• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FINITE-TIME H∞CONTROL FOR A CLASS OF MARKOVIAN JUMPING NEURAL NETWORKS WITH DISTRIBUTED TIME VARYING DELAYS-LMI APPROACH?

    2018-05-05 07:09:25BASKAR

    P.BASKAR

    New Horizon College of Engineering,Marathhalli,Bangalore 560103,India

    S.PADMANABHAN

    RNS Institute of Technology,Channasandra,Bangalore 560098,India

    M.SYED ALI

    Department of Mathematics,Thiruvalluvar University,Vellore,Tamilnadu 632115,India

    E-mail:syedgru@gmail.com

    1 Introduction

    In recent years,neural networks(especially switched neural networks,recurrent neural networks,Hop field neural networks,and cellular neural networks)have been successfully applied in many areas such as pattern recognition,associative memory,image processing,fault diagnosis,and combinatorial optimization.Many researchers focused on studying the existence,uniqueness,and global robust asymptotic stability of the equilibrium point in the presence of time delays and parameter uncertainties for various classes of nonlinear neural networks(see[1–6]).When a neural network incorporates abrupt changes in its structure,a Markovian jump system is very appropriate to describe its dynamics.Thus,the problem of stochastic robust stability for uncertain delayed neural networks with Markovian jumping parameters is investigated via LMI technique in[7–13].

    The linear matrix inequality approach is one of the most extensively used in recent publications.For instance,in[14–18],a class of switched Hop field neural networks with time-varying delay by integrating the theory of switched systems with neural networks with time-varying delay are reported,global exponential stability conditions for switched Hop field neural networks with time-varying delay are addressed on the basis of the Lyapunov-Krasovskii functional approach,and a delay-dependent robust stability criteria are presented by employing LMIs and free weighting matrices methods.

    In practical implementations,uncertainties are inevitable in neural networks because of the existence of modeling errors and external disturbance.It is important to ensure the neural networks system is stable under these uncertainties(see[19–21]).Both time delays and uncertainties can destroy the stability of neural networks in an electronic implementation.Therefore,it is of great theoretical and practical importance to investigate the robust stability for delayed neural networks with uncertainties(see[22–26]).

    In the recent years,H∞concept was proposed to reduce the effect of the disturbance input on the regulated output to within a prescribed level.Hence,H∞finite time boundness for switched neural networks with time varying delays takes considerable attention[27–33].Usually,some performance indexes,that is,H∞and L∞,are employed to deal with external disturbances.Many results are developed with these performance indexes(see[34–39]references therein).

    To the best of authors knowledge,there is no results available on the H∞control for Markovian jumping neutral-type neural networks(MJNNs)time varying delays.Motivated by this,in this article,we analyze the adaptive finite time stability for the MJNNs.LMI-matrixbased criteria for determining finite time stability for the MJNNNs are developed.

    This article is organized as follows.In Section 2,we presents problem formulation,notations,definitions,and technical lemmas.In Section 3,stability conditions are proposed for delayed neural network systems;a reliable H∞controller is derived to guarantee the exponential stability with uncertainties of the resulting closed-loop neural network systems.Section 4 illustrative examples and comparison results are given to show the conservativeness and effectiveness of the proposed results.

    2 Notations

    Throughout this article,we will use the notation A>0 to denote that the matrix A is a symmetric and positive definite matrix.Let(?,F,{Ft}t≥0,P)be a complete probability space with a filtration{Ft}t≥0satisfying the usual conditions(it is right continuous and F0contains all P-null sets);be the family of all bounded,F0-measurable,C([?τ,0];Rn)-valued random variables ξ={ξ(θ): ?τ≤ θ ≤ 0}such thatThe mathematical expectation operator with respect to the given probability measure P is denoted by E{·}.The shorthand diag{···}denotes the block diagonal matrix. ‖ ·‖ stands for the Euclidean norm.Moreover,the notation?always denotes the symmetric block in one symmetric matrix.Let{ηt,t≥ 0}be a homogeneous, finite-state Markovian process with right continuous trajectories and taking values in finite set S={1,2,···,s}with a given probability space(?,F,P)and the initial model η0. Π =[πij]s×s,i,j ∈ S,which denotes the transition rate matrix with transition probability

    2.1 Problem formulation and preliminaries

    Consider the following Markovian jumping neural networks of neutral type with distributed time varying delays

    where x(t)=[x1(t),x2(t),···,xn(t)]T∈ Rnis the state,u(t) ∈ Rlis the control input,w(t)∈ Rnis the disturbance input which belongs to L2[0,∞),and z(t)∈ Rqis the controlled output.f(x(t))is the neuron activation function,and φ(θ)is a continuous vectorvalued initial function.For eachin which Diare a positive diagonal matrices,Ai,Bi,Ci,Di,Ei,F1i,F2i,Gi,J1i,J2i∈ Rn×nare the weight connection matrices with appropriate dimensions,and ΔAi(t),ΔBi(t),ΔCi(t),ΔDi(t),ΔJ1i(t)are uncertain real-valued matrices.The variables τ(t),σ(t),and ρ(t)represent respectively the time varying delay,distributive,and neutral delays satisfyingandand d2are positive constants,and

    Assumption 1Assume that the uncertainties are norm-bounded and of the form

    where M1i,M2i,M3i,M4i,M5iare known real-valued constant matrices with appropriate dimensions,?iare unknown and possibly time-varying matrix with Lebesgue measurable elements satisfying

    Assumption 2For a given time constant Tf,the external disturbance w(t)satisfies

    Assumption 3The activation functions satisfy the following condition,for any i=1,2,···,n,there exist constantssuch that

    For presentation convenience,we denote

    Definition 2.1([8]Finite-time stability) For a given time constant τ>0,neural networks(2.1)is said to be stochastically finite-time stable with respect toif

    where c2> c1> 0,R is a positive definite matrix,and η(t)is a switching signal.

    Remark 2.2Consider neural network(2.1)with u(t)≡0 and w(t)≡0,the neural networks is said to be uniformly finite-time stable with respect toif(2.4)holds.

    Definition 2.3([37]Finite-time boundedness) For a given time constant Tf,neural networks(2.1)with u(t)≡ 0 is said to be finite-time bounded with respect toif condition(2.4)holds,where c2> c1> 0,R is a positive definite matrix,η(t)is a switching signal,and w(t)satisfy(2.3).

    Definition 2.4([37]Finite-time H∞performance) For a given time constant Tf,neural networks(2.1)is said to be robust finite-time H∞performance with respect toR,η(t))if the networks is finite-time bounded and the following inequality holds

    Definition 2.5([33]Robust finite-time H∞control) For a given time constant Tf,neural networks(2.1)is said to be robust finite-time stabilizable with H∞disturbance attenuation level γ,if there exists a controller u(t)=Kη(t)x(t),t∈ (0,Tf],such that(i)The corresponding closed-loop neural network is finite-time bounded;(ii)Under zero initial condition,inequality(2.5)holds for any w(t)satisfying Assumption 2.

    Lemma 2.6([25]) For any constant matrix M ∈ Rn×n,M=MT> 0,scalar η2> η1≥ 0,and vector function w:[η1,η2] → Rnsuch that the integrations concerned are well defined,then we have

    Lemma 2.7([40]) Let U,V,W,and X be real matrices of appropriate dimensions with X satisfying X=XT,then for all VTV≤I,X+UV W+UTVTWT<0,if and only if there exists a scalar δ> 0 such that X+ δUUT+ δ?1WTW < 0.

    3 Main Results

    3.1 Finite-time boundedness analysis

    In this section,we consider the problem of finite time boundedness for the following neural networks

    Theorem3.1Consider the neural networks(3.1),and letIf there exist positive scalars α,λk,(k=1,2,···,7),positive definite matrices Pi,Q1,Q2,Q3,S1,S2,T,and positive diagonal matrices U1,U2with appropriate dimensions,such that the following LMI holds,

    with

    ProofChoose the following Lyapunov-Krasovskii functional

    where

    Taking the derivative of the V(t)along the trajectory of(3.1),we have

    Using Lemma 2.6,we obtain

    By Assumption 3,it is obtained that

    can be compactly written as

    Then,for any positive diagonal matrices U1and U2,the following inequalities hold true

    Combining and adding(3.4)–(3.11),we obtain

    here

    with

    Using Schur complement lemma,we have

    pre-multiply and post multiply by the term of(3.14)by diagand then by using fact that,and replacingwe get Λ<0.From(3.2),we have

    Then,

    On the other hand,

    We obtain

    then it holds that

    here

    By Definition 2.1,we have

    According to Definition 2.3,we know that neural networks(3.1)is finite-time bounded with respect toThus,the proof is completed.

    Corollary 3.2Consider neural networks(3.1)withThen,the networks is finite-time bounded,if there exist positive scalars α,λk,k=(1,2,···,7),positive definite matrices Pi,Q1,Q2,Q3,S1,S2,and positive diagonal matrices U1,U2with appropriate dimensions,such that the following LMI holds.

    ProofThe proof is similar to that of Theorem 3.1,so it is omitted here.

    3.2 Finite time H∞control

    Consider the neural networks(2.1),under the controller u(t)=Kη(t)x(t),t∈ (0,Tf],the corresponding neural network is given by

    Theorem 3.3Consider the neural networks(3.23)–(3.25),and letIf there exist positive scalars α,τ,σ,ρ,δ1,δ2,positive definite symmetric matrices Pi,Q1,Q2,Q3,S1,S2with appropriate dimensions and positive diagonal matrices U1,U2,such that the following inequalities hold,

    where

    ProofReplacing Di,Ai,Bi,Ci,Giin the left side of(3.26)withJ2iKi,and using Schur complement lemma,we can obtain

    By Assumption 1,we have

    with

    By Lemma 2.7,we can get

    Using Schur complement lemma,from(3.26)we obtain Ψi< 0.Thus,the proof is completed.

    4 Numerical Example

    In this section,we present numerical examples to illustrate the effectiveness and advantage of the obtained theoretical results.

    Example 1Consider neural networks(3.1)with parameters as follows

    X1=diag{0,0},X2=diag{?2,2}.For the given values of Tf=0.7,τ=0.3,=0.5,d1=0.6,d2=0.4,=0.8,α=1.5,c1=0.01,d=0.2,by Theorem 3.1 we know that the optimal value ofdepends on parameter α.By solving the matrix inequalities(3.2)–(3.3),we can get the optimal bound ofwith different value of α in each subsystems.The smallest bound can be obtained as=0.4315 when α=1.5.

    Example 2Consider the neural networks(2.1)with parameters as follows:

    M1i=M2i=M3i=M4i=M5i=0.3I,X1=diag{0,0},X2=diag{?2,2}.For the given values of Tf=5,ˉτ=0.5,ˉρ=0.2,d1=0.9,d2=0.3,ˉσ=1,α=4,c2=4,d=2,μ=2,R=I and taking γ2as optimized variable with a fixed α,by solving the optimal value problem for each subsystem according to Theorem 3.4,we get the following conclusion.For subsystem 1,when α ∈ [1.618,11.512],the LMI in Theorem 3.3 has feasible solution,and γmin=0.6000.

    By solving the matrix equalities in Theorem 3.3,we obtain

    Example 3Consider the class of Markovian jumping neural networks[41]

    with parameters as follows:

    X1=diag{0,0},X2=diag{1,1}.For the given values of Tf=5,=0.26,d1=0.2,=1,c1=0.5,d=2,R=I,by solving the optimal value problem for each subsystem according to Corollary 3.2,we get the minimal value of c2=1.8101.It should be mentioned that the minimal c2in[41]is 5.4296.Thus delayed Markovian jumping neural networks is stochastically finite-time bounded with respect to(c1,c2,Tf)with minimal c2smaller than that in[41].Therefore,the stability conditions proposed in this article are less conservative than[41].

    Example 4Consider the class of Markovian jumping neural networks[42],

    with parameters as follows:

    the activation function X1=diag{0.2,0.2,0.2},X2=diag{0.4,0.4,0.4}.For the given values of Tf=5,d1=0.2,c1=0.5,c2=0.3,d=2,R=I,by solving the problem for each subsystem according to Corollary 3.2,we get the upper bound ofˉτ=4.450,whereas for the upper bound ofˉτ=2.5 in[42],it shows that delayed Markovian jumping neural networks is stochastically finite-time bounded with respect to(c1,c2,T).Hence the results in this article are less conservative than that in[42].

    Conclusion

    In this article,we investigate the problem of robust finite-time H∞control for a class of uncertain neutral-type neural networks with distributed time varying delays.The finite-time boundedness analysis and finite-time H∞controller design for neural networks system with H∞disturbance attenuation level γ are studied.Numerical examples are provided to show the effectiveness of the proposed method.The results are compared with the existing results to show the conservativeness.

    Figure 1 State trajectories of the system in Example 1

    Figure 2 State trajectories of the system in Example 2

    Figure 3 State trajectories of the system in Example 3

    Figure 4 State trajectories of the system in Example 4

    [1]Wang S,Shi T,Zeng M,et al.New results on robust finite-time boundedness of uncertain switched neural networks with time-varying delays.Neurocomputing,2015,151:522–530

    [2]Syed Ali M,Balasubramaniam P.Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays.Chaos Solitons Fractals,2009,42:2191–2199

    [3]Kwon O M,Park M J,Park J H,et al.Improved approaches to stability criteria for neural networks with time-varying delays.J Franklin Inst,2013,350:2710–2735

    [4]Yu L,Fei S,Long F,et al.Multilayer neural networks-based direct adaptive control for switched nonlinear systems.Neurocomputing,2010,74:481–486

    [5]Sun X M,Zhao J,Hill D J.Stability and L2-gain analysis for switched delay systems:A delay-dependent method.Automatica,2006,42:1769–1774

    [6]Hou L,Zong G,Wu Y.Robust exponential stability analysis of discrete-time switched Hop field neural networks with time delay.Nonlinear Anal Hybrid Systems,2011,5:525–534

    [7]Sathy R,Balasubramaniam P.Stability analysis of fuzzy Markovian jumping Cohen-Grossberg BAM neural networks with mixed time-varying delays.Commun Nonlinear Sci Numer Simulat,2011,16:2054–2064

    [8]Yao D,Lu Q,Wu C,Chen Z.Robust finite-time state estimation of uncertain neural networks with Markovian jump parameters.Neurocomputing,2015,159:257–262

    [9]Tian J,Li Y,Zhao J,Zhong S.Delay-dependent stochastic stability criteria for Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates.Appl Math Comput,2012,218:5769–5781

    [10]Tian J,Xiong W,Xu F.Improved delay-partitioning method to stability analysis for neural networks with discrete and distributed time-varying delays.Appl Math Comput,2014,233:152–164

    [11]Tian J,Liu Y.Improved Delay-Dependent Stability Analysis for Neural Networks with Interval Time-Varying Delays.Math Probl Eng 2015,Article ID 705367,10 pages

    [12]Ren Z,Tian J.Improved stability analysis for neural networks with interval time-varying delays.Appl Mech Mater,2014,687-691:2078–2082

    [13]Syed Ali M.Stability of Markovian jumping recurrent neural networks with discrete and distributed timevarying delays.Neurocomputing,2015,149:1280–1285

    [14]Chen J,Wu I,Lien C,et al.Robust exponential stability for uncertain discrete-time switched systems with interval time-varying delay through a switching signal.J Appl Research Tec,2014,12:1187–1197

    [15]Zeng H B,Park J H,Zhang C F,Wang W.Stability and dissipativity analysis of static neural networks with interval time-varying delay.J Franklin Inst,2015,352:1284–1295

    [16]Wu X,Tang Y,Zhang W.Stability analysis of switched stochastic neural networks with time-varying delays.Neural Networks,2014,51:39–49

    [17]Lian C,Zeng Z,Yao W,Tang H.Multiple neural networks switched prediction for landslide displacement.Engineering Geology,2015,186:91–99

    [18]Balasubramaniam P,Syed Ali M,Arik S.Global asymptotic stability of stochastic fuzzy cellular neural networks with multiple time-varying delays.Expert Syst Appl,2015,37:7737–7744

    [19]Shi K,Zhu H,Zhong S,et al.New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach.J Franklin Inst,2015,352:155–176

    [20]Liu D,Zhong S,Liu X,Huang Y.Stability analysis for uncertain switched neutral systems with discrete time-varying delay:a delay-dependent method.Math Comput Simulat,2009,80:828–839

    [21]Xiang M,Xiang Z.Stability,L1-gain and control synthesis for positive switched systems with time-varying delay.Nonlinear Anal Hybrid Systems,2013,9:9–17

    [22]Sun X,Liu G,Wang W,Rees D.Stability analysis for networked control systems based on average dwell time metheod.Internat J Robust Nonlin Cont,2010,20:1774–1784

    [23]Branicky M S.Multiple Lyapunov functions and other analysis tool for switched and hybrid systems.IEEE Trans Automat Control,1998,43:475–482

    [24]Feng W,Yang S X,Wu H.On robust stability of uncertain stochastic neural networks with distributed and interval time-varying delays.Chaos Solitons Fractals,2009,42:2095–2104

    [25]Lee S M,Kwon O M,Park J H.A novel delay-dependent criterion for delayed neural networks of neutral type.Phys Lett A,2010,374:1843–1848

    [26]Zhang Y,Shi P,Nguang S K,Zhang J,Karimi H R.Finite-time boundedness for uncertain discrete neural networks with time-delays and Markovian jumps.Neurocomputing,2014,140:1–7

    [27]Liberzon D,Morse A S.Basic problems in stability and design of switched systems.IEEE Control Syst Mag,1999,19:59–70

    [28]Sun Y,Wang L,Xie G.Delay dependent robut stability and H∞control for uncertain discrete-time switched systems with mode-dependent time delays.Appl Math Comput,2007,187:1228–1237

    [29]Syed Ali M,Saravanakumar R.Novel delay-dependent robust H∞control of uncertain systems with distributed time-varying delays.Appl Math Comput,2014,249:510–520

    [30]Lien C H,Yu K W.Non-fragle H∞control for uncertain neutral systems with time-varying delays via the LMI optimization approach.IEEE Trans Syst Man Cybernet,2007,37(Part B):493–509

    [31]Liu X.Stabilization of switched linear systems with mode-dependent time-varying delays.Appl Math Comput,2010,216:2581–2586

    [32]Zhang H,Dong M,Wang Y,Zhang N.Stochastic stability analysis of neutraltype impulsive neural networks with mixed time-varying delays and Markovian jumping.Neurocomputing,2010,73:2689–2695

    [33]Xianga Z,Suna Y N,Mahmoud M S.Robust finite-time H∞control for a class of uncertain switched neutral systems.Commun Nonlinear Sci Numer Simul,2012,17:1766–1778

    [34]Hong Y,Hong J,Xu Y.On an output feedback finite time stabilization problem.IEEE Trans Automat Control,2001,46:305–309

    [35]Xiang W,Xiao J.H∞finite-time control for swiched nonlinear discrete-time systems with norm-bounded disturbance.J Franklin Inst,2011,348:331–352

    [36]Zhang W,Fang J,Cui W.Exponential stability of switched genetic regulatory networks with both stable and unstable subsystems.J Franklin Inst,2013,350:2322–2333

    [37]Lin X,Du H,Li S.Finite-time boundedness and L2-gain analysis for switched delay systems with normbounded disturbance.Appl Math Comput,2014,217:5982–5993

    [38]Wang T,Tong S.H∞control design for discrete-time switched fuzzy systems.Neurocomputing,2015,14:782–789

    [39]Li X,Lin X,Li S,Zou Y.Finite-time stability of switched nonlinear systems with finite-time unstable subsystems.J Franklin Inst,352:1192–1214

    [40]Song Q,Wang Z.New results on passivity analysis of uncertain neural networks with time-varying delays.Int J Comput Math,2015,87:668–678

    [41]He S,Liu F.Finite-time boundedness of uncertain time-delayed neural network with Markovian jumping parameters.Neurocomputing,2013,103:87–92

    [42]Wang T,Zhao S,Zhou W,Yu W.Finite-time state estimation for delayed Hop field neural networks with Markovian jump.ISA Transactions,2015,57:43–50

    国产一区二区在线av高清观看| 在线观看免费日韩欧美大片| 亚洲视频免费观看视频| 亚洲专区中文字幕在线| 午夜激情av网站| 亚洲欧美日韩高清在线视频| 亚洲成a人片在线一区二区| 后天国语完整版免费观看| 国产精品自产拍在线观看55亚洲| 欧美在线黄色| 国产高清视频在线播放一区| 亚洲欧美激情在线| 色综合婷婷激情| 我的亚洲天堂| 老司机午夜福利在线观看视频| a在线观看视频网站| av有码第一页| 亚洲片人在线观看| 欧美+亚洲+日韩+国产| 亚洲一区中文字幕在线| 一级毛片高清免费大全| 人妻久久中文字幕网| 午夜精品久久久久久毛片777| 电影成人av| 国产精品九九99| 日本 av在线| 欧美av亚洲av综合av国产av| 动漫黄色视频在线观看| 无限看片的www在线观看| 精品福利观看| 老熟妇仑乱视频hdxx| 亚洲欧美精品综合一区二区三区| 日韩精品中文字幕看吧| 免费在线观看影片大全网站| 好男人电影高清在线观看| 久久久国产欧美日韩av| 亚洲av美国av| 男女之事视频高清在线观看| 麻豆av在线久日| 99久久国产精品久久久| 制服人妻中文乱码| 精品国产乱子伦一区二区三区| 亚洲自偷自拍图片 自拍| 精品国产亚洲在线| 欧美在线黄色| 国产1区2区3区精品| 日本免费a在线| 国产精品国产av在线观看| 久久久久亚洲av毛片大全| 欧美乱码精品一区二区三区| 91麻豆av在线| 精品熟女少妇八av免费久了| 亚洲一区高清亚洲精品| 亚洲情色 制服丝袜| 热re99久久国产66热| 成年版毛片免费区| 黄网站色视频无遮挡免费观看| 91字幕亚洲| 两个人免费观看高清视频| www.999成人在线观看| 露出奶头的视频| 91国产中文字幕| 亚洲第一欧美日韩一区二区三区| 美女福利国产在线| 手机成人av网站| 国产无遮挡羞羞视频在线观看| 午夜精品国产一区二区电影| 亚洲欧美一区二区三区黑人| 国产精品九九99| 在线天堂中文资源库| av有码第一页| 久久精品人人爽人人爽视色| 黄色视频不卡| 国产一区二区激情短视频| 天堂√8在线中文| 18禁国产床啪视频网站| 免费高清视频大片| 免费在线观看完整版高清| 欧美激情 高清一区二区三区| 午夜福利一区二区在线看| 国产精品久久久人人做人人爽| 国产高清激情床上av| 国产又色又爽无遮挡免费看| 国产蜜桃级精品一区二区三区| 麻豆成人av在线观看| 国产精品永久免费网站| 久久人妻av系列| 夜夜躁狠狠躁天天躁| 一级毛片女人18水好多| 精品高清国产在线一区| 一本综合久久免费| 男男h啪啪无遮挡| netflix在线观看网站| 中文字幕av电影在线播放| 淫妇啪啪啪对白视频| 国产精品电影一区二区三区| 可以在线观看毛片的网站| netflix在线观看网站| 超碰成人久久| 色老头精品视频在线观看| 热99国产精品久久久久久7| 曰老女人黄片| 午夜两性在线视频| 亚洲欧美激情在线| 999精品在线视频| 欧美一区二区精品小视频在线| 99久久人妻综合| 天天躁狠狠躁夜夜躁狠狠躁| 啦啦啦免费观看视频1| 国产av一区二区精品久久| 精品乱码久久久久久99久播| 亚洲精品美女久久av网站| 午夜福利免费观看在线| av在线天堂中文字幕 | 老汉色av国产亚洲站长工具| 每晚都被弄得嗷嗷叫到高潮| 91在线观看av| 又黄又粗又硬又大视频| 老司机深夜福利视频在线观看| 热99国产精品久久久久久7| 九色亚洲精品在线播放| 精品一区二区三区视频在线观看免费 | 中国美女看黄片| 国产一区二区在线av高清观看| 久久中文字幕一级| 亚洲黑人精品在线| 最新美女视频免费是黄的| 很黄的视频免费| 欧美中文日本在线观看视频| 日本三级黄在线观看| 国产av一区在线观看免费| 国产成人av激情在线播放| 一级毛片精品| 两性午夜刺激爽爽歪歪视频在线观看 | 波多野结衣一区麻豆| 无人区码免费观看不卡| 夜夜夜夜夜久久久久| av网站在线播放免费| 国产精品一区二区在线不卡| 国产精品电影一区二区三区| av电影中文网址| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区四区第35| 亚洲第一av免费看| 另类亚洲欧美激情| 国产一区二区在线av高清观看| 国产av精品麻豆| 久久精品成人免费网站| 欧美成狂野欧美在线观看| 99久久国产精品久久久| 成年女人毛片免费观看观看9| 精品第一国产精品| 99久久99久久久精品蜜桃| 亚洲一区二区三区不卡视频| 中文亚洲av片在线观看爽| 国产真人三级小视频在线观看| 69av精品久久久久久| 女人精品久久久久毛片| 男女高潮啪啪啪动态图| 精品国内亚洲2022精品成人| 欧美乱色亚洲激情| 国产精品亚洲一级av第二区| 日韩免费av在线播放| 亚洲自拍偷在线| 宅男免费午夜| 久久久久久大精品| 中亚洲国语对白在线视频| 99在线视频只有这里精品首页| 在线av久久热| 在线播放国产精品三级| 欧美最黄视频在线播放免费 | 看免费av毛片| 757午夜福利合集在线观看| 亚洲 欧美 日韩 在线 免费| 国产精品综合久久久久久久免费 | 欧美日韩国产mv在线观看视频| 亚洲av五月六月丁香网| 成人亚洲精品av一区二区 | 婷婷六月久久综合丁香| 91精品三级在线观看| 日本a在线网址| 中文欧美无线码| 首页视频小说图片口味搜索| 男女高潮啪啪啪动态图| 国产成人精品久久二区二区免费| 麻豆成人av在线观看| 亚洲 国产 在线| 巨乳人妻的诱惑在线观看| 亚洲久久久国产精品| 欧美日韩亚洲综合一区二区三区_| a级毛片在线看网站| 日本vs欧美在线观看视频| xxx96com| 国产免费男女视频| 夜夜看夜夜爽夜夜摸 | 国产精品久久久人人做人人爽| 女性生殖器流出的白浆| 狠狠狠狠99中文字幕| 女警被强在线播放| 美女扒开内裤让男人捅视频| 中文字幕av电影在线播放| 国产精品1区2区在线观看.| 国产深夜福利视频在线观看| 在线观看一区二区三区| 黄色视频不卡| 又大又爽又粗| 少妇的丰满在线观看| 国产精品电影一区二区三区| 亚洲欧美精品综合一区二区三区| 嫩草影视91久久| 99re在线观看精品视频| 90打野战视频偷拍视频| av超薄肉色丝袜交足视频| 日本vs欧美在线观看视频| 淫妇啪啪啪对白视频| 欧美不卡视频在线免费观看 | 色在线成人网| 琪琪午夜伦伦电影理论片6080| 亚洲人成电影观看| 国产单亲对白刺激| 真人做人爱边吃奶动态| 九色亚洲精品在线播放| 搡老岳熟女国产| 久久久久久大精品| 91国产中文字幕| 美女扒开内裤让男人捅视频| 色在线成人网| 99国产精品免费福利视频| 免费女性裸体啪啪无遮挡网站| 成人黄色视频免费在线看| √禁漫天堂资源中文www| 亚洲av成人一区二区三| 热re99久久精品国产66热6| 美女午夜性视频免费| 国产av精品麻豆| 国产av又大| 国产精品久久电影中文字幕| 亚洲午夜理论影院| 18禁观看日本| a级片在线免费高清观看视频| 51午夜福利影视在线观看| 热99re8久久精品国产| 50天的宝宝边吃奶边哭怎么回事| 9热在线视频观看99| 天天躁夜夜躁狠狠躁躁| 99在线人妻在线中文字幕| 中亚洲国语对白在线视频| 久久久国产成人精品二区 | 1024香蕉在线观看| 大型av网站在线播放| 色婷婷av一区二区三区视频| 淫妇啪啪啪对白视频| 在线观看免费视频日本深夜| 在线观看免费视频网站a站| 性色av乱码一区二区三区2| 欧美日韩福利视频一区二区| 国产在线精品亚洲第一网站| 国产精品1区2区在线观看.| 久久狼人影院| 极品教师在线免费播放| 18禁黄网站禁片午夜丰满| 国产精品电影一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产真人三级小视频在线观看| 国产精品爽爽va在线观看网站 | 狂野欧美激情性xxxx| 亚洲色图综合在线观看| 99久久久亚洲精品蜜臀av| 91麻豆精品激情在线观看国产 | 又黄又粗又硬又大视频| 国产男靠女视频免费网站| 成人免费观看视频高清| 午夜精品久久久久久毛片777| 国产高清国产精品国产三级| 老司机在亚洲福利影院| 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 精品高清国产在线一区| 亚洲专区中文字幕在线| 国产一区二区在线av高清观看| 国产精品偷伦视频观看了| 久久午夜综合久久蜜桃| 亚洲一区中文字幕在线| 韩国精品一区二区三区| 国产精品二区激情视频| 91国产中文字幕| 久久热在线av| 亚洲人成网站在线播放欧美日韩| 婷婷六月久久综合丁香| 电影成人av| 亚洲精品国产色婷婷电影| 又黄又爽又免费观看的视频| 国产在线观看jvid| 夜夜躁狠狠躁天天躁| 亚洲精品久久午夜乱码| 亚洲精品在线美女| 欧美黄色片欧美黄色片| 大香蕉久久成人网| 国产在线精品亚洲第一网站| 亚洲中文字幕日韩| a级片在线免费高清观看视频| 国产精品 国内视频| 黄色丝袜av网址大全| 黄色成人免费大全| 午夜福利一区二区在线看| 亚洲精华国产精华精| 多毛熟女@视频| 岛国在线观看网站| 在线观看一区二区三区激情| а√天堂www在线а√下载| 国产单亲对白刺激| 久久精品亚洲熟妇少妇任你| 在线观看一区二区三区激情| 性色av乱码一区二区三区2| 精品久久蜜臀av无| 亚洲一区中文字幕在线| av在线播放免费不卡| 免费搜索国产男女视频| 免费av中文字幕在线| 在线观看免费视频日本深夜| 黄片小视频在线播放| 一区二区三区精品91| 一级毛片女人18水好多| 99久久久亚洲精品蜜臀av| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 日韩精品免费视频一区二区三区| 日日干狠狠操夜夜爽| 熟女少妇亚洲综合色aaa.| 99国产精品一区二区三区| 日本欧美视频一区| 久久久久久久精品吃奶| 国产欧美日韩综合在线一区二区| 人妻丰满熟妇av一区二区三区| 少妇粗大呻吟视频| 欧美日本中文国产一区发布| 国产极品粉嫩免费观看在线| 麻豆一二三区av精品| 久久人人97超碰香蕉20202| 视频区欧美日本亚洲| 狂野欧美激情性xxxx| 丝袜人妻中文字幕| 欧美大码av| 身体一侧抽搐| 国产三级黄色录像| 亚洲欧美激情综合另类| 中文字幕精品免费在线观看视频| 美女午夜性视频免费| 日韩大码丰满熟妇| 黄色a级毛片大全视频| 一边摸一边做爽爽视频免费| 欧美黑人欧美精品刺激| 国产极品粉嫩免费观看在线| 美国免费a级毛片| 美女午夜性视频免费| 国产成人精品久久二区二区91| 国产精品 欧美亚洲| 中文亚洲av片在线观看爽| 啦啦啦 在线观看视频| 久久久精品国产亚洲av高清涩受| 窝窝影院91人妻| av天堂在线播放| 满18在线观看网站| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕在线视频| 国产亚洲欧美在线一区二区| 国产成人欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩一区二区三| 中文欧美无线码| 国产99久久九九免费精品| 嫩草影视91久久| 中文字幕人妻丝袜制服| 成人亚洲精品av一区二区 | av在线天堂中文字幕 | 国产熟女xx| 国产xxxxx性猛交| 久久精品成人免费网站| 国产精品电影一区二区三区| 99久久人妻综合| 日日干狠狠操夜夜爽| 国内久久婷婷六月综合欲色啪| 日本黄色视频三级网站网址| 欧美日本中文国产一区发布| x7x7x7水蜜桃| 老司机在亚洲福利影院| a级片在线免费高清观看视频| 精品熟女少妇八av免费久了| 中文字幕精品免费在线观看视频| 国产主播在线观看一区二区| 久久性视频一级片| 99国产精品99久久久久| 婷婷六月久久综合丁香| 91国产中文字幕| 一级毛片高清免费大全| 涩涩av久久男人的天堂| 久久久久久久精品吃奶| 淫妇啪啪啪对白视频| 涩涩av久久男人的天堂| 99国产精品一区二区蜜桃av| 伦理电影免费视频| 18禁观看日本| 高清黄色对白视频在线免费看| 午夜成年电影在线免费观看| 12—13女人毛片做爰片一| 淫秽高清视频在线观看| 中出人妻视频一区二区| 少妇 在线观看| 琪琪午夜伦伦电影理论片6080| 欧美激情极品国产一区二区三区| 国产精品美女特级片免费视频播放器 | 一二三四在线观看免费中文在| 亚洲成av片中文字幕在线观看| 极品人妻少妇av视频| 9热在线视频观看99| 日本精品一区二区三区蜜桃| 久久精品国产99精品国产亚洲性色 | 中文字幕另类日韩欧美亚洲嫩草| 久久伊人香网站| 老司机靠b影院| 久久久久久久精品吃奶| 91老司机精品| 国产精品影院久久| 午夜福利在线观看吧| 黄色毛片三级朝国网站| 天天影视国产精品| 1024视频免费在线观看| 黄色毛片三级朝国网站| 丁香欧美五月| 久久午夜亚洲精品久久| 国产成+人综合+亚洲专区| 欧美老熟妇乱子伦牲交| 99精品久久久久人妻精品| 免费在线观看视频国产中文字幕亚洲| 日韩欧美一区视频在线观看| 日韩高清综合在线| 欧美乱码精品一区二区三区| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| a级毛片黄视频| 欧美日本中文国产一区发布| 高清av免费在线| 身体一侧抽搐| 满18在线观看网站| 黄色怎么调成土黄色| 免费少妇av软件| 久久精品亚洲av国产电影网| 亚洲一区二区三区不卡视频| 精品国产一区二区久久| 精品久久久精品久久久| 久久精品国产清高在天天线| 国产精品秋霞免费鲁丝片| 欧美日韩精品网址| 露出奶头的视频| 国产高清国产精品国产三级| 亚洲美女黄片视频| 国产精品偷伦视频观看了| 久久精品亚洲精品国产色婷小说| 免费在线观看完整版高清| 少妇的丰满在线观看| 黄色 视频免费看| 18禁裸乳无遮挡免费网站照片 | 18禁观看日本| 1024视频免费在线观看| 国产成+人综合+亚洲专区| 欧美午夜高清在线| 久久草成人影院| 国产99白浆流出| av网站免费在线观看视频| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 精品无人区乱码1区二区| 一区二区三区激情视频| 国产av精品麻豆| 亚洲情色 制服丝袜| 国产一区在线观看成人免费| 国产极品粉嫩免费观看在线| 97人妻天天添夜夜摸| 精品久久久久久久毛片微露脸| 欧美久久黑人一区二区| 国产真人三级小视频在线观看| 女警被强在线播放| 亚洲精品在线美女| 欧美在线一区亚洲| 国产亚洲精品综合一区在线观看 | 亚洲激情在线av| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品网址| 免费女性裸体啪啪无遮挡网站| 久久影院123| 国产又爽黄色视频| 视频区图区小说| 国产精品亚洲一级av第二区| 日本免费a在线| 中文字幕高清在线视频| 男女床上黄色一级片免费看| 一级片'在线观看视频| 亚洲精品在线观看二区| 久久精品亚洲av国产电影网| 老熟妇乱子伦视频在线观看| 成人亚洲精品一区在线观看| 人人澡人人妻人| 久久精品aⅴ一区二区三区四区| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 制服诱惑二区| 久久国产精品影院| 18禁美女被吸乳视频| 亚洲av成人一区二区三| 一二三四社区在线视频社区8| 一级片'在线观看视频| 色在线成人网| 在线观看免费午夜福利视频| 天堂俺去俺来也www色官网| 亚洲国产欧美一区二区综合| 丝袜美足系列| 老汉色av国产亚洲站长工具| 久久国产精品人妻蜜桃| 在线观看免费视频网站a站| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩一区二区三区在线| 超色免费av| 国产精品98久久久久久宅男小说| 51午夜福利影视在线观看| 午夜日韩欧美国产| 成年人免费黄色播放视频| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 人妻久久中文字幕网| 免费看a级黄色片| bbb黄色大片| 黄色 视频免费看| 国产色视频综合| 欧美不卡视频在线免费观看 | 亚洲一码二码三码区别大吗| 亚洲专区字幕在线| 亚洲狠狠婷婷综合久久图片| 欧美最黄视频在线播放免费 | 99riav亚洲国产免费| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| 精品高清国产在线一区| 五月开心婷婷网| 怎么达到女性高潮| 日本精品一区二区三区蜜桃| 黑人猛操日本美女一级片| 国产主播在线观看一区二区| av网站在线播放免费| 一级a爱片免费观看的视频| 性少妇av在线| av天堂在线播放| 国产成人一区二区三区免费视频网站| 一进一出抽搐gif免费好疼 | 国产精品乱码一区二三区的特点 | 久久精品人人爽人人爽视色| 久久国产亚洲av麻豆专区| 国产午夜精品久久久久久| 欧美最黄视频在线播放免费 | 黄片大片在线免费观看| 国产亚洲av高清不卡| av网站免费在线观看视频| 岛国在线观看网站| 国产成人精品久久二区二区91| 不卡av一区二区三区| 51午夜福利影视在线观看| 高清欧美精品videossex| 日韩视频一区二区在线观看| 午夜日韩欧美国产| 亚洲狠狠婷婷综合久久图片| 美女福利国产在线| 国产一区二区在线av高清观看| 黄色a级毛片大全视频| 久久精品影院6| 免费观看精品视频网站| 亚洲男人天堂网一区| 91大片在线观看| 久久天堂一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 少妇被粗大的猛进出69影院| 国产高清videossex| 18禁国产床啪视频网站| 9色porny在线观看| 久久天堂一区二区三区四区| 91大片在线观看| 91精品三级在线观看| 欧美最黄视频在线播放免费 | 午夜免费激情av| 动漫黄色视频在线观看| 在线观看免费日韩欧美大片| 精品一区二区三区视频在线观看免费 | 女性生殖器流出的白浆| 在线国产一区二区在线| 极品教师在线免费播放| 亚洲自偷自拍图片 自拍| 亚洲av熟女| 欧美精品亚洲一区二区| 一级,二级,三级黄色视频| 麻豆成人av在线观看| 两性夫妻黄色片| 亚洲国产欧美日韩在线播放| 黄色片一级片一级黄色片| 18禁观看日本| 久久久精品国产亚洲av高清涩受| 久久久久亚洲av毛片大全| e午夜精品久久久久久久| 在线视频色国产色| 亚洲第一欧美日韩一区二区三区| 啦啦啦免费观看视频1| 免费久久久久久久精品成人欧美视频| 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 在线免费观看的www视频| 午夜免费鲁丝| 国产三级黄色录像|