by Tw=T(u,v)=(u?Gu+v,v?Kv?u),w=(u,v)∈ L2([0,1])×L2([0,1]).Let αn=and

    Let Twn=T(un,vn)=(un?Gun+vn,vn?Kvn?un)and Tyn=T(tn,sn)=(tn?Gtn+sn,sn?Ksn?tn)with G and K given in(5.3).Our iterative scheme(4.4)in Theorem 4.4 becomes

    Again,for Case II,the scheme(3.15)of Ofoedu and Onyi[24]becomes

    We also compare our scheme(5.4)with scheme(5.5)of Ofoedu and Onyi[24]for different choices of w1=(u1,v1)∈ L2([0,1])× L2([0,1])and use10?6for stopping criterion.The results are reported in Table 2 and Figures 5–6.

    Table 2 Case II:Algorithm 5.4 and Ofoedu and Onyi’s Algorithm 5.5

    Figure 5 Case II:w1=(1.5e?t,t2?1)

    Figure 6 Case II:w1=(tsin2t,1.5cos3t)

    Remark 5.2(1)The numerical results from both cases considered show that both Algorithm(5.2)and Ofoedu and Onyi’s algorithm are very efficient,consistent and easy to implement.Irrespective of the choice of initial guess,there is no significant difference in the number of iteration and the cpu time taken.This is because of the consequence of the linearity of the mapping wn→ wn+1and the stopping criterion.

    (2)We also observe from the example that our algorithm is more than three times faster than Ofoedu and Onyi’s algorithm for Case I and Case II.While the number of iterations required for our algorithm is about one-third of the number of iterations required for Ofoedu and Onyi’s algorithm in both cases.

    AcknowledgementsThe researchwas carried out when the First Author was an Alexander von Humboldt Postdoctoral Fellow at the Institute of Mathematics,University of Wurzburg,Germany and he is grateful to the Alexander von Humboldt Foundation,Bonn for the fellowship and the Institute of Mathematics,University of Wurzburg,Germany for the hospitality and facilities.

    [1]Chidume C E,Mutangadura S.An example on the Mann iteration method for Lipschitz pseudocontractions.Proc Amer Math Soc,2001,129(8):2359–2363;MR 20022f:47104

    [2]Berinde V.Iterative approximation of fixed points,Springer Verlag Series:Lecture Notes in Mathematics,2007,1912:ISBN 978-3-540-72233-5

    [3]Berinde V.Iterative approximation of fixed points.Editura Efemeride Baia Mare,2002

    [4]Browder F E.Nonlinear mappings of nonexpansive and accretive type in Banach spaces.Bull Amer Math Soc,1967,73:875–882

    [5]Chidume C E.Geometric properties of Banach spaces and nonlinear iterations.Springer Verlag Series:Lecture Notes in Mathematics,2009,1965(17):326p,ISBN 978-1-84882-189-7

    [6]Cioranescu I.Geometry of Banach spaces,duality mappings and nonlinear problems.Dordrecht:Kluwer Academic,1990

    [7]Kato T.Nonlinear semigroups and evolution equations.J Math Soc Japan,1967,19:508–520

    [8]Reich S.Strong convergence theorems for resolvents of accretive operators in Banach spaces.J Math Anal Appl,1994,183:118–120

    [9]Chidume C E,Shehu Y.Strong convergence theorems for the approximation of fixed points of demicontinuous pseudocontractive mappings.J Appl Anal,2013,19:213–229

    [10]Ceng L C,Petrusel A,Yao J-C.Strong convergence of modified implicit iterative algorithms with perturbedmappings for continuous pseudocontractive mappings.Appl Math Comput,2009,209(2):162–176

    [11]Cho S Y,Qin X,Kang S M.Hybrid projection algorithms for treating common fixed points of a family of demicontinuous pseudocontractions.Appl Math Lett,2012,25:584–587

    [12]Lan K Q,Wu J H.Convergence of approximates for demicontinuous pseudo-contractive maps in Hilbert spaces.Nonlinear Anal,2002,49(6):737–746

    [13]Morales C H,Jung J S.Convergence of paths for pseudocontractive mappings in Banach spaces.Proc Amer Math Soc,2000,128(11):3411–3419

    [14]Ofoedu E U,Zegeye H.Further investigation on iteration processes for pseudocontractive mappings with application.Nonlinear Anal,2012,75:153–162

    [15]Yao Y H,Liou Y C,Marino G.A hybrid algorithm for pseudo-contractive mappings.Nonlinear Anal,2009,71:4997–5002

    [16]Yu Y.An Iterative Algorithm on Approximating Fixed Points of Pseudocontractive Mappings.Journal of Applied Mathematics,2012,Article ID 341953:11 pages

    [17]Zhang Q B,Cheng C Z.Strong convergence theorem for a family of Lipschitz pseudocontractive mappings in a Hilbert space.Math Comput Model,2008,48(3/4):480–485

    [18]Zhou H.Strong convergence of an explicit iterative algorithm for continuous pseudo-contractives in Banach spaces.Nonlinear Anal,2009,70:4039–4046

    [19]Mann W R.Mean value methods in iterations.Bull Amer Math Soc,1953,4:506–510

    [20]Ishikawa S.Fixed points by a new iteration method.Proc Amer Math Soc,1974,44(1):147–150

    [21]Yamada I,Butnariu D,Censor Y,Reich S.The hybrid steepest descent method for the variational inequality problems over the intersection of fixed points sets of nonexpansive mappings//Inherently Parallel Algorithms in Feasibility and Optimization and Their Application.Amsterdam:North-Holland,2001

    [22]Tian M.A general iterative algorithm for nonexpansive mappings in hilbert spaces.Nonlinear Anal,2010,73:689–694

    [23]Shahzad N,Zegeye H.Approximating a common point of fixed points of a pseudocontractive mapping and zeros of sum of monotone mappings.Fixed Point Theory Appl,2014,2014:85

    [24]Ofoedu E U,Onyi C E.New implicit and explicit approximation methods for solutions of integral equations of Hammerstein type.Appl Math Comput,2014,246:628–637

    [25]Xu H K,Kim T H.Convergence of hybrid steepest-descent methods for variational inequalities.J Optim Theory Appl,2003,119:185–201

    [26]Xu H K.Iterative algorithm for nonlinear operators.J London Math Soc,2002,66(2):1–17

    [27]Hammerstein A.Nichtlineare integralgleichungen nebst anwendungen.Acta Math,1930,54:117–176

    [28]Dolezale V.Monotone operators and its applications in automation and network theory.New York:Studies in Automation and control(Elesevier Science Publ),1979

    [29]Brézis H,Browder F E.Some new results about Hammerstein equations.Bull Amer Math Soc,1974,80:567–572

    [30]Brézis H,Browder F E.Existence theorems for nonlinear integral equations of Hammerstein type.Bull Amer Math Soc,1975,81:73–78

    [31]Brézis H,Browder F E.Nonlinear integral equations and system of Hammerstein type.Advances in Math,1975,18:115–147

    [32]Browder F E,Figueiredo D G,Gupta P.Maximal monotone operators and a nonlinear integral equations of Hammerstein type.Bull Amer Math Soc,1970,76:700–705

    [33]Browder F E,Gupta P.Monotone operators and nonlinear integral equations of Hammerstein type.Bull Amer Math Soc,1969,75:1347–1353

    [34]Chepanovich R Sh.Nonlinear Hammerstein equations and fixed points.Publ Inst Math(Beograd)N S,1984,35:119–123

    [35]De Figueiredo D G,Gupta C P.On the variational methods for the existence of solutions to nonlinear equations of Hammerstein type.Bull Amer Math Soc,1973,40:470–476

    [36]Banas J.Integrable solutions of Hammerstein and Uryshon integral equations.J Aust Math Soc A,1989,46:61–68

    [37]Banas J,Knap Z.Measure of weak noncompactness and nonlinear integral equations of convolution type.J Math Anal Appl,1990,146:353–362

    [38]Chidume C E,Ofoedu E U.Solution of nonlinear integral equations of Hammerstein type.Nonlinear Anal,2011,74:4293–4299

    [39]Chidume C E,Shehu Y.Strong convergence theorem for approximation of solutions of equations of Hammerstein type.Nonlinear Anal,2012,75:5664–5671

    [40]Chidume C E,Shehu Y.Iterative approximation of solutions of equations of Hammerstein type in certain Banach spaces.Appl Math Comput,2013,219:5657–5667

    [41]Chidume C E,Zegeye H.Approximation of solutions nonlinear equations of Hammerstein type in Hilbert space.Pro Amer Math Soc,2005,133:851–858

    [42]Emmanuele G.Integrable solutions of a functional-integral equation.J Integral Equations Appl,1992,4:89–94

    [43]Emmanuele G.An existence theorem for Hammerstein integral equations.Port Math,1994,51:607–611

    [44]Latracha K,Taoudi M A.Existence results for a generalized nonlinear Hammerstein equation on L1spaces.Nonlinear Anal,2007,66:2325–2333

    [45]Shehu Y.Strong convergence theorem for integral equations of Hammerstein type in Hilbert spaces.Appl Math Comput,2014,231:140–147

    [46]Shehu Y.Convergence theorems for maximal monotone operators and fixed point problems in Banach spaces.Appl Math Comput,2014,239:285–298

    [47]Hulbert D S,Reich S.Asymptotic Behavior of Solutions to Nonlinear Volterra Integral Equations.J Math Anal Appl,1984,104:155–172

    [48]Reich S.Admissible Pairs and integral Equations.J Math Anal Appl,1987,121:79–90

    日韩三级伦理在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲综合色惰| 欧美日本视频| 青春草国产在线视频| 校园人妻丝袜中文字幕| 蜜臀久久99精品久久宅男| 欧美最新免费一区二区三区| 亚洲国产成人一精品久久久| 精品久久国产蜜桃| 国产熟女欧美一区二区| 亚洲国产精品一区三区| 日韩欧美一区视频在线观看 | av在线app专区| 亚洲av电影在线观看一区二区三区| 国产真实伦视频高清在线观看| 人体艺术视频欧美日本| 女的被弄到高潮叫床怎么办| 春色校园在线视频观看| 日日撸夜夜添| 男人舔奶头视频| 少妇的逼水好多| 国产精品嫩草影院av在线观看| 男女边吃奶边做爰视频| 精品久久久久久久久亚洲| 亚洲av国产av综合av卡| 夫妻性生交免费视频一级片| 国产成人精品福利久久| 亚洲av中文字字幕乱码综合| 亚洲第一区二区三区不卡| 涩涩av久久男人的天堂| 在线免费观看不下载黄p国产| 水蜜桃什么品种好| 免费看日本二区| 国产日韩欧美亚洲二区| 久久久欧美国产精品| 久久鲁丝午夜福利片| 精品国产一区二区三区久久久樱花 | 日本色播在线视频| 五月玫瑰六月丁香| 偷拍熟女少妇极品色| 久久韩国三级中文字幕| 国产人妻一区二区三区在| 久久久久久久大尺度免费视频| 国产色爽女视频免费观看| 国产精品人妻久久久久久| 国产成人精品福利久久| 久久99精品国语久久久| 一本—道久久a久久精品蜜桃钙片| av免费在线看不卡| 久久青草综合色| av国产久精品久网站免费入址| 简卡轻食公司| 亚洲国产毛片av蜜桃av| 亚洲经典国产精华液单| 日本与韩国留学比较| 视频区图区小说| 亚洲精品乱久久久久久| av卡一久久| 国产美女午夜福利| 久久久久久久久久久丰满| 久久婷婷青草| 欧美日韩综合久久久久久| 亚洲精品久久久久久婷婷小说| 欧美日韩精品成人综合77777| 黑人高潮一二区| 亚洲精品久久午夜乱码| 少妇人妻精品综合一区二区| 国产色婷婷99| 高清午夜精品一区二区三区| 亚洲欧洲国产日韩| 免费不卡的大黄色大毛片视频在线观看| 日韩强制内射视频| 下体分泌物呈黄色| 在线观看一区二区三区激情| 99精国产麻豆久久婷婷| 99久久精品热视频| 女人十人毛片免费观看3o分钟| 国产淫片久久久久久久久| 狠狠精品人妻久久久久久综合| 亚洲av中文字字幕乱码综合| 亚洲av日韩在线播放| av免费观看日本| 日韩av免费高清视频| 亚洲欧美日韩卡通动漫| 亚洲精品国产av成人精品| 夜夜骑夜夜射夜夜干| 下体分泌物呈黄色| 在线免费观看不下载黄p国产| 青春草国产在线视频| 精品亚洲成a人片在线观看 | 国产精品免费大片| 我要看黄色一级片免费的| 如何舔出高潮| 18禁动态无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 高清视频免费观看一区二区| 免费高清在线观看视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 最近2019中文字幕mv第一页| 日韩电影二区| 欧美三级亚洲精品| 我的女老师完整版在线观看| 日本猛色少妇xxxxx猛交久久| 18禁在线播放成人免费| 成人二区视频| 欧美高清成人免费视频www| 我的老师免费观看完整版| 久久精品国产自在天天线| 一级毛片电影观看| 王馨瑶露胸无遮挡在线观看| 晚上一个人看的免费电影| 一个人看视频在线观看www免费| 国产精品一区二区性色av| 亚洲av成人精品一二三区| 搡老乐熟女国产| 毛片女人毛片| 少妇精品久久久久久久| 黑丝袜美女国产一区| 国产爱豆传媒在线观看| 中国三级夫妇交换| 亚洲欧美日韩另类电影网站 | 精品国产露脸久久av麻豆| 成人黄色视频免费在线看| 国产精品欧美亚洲77777| 免费观看的影片在线观看| 成年av动漫网址| 一个人看视频在线观看www免费| 2022亚洲国产成人精品| 日韩av免费高清视频| 日本猛色少妇xxxxx猛交久久| av.在线天堂| 99久久精品国产国产毛片| 综合色丁香网| 久久久久久久精品精品| 国产免费一区二区三区四区乱码| 夜夜骑夜夜射夜夜干| 插阴视频在线观看视频| 女性被躁到高潮视频| 欧美激情国产日韩精品一区| 国产伦精品一区二区三区四那| 国产午夜精品一二区理论片| av在线app专区| 一个人免费看片子| 赤兔流量卡办理| 成人免费观看视频高清| 国产成人一区二区在线| 少妇高潮的动态图| 黄色配什么色好看| 亚洲成色77777| 久久精品人妻少妇| 观看av在线不卡| 欧美激情国产日韩精品一区| 国产伦理片在线播放av一区| 青春草视频在线免费观看| 麻豆成人av视频| 性高湖久久久久久久久免费观看| 国产免费一级a男人的天堂| 国产极品天堂在线| 精品人妻视频免费看| 爱豆传媒免费全集在线观看| 久久久久人妻精品一区果冻| 一级二级三级毛片免费看| 亚洲综合精品二区| 少妇熟女欧美另类| 性色avwww在线观看| a 毛片基地| 亚洲四区av| 国产中年淑女户外野战色| av不卡在线播放| 久久久久精品性色| 欧美3d第一页| 亚洲精品456在线播放app| 特大巨黑吊av在线直播| 亚洲av在线观看美女高潮| 男女无遮挡免费网站观看| 97超碰精品成人国产| 亚洲,欧美,日韩| 观看免费一级毛片| 国产成人a区在线观看| 91久久精品国产一区二区成人| xxx大片免费视频| 国产精品女同一区二区软件| 熟女人妻精品中文字幕| 如何舔出高潮| 国产爽快片一区二区三区| 色婷婷久久久亚洲欧美| a 毛片基地| 久久人人爽av亚洲精品天堂 | 中文精品一卡2卡3卡4更新| 精品少妇久久久久久888优播| av播播在线观看一区| 久久久精品免费免费高清| 免费观看性生交大片5| 日本黄大片高清| 91精品国产九色| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 欧美日韩国产mv在线观看视频 | 99re6热这里在线精品视频| 国产亚洲一区二区精品| 美女xxoo啪啪120秒动态图| 国产男女超爽视频在线观看| 水蜜桃什么品种好| 日韩中字成人| 黄色欧美视频在线观看| 午夜免费鲁丝| 亚洲国产高清在线一区二区三| 超碰97精品在线观看| 亚洲欧洲国产日韩| 99久久精品一区二区三区| 最后的刺客免费高清国语| 亚洲激情五月婷婷啪啪| 99热这里只有精品一区| 亚洲内射少妇av| 日日啪夜夜爽| 亚洲真实伦在线观看| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线观看播放| 色婷婷av一区二区三区视频| 国产美女午夜福利| 丝袜喷水一区| 国产av码专区亚洲av| 有码 亚洲区| 久热久热在线精品观看| 欧美最新免费一区二区三区| 777米奇影视久久| 成人特级av手机在线观看| 国产精品一区二区在线观看99| 欧美日韩亚洲高清精品| 亚洲aⅴ乱码一区二区在线播放| 九九久久精品国产亚洲av麻豆| 成人免费观看视频高清| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人澡人人爽人人夜夜| 新久久久久国产一级毛片| 97热精品久久久久久| 高清日韩中文字幕在线| 1000部很黄的大片| 赤兔流量卡办理| 国产亚洲一区二区精品| 日韩中文字幕视频在线看片 | 亚洲精品aⅴ在线观看| 日韩欧美一区视频在线观看 | 不卡视频在线观看欧美| 日本黄色片子视频| 高清不卡的av网站| 亚洲国产精品专区欧美| 国产午夜精品一二区理论片| 色视频www国产| 久久精品国产自在天天线| 伦理电影大哥的女人| 欧美高清性xxxxhd video| 新久久久久国产一级毛片| 蜜桃亚洲精品一区二区三区| av国产精品久久久久影院| 亚洲精品久久久久久婷婷小说| 18+在线观看网站| 午夜激情福利司机影院| 久久99热这里只频精品6学生| 看非洲黑人一级黄片| 亚洲性久久影院| 午夜精品国产一区二区电影| 亚洲综合精品二区| 九色成人免费人妻av| 汤姆久久久久久久影院中文字幕| 不卡视频在线观看欧美| 亚洲国产精品国产精品| 国产又色又爽无遮挡免| 人妻系列 视频| 欧美成人a在线观看| av卡一久久| 国产精品爽爽va在线观看网站| 男人爽女人下面视频在线观看| 精品亚洲成a人片在线观看 | 国产高清三级在线| 精品视频人人做人人爽| a级一级毛片免费在线观看| 免费大片黄手机在线观看| 精品视频人人做人人爽| 黑丝袜美女国产一区| 精品一区二区免费观看| 丝袜脚勾引网站| 欧美变态另类bdsm刘玥| 在线观看免费日韩欧美大片 | 少妇裸体淫交视频免费看高清| av免费在线看不卡| 免费久久久久久久精品成人欧美视频 | 亚洲真实伦在线观看| 18禁裸乳无遮挡动漫免费视频| 久久ye,这里只有精品| 亚洲国产最新在线播放| 亚洲精品456在线播放app| 中文字幕久久专区| 夫妻性生交免费视频一级片| 最黄视频免费看| 视频区图区小说| 在线观看美女被高潮喷水网站| 成年人午夜在线观看视频| 99热6这里只有精品| 一级爰片在线观看| 精品99又大又爽又粗少妇毛片| 少妇的逼水好多| 日韩欧美 国产精品| 精华霜和精华液先用哪个| 一级毛片黄色毛片免费观看视频| 久久久久久伊人网av| 亚洲精品日本国产第一区| 成人午夜精彩视频在线观看| 两个人的视频大全免费| 少妇人妻久久综合中文| 国产精品久久久久成人av| 国产精品蜜桃在线观看| 亚洲最大成人中文| 观看av在线不卡| 91精品国产国语对白视频| 国产精品久久久久久久久免| 国产欧美日韩精品一区二区| 九九在线视频观看精品| 婷婷色综合大香蕉| 搡老乐熟女国产| 麻豆精品久久久久久蜜桃| 午夜免费男女啪啪视频观看| 91久久精品电影网| 又粗又硬又长又爽又黄的视频| 中文字幕精品免费在线观看视频 | 国产片特级美女逼逼视频| 观看免费一级毛片| 寂寞人妻少妇视频99o| 日韩制服骚丝袜av| 天美传媒精品一区二区| 亚洲av在线观看美女高潮| 网址你懂的国产日韩在线| 少妇人妻 视频| 搡老乐熟女国产| 日韩免费高清中文字幕av| 日韩一区二区三区影片| 国内精品宾馆在线| 亚洲国产成人一精品久久久| 久久久久久久久久成人| 国产男女超爽视频在线观看| 美女主播在线视频| 日韩精品有码人妻一区| 97超视频在线观看视频| 久久久久人妻精品一区果冻| 视频中文字幕在线观看| 久久久久网色| 一级av片app| 亚洲不卡免费看| videos熟女内射| 国产一级毛片在线| 国产成人精品一,二区| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 色网站视频免费| 亚洲国产日韩一区二区| 日本黄大片高清| 亚洲美女黄色视频免费看| 好男人视频免费观看在线| 国产精品国产三级国产av玫瑰| 日本av手机在线免费观看| 久久精品国产亚洲网站| 亚洲欧美成人精品一区二区| 国产av码专区亚洲av| 人体艺术视频欧美日本| 亚洲av男天堂| 久久国产亚洲av麻豆专区| 一级黄片播放器| 中文资源天堂在线| 亚洲欧美一区二区三区黑人 | 嫩草影院入口| 高清毛片免费看| 日韩一区二区视频免费看| 久久久久久九九精品二区国产| 一级毛片电影观看| 欧美xxxx黑人xx丫x性爽| 少妇精品久久久久久久| 永久网站在线| 国产男人的电影天堂91| 在线 av 中文字幕| 少妇人妻精品综合一区二区| 中国美白少妇内射xxxbb| 亚洲精品,欧美精品| 久久人人爽人人爽人人片va| 好男人视频免费观看在线| 国产精品久久久久久精品电影小说 | 免费看光身美女| 十分钟在线观看高清视频www | 国产精品国产三级专区第一集| 国产男人的电影天堂91| 久久久亚洲精品成人影院| 一区二区av电影网| 五月玫瑰六月丁香| 中国国产av一级| 久久久久久人妻| 欧美bdsm另类| 黄色配什么色好看| 国产一区亚洲一区在线观看| a 毛片基地| 国产在线男女| 91aial.com中文字幕在线观看| 97热精品久久久久久| 亚洲性久久影院| 国产精品秋霞免费鲁丝片| 国产成人a∨麻豆精品| 亚洲av成人精品一区久久| 蜜臀久久99精品久久宅男| 99九九线精品视频在线观看视频| 欧美丝袜亚洲另类| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 亚洲精品国产av成人精品| 人妻一区二区av| 亚洲美女视频黄频| 亚洲精品国产av成人精品| 亚洲精品一二三| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 成人亚洲欧美一区二区av| 美女xxoo啪啪120秒动态图| 青春草视频在线免费观看| 日韩中字成人| 一区二区三区乱码不卡18| 一级毛片aaaaaa免费看小| 国产精品国产三级专区第一集| 日韩欧美精品免费久久| 麻豆成人av视频| 麻豆国产97在线/欧美| 欧美成人午夜免费资源| 亚洲av欧美aⅴ国产| 国产精品精品国产色婷婷| 国产日韩欧美亚洲二区| av免费观看日本| 天堂俺去俺来也www色官网| 大话2 男鬼变身卡| 啦啦啦视频在线资源免费观看| 成人综合一区亚洲| 亚洲av成人精品一二三区| 精品人妻熟女av久视频| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧美成人精品一区二区| 各种免费的搞黄视频| 成人二区视频| 亚洲精品亚洲一区二区| 亚洲aⅴ乱码一区二区在线播放| 丝瓜视频免费看黄片| 人妻夜夜爽99麻豆av| 深爱激情五月婷婷| 亚洲图色成人| 3wmmmm亚洲av在线观看| 韩国av在线不卡| 99久久精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 欧美日韩亚洲高清精品| 91aial.com中文字幕在线观看| 色视频www国产| 亚洲精品自拍成人| 夜夜看夜夜爽夜夜摸| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产成人久久av| 韩国高清视频一区二区三区| 身体一侧抽搐| 日日摸夜夜添夜夜爱| 熟女av电影| 久久久久视频综合| 亚洲精品一区蜜桃| 成人黄色视频免费在线看| 久久 成人 亚洲| 91精品一卡2卡3卡4卡| 一级片'在线观看视频| av黄色大香蕉| 26uuu在线亚洲综合色| 国产69精品久久久久777片| 久久久亚洲精品成人影院| 精品一区二区三区视频在线| 日韩,欧美,国产一区二区三区| 男的添女的下面高潮视频| 一区二区三区免费毛片| 国产一区二区三区综合在线观看 | 日日摸夜夜添夜夜爱| 九草在线视频观看| 偷拍熟女少妇极品色| 成人午夜精彩视频在线观看| 亚洲精品色激情综合| 午夜精品国产一区二区电影| 波野结衣二区三区在线| 亚洲怡红院男人天堂| 久久久久久人妻| 少妇人妻一区二区三区视频| 国产精品久久久久成人av| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 国产午夜精品一二区理论片| 中国三级夫妇交换| 天堂俺去俺来也www色官网| 亚洲欧美精品自产自拍| videossex国产| 亚洲成色77777| 国产免费一区二区三区四区乱码| 女人久久www免费人成看片| 校园人妻丝袜中文字幕| 色5月婷婷丁香| 国产亚洲欧美精品永久| 少妇精品久久久久久久| 精品国产三级普通话版| 如何舔出高潮| 这个男人来自地球电影免费观看 | 中文字幕制服av| 国产永久视频网站| 精品一区二区三区视频在线| 国产熟女欧美一区二区| 色视频在线一区二区三区| 日韩一区二区视频免费看| 国产精品免费大片| 日韩电影二区| 国产成人免费观看mmmm| 国产大屁股一区二区在线视频| 99久久中文字幕三级久久日本| 国产精品蜜桃在线观看| 3wmmmm亚洲av在线观看| 亚洲国产成人一精品久久久| 男的添女的下面高潮视频| 国产精品99久久99久久久不卡 | 尤物成人国产欧美一区二区三区| 在线观看免费日韩欧美大片 | 一个人看的www免费观看视频| 嫩草影院新地址| 精品少妇黑人巨大在线播放| 美女国产视频在线观看| 亚洲av不卡在线观看| 91午夜精品亚洲一区二区三区| 亚洲国产最新在线播放| 国产一区二区三区综合在线观看 | 亚洲国产成人一精品久久久| 搡女人真爽免费视频火全软件| 丝瓜视频免费看黄片| 菩萨蛮人人尽说江南好唐韦庄| 成年av动漫网址| 又大又黄又爽视频免费| 久热久热在线精品观看| 91午夜精品亚洲一区二区三区| 国产亚洲精品久久久com| 少妇高潮的动态图| 亚洲精品久久午夜乱码| 亚洲av中文字字幕乱码综合| 亚洲国产av新网站| 免费看日本二区| 1000部很黄的大片| 91精品伊人久久大香线蕉| 欧美高清性xxxxhd video| 男的添女的下面高潮视频| videossex国产| 国产毛片在线视频| av免费观看日本| 99久国产av精品国产电影| 大香蕉久久网| 夫妻午夜视频| 国产日韩欧美亚洲二区| 日韩中字成人| 秋霞在线观看毛片| 精品熟女少妇av免费看| 国产成人免费无遮挡视频| 国产伦在线观看视频一区| 麻豆国产97在线/欧美| 老熟女久久久| 美女脱内裤让男人舔精品视频| 婷婷色综合www| 免费观看av网站的网址| 男男h啪啪无遮挡| 国产在线免费精品| 日本一二三区视频观看| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲网站| 只有这里有精品99| 香蕉精品网在线| 最新中文字幕久久久久| 国产爽快片一区二区三区| 国内揄拍国产精品人妻在线| 亚洲国产成人一精品久久久| 亚洲天堂av无毛| 亚洲国产精品成人久久小说| 美女脱内裤让男人舔精品视频| 国产免费视频播放在线视频| av视频免费观看在线观看| 国产精品欧美亚洲77777| 日韩电影二区| 国产国拍精品亚洲av在线观看| 极品少妇高潮喷水抽搐| 国产男人的电影天堂91| 中文字幕久久专区| 亚洲怡红院男人天堂| 女的被弄到高潮叫床怎么办| 亚洲精品日韩在线中文字幕| 亚洲精品成人av观看孕妇| 精品人妻视频免费看| 亚洲精品中文字幕在线视频 | 久久久久久人妻| 亚洲美女视频黄频| 一级av片app| 成人国产麻豆网| 精品亚洲乱码少妇综合久久| 草草在线视频免费看| 高清在线视频一区二区三区| 国产成人91sexporn| 中文字幕人妻熟人妻熟丝袜美| 一本色道久久久久久精品综合| 老女人水多毛片| 亚洲av福利一区| 青春草视频在线免费观看| 男女国产视频网站| 国产成人一区二区在线| 91久久精品国产一区二区成人| 精品国产露脸久久av麻豆| 国内精品宾馆在线| 久久久亚洲精品成人影院|