• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONVERGENCE ANALYSIS OF MIXED VOLUME ELEMENT-CHARACTERISTIC MIXED VOLUME ELEMENT FOR THREE-DIMENSIONAL CHEMICAL OIL-RECOVERY SEEPAGE COUPLED PROBLEM?

    2018-05-05 07:09:14YirangYUAN袁讓AijieCHENG程愛杰DangpingYANG楊丹平
    關(guān)鍵詞:楊青

    Yirang YUAN(袁讓) Aijie CHENG(程愛杰)Dangping YANG(楊丹平)

    Institute of Mathematics,Shandong University,Jinan 250100,China

    E-mail:yryuan@sdu.edu.cn;aijie@sdu.edu.cn;dpyang@math.ecnu.edu.cn

    Changfeng LI(李長峰)Qing YANG(楊青)

    School of Economics,Shandong University,Jinan 250100,China

    E-mail:c fli@sdu.edu.cn;sd yangq@163.com

    1 Introduction

    At present,an effective method,water- flooding(secondary oil recovery),is popular to keep the pressure of reservoirs in the world,and the recovery efficiency is more outstanding than any other natural exploring forms(primary oil recovery).It gives more benefits and helps Chinese oil fields keep high quantity production.It continues to be more important as a strategic subject to develop exploiting efficiency of crude oil in the way of water- flooding drive[1,2].

    Much crude oil remains in the reservoir after water- flooding exploiting,which stays underground because of the constraint of capillary force,or does not move because of slight in fluenced region and the fluidity ratio between displacement phase and driven phase.How to develop the displacement efficiency?A popular method is considered that the injected mixture includes chemical addition agents such as polymer,surface active agent,and alkali.Polymer can optimize the fluidity of displacement phase,modify the ratio with respect to driven phases,balance the leading edges well,weaken the inner porous layer,and increase the efficiency of displacement and the pressure gradient.Surface active agent and alkali can decrease interfacial tensions of different phases,then make the bounded oil move and gather[1–6].

    A mixed volume element-characteristic mixed volume element method and its convergence analysis are discussed for simulating the displacement of chemical oil recovery.

    The mathematical model is defined by a nonlinear coupled system with initial-boundary conditions[1–8]:

    where φ = φ(X)is the porosity.ρ,the density,is defined by a function of the pressure p(X,t)and the concentration c(X,t),

    where ρ0is the density of normal state,a linear function of two positive constants,the density of original flow ρrand the density of injected fluid ρi,

    The coefficient of compressibility is defined by a linear function of αrand αi,the compressibility of original fluid and the compressibility of injected fluid,

    The viscosityμ=μ(c)is defined by

    whereμrand μiare positive constants corresponding to original fluid and injected fluid.

    The motion viscosity r is defined by the quotient of the fluid viscosity and the density,

    u=u(X,t)denotes Darcy velocity of the fluid.κ= κ(X)is the permeability.? denotes a bounded domain of R3with the boundary ??.q is the production and D=D(X)is the diffusion coefficient determined by Fick’s Law.?c(X,t)is equal to 1 at injection well(q>0)and is c(X,t)at production well(q < 0).The saturations of different components are denoted by sα(X,t)(α =1,2,···,nc),including different chemical agents such as the polymer,surfactant,alkali,and kinds of ions.ncis the number of components and Qαis the source sink term.

    We assume that no flow of fluid moves across the boundary(Impermeable boundary conditions)

    where γ is the outer normal vector to ??.

    Initial conditions are listed as follows:

    Using the density function(1.4),we reexpress(1.1)as follows:

    For simplicity,(1.3)is stated as follows,

    For incompressible two-phase displacement problem,Douglas,Ewing,Russell,Wheeler,and Yuan give a series of researches[9–12].It is well known as in numerical experiments and numerical analysis that standard finite element method in solving the convection-dominated diffusion equations does produce strong numerical dispersion and nonphysical oscillation.A variety of new numerical techniques are put forward to overcome these faults,such as characteristic finite difference[13],characteristic finite element[14],upstream-weighted finite difference[15],high-order Godunov scheme[16],streamline diffusion method[17],least squares mixed finite element[18],the modified method of characteristic finite element method(MMOC-Galerkin)[19],and the Eulerian-Lagrangian localized adjoint method(ELLAM)[20].All the above numerical methods are developed from standard finite element and finite difference,while they have some distinct disadvantages.Upstream weighted difference method tends to introduce an excess of numerical dispersion into the solution near the sharp fronts.High-order Godunov scheme requires an additional CTL restriction with respect to time step.Streamline diffusion method and least squares mixed finite element method reduce numerical dispersion but add some numerical work to define and handle artificial streamline directions.ELLAM can conserve mass locally but need large-scale computation to evaluate the resulting integrals.MMOC-Galerkin,an implicit scheme,can adopt large time step,simulate the solution at the fronts of flow stably,and avoid numerical dispersion well.While the implicit scheme is not conservative because test function is not constant.An effective method,the method of mixed finite element,is introduced to get both numerical solutions and their adjoint function of fluid mechanics with high order of accuracy.Theoretical analysis and application are discussed sufficiently in[21–23].To structure a more precise numerical scheme for convection-diffusion problem,Arbogast and Wheeler present a type of locally conservative characteristic mixed element in the timespace variation form for a convection dominated diffusion equation in[24],where the convection term is treated similarly to MMOC-Galerkin method and the diffusion is treated by zero-order Raviart-Thomas-Nedekc mixed finite element.Test function is taken by the constant function,so the scheme is locally conservative on every element.Using the postprocessing technique,Arbogast and Wheeler derive error estimates of 3/2 order.While many mapping integrals of test functions are introduced and they make the computation more complicated and difficult.

    The compressibility is an important factor in modern numerical simulation of energy and environmental sciences especial of chemical oil recovery to avoid numerical distortion[1–6].Douglas and Yuan discuss a series of work for two-phase compressible displacement problem[2,25],such as the method of characteristic finite element[26,27],characteristic finite difference[28],and fractional step difference[28,29].Then,we improve and develop the work of Arbogast and Wheeler greatly[24,30,31],and present a type of mixed finite element-characteristic mixed finite element method.From experimental tests,we find that this method can shorten computational work greatly and the method is applicable and effective[30,31].While we only obtain the convergence rate of first order and can not generalize this application to solve three-dimensional problems.

    Finite volume element method has the simplicity of finite differences and the high accuracy of finite element method,and has local conservation of mass[32,33],so it becomes an efficient numerical method for solving partial differential equations.In[21–23],mixed finite element can obtain both the pressure and Darcy velocity simultaneously and the accuracy is improved by one order.A mixed finite volume element method is discussed in[34,35]by combining the method of finite volume element and the method of mixed element.Its computational efficiency is testified experimentally in[36,37].Convergence analysis is mainly stated for elliptic problems in[38–40],and the general theoretical frame is established.Rui and Pan use this method to discuss numerical computation for hypotonic oil-gas flow problems in[41,42].For numerical simulation of chemical oil recovery,Ewing and Yuan have primary work for several numerical methods and give actual applications,such as upwind difference[43]and characteristic finite difference[44].While these methods do not have the conservative law of mass.Based on the above work,a type of mixed volume element-characteristic fractional step difference method is put forward to simulate three-dimensional compressible chemical oil recovery in this article.The pressure and Darcy velocity are computed simultaneously by a conservative mixed volume element method and the computational accuracy of Darcy velocity is improved one order.The concentration is treated by another conservative characteristic mixed finite volume element method,where the convection is approximated along the characteristics and the diffusion is discretized by the method of mixed volume element.The characteristics not only has high stability at sharp fronts and eliminates numerical dispersion,but also has small time truncation error.In actual computations,large time step can be used while computational efficiency is improved without accuracy loss.We adopt mixed finite volume element to treat the diffusion and obtain unknown concentration and adjoint vector simultaneously.Because piecewise defined constants are taken as test functions,so the scheme is locally conservative.Applying priori estimates theory and special techniques of differential equations,we obtain optimal order estimates in L2norm,superior to 3/2-order result of Arbogast and Wheeler without postprocessing[24].The saturations of different components,whose computational work is the largest,are treated by characteristic fractional step differences.The whole computation is changed into three one-dimensional problems computed by the algorithm of speedup,then the computational work is shortened greatly[2,45].In this article,numerical experiments are given for a three-dimensional system of elliptic-convection-diffusion equations,then these data show that this method is effective and support theoretical result.Moreover,this method gives an efficient tool to solve the well-known problem successfully[1–6,24,46].

    Common notations and norms of Sobolev space are adopted in this article.The regularity assumptions of(1.1)–(1.9)are stated as follows:

    Suppose that the coefficients of(1.1)–(1.9)satisfy the following positive definite conditions

    where a?,a?,φ?,φ?,D?,and D?are positive constants.

    In this article,assume that the problem of(1.1)–(1.9)is ?-periodic to discuss theoretical analysis[2,9–12],that is to say,all the functions are ?-periodic.This periodicity assumption is reasonable in physics,because mirror re flection is used according to(1.5).Furthermore,the boundary conditions can be omitted because they give less effect to the interior flow in common numerical simulation of oil reservoir[9–12].

    In the following discussion,the symbols K and ε denote a generic positive constant and a generic small positive number,respectively.They have different definitions at different places.

    2 Notations and Preparations

    Three different partitions are constructed to define the method of mixed volume elementcharacteristic fractional step differences.The large-step partition is nonuniform for the pressure and Darcy velocity.The mid-step nonuniform partition is defined for the concentration.The small-step uniform partition is defined for the concentrations of different components.The first two partitions are considered.

    For the simplicity of discussing three-dimensional problem,take ?={[0,1]}3with the boundary??.Define

    then partition ? by δx× δy× δz.For i=1,2,···,Nx;j=1,2,···,Ny;k=1,2,···,Nz,define the following notations,The partition is regular,if there exist two positive constants α1and α2such that

    Here, α1and α2are positive constants dependent on the partition of ?, δx× δy× δz.The simplified partition of Nx=4,Ny=3,and Nz=3 is illustrated in Figure 1.Define an approximation function space bywhere pd(?i)denotes a space consisting of polynomial functions of degree at most d constricted onThe function f may be discontinuous on[0,1]as l= ?1.The spacesandare defined similarly.Let

    For a grid function v(x,y,z),let vijk,vi+1/2,jk,vi,j+1/2,k,and vij,k+1/2denote its values at(xi,yj,zk),(xi+1/2,yj,zk),(xi,yj+1/2,zk),and(xi,yj,zk+1/2),respectively.

    Figure 1 Nonuniform partition

    Define inner products and norms by

    For a vector function w=(wx,wy,wz)T,let

    Introduce difference operators and other notations as follows:

    Using the above notations,we give four preparations for convergence analysis.

    Lemma 2.1For v∈Shand w∈Vh,we have

    Lemma 2.2For w∈Vh,we have

    ProofIt is adequate to prove that‖?wx‖ˉm≤‖wx‖x,‖?wy‖ˉm≤‖wy‖y,and‖?wz‖ˉm≤‖wz‖z.From the fact that

    Lemma 2.3For q∈Sh,we have

    where M is a constant independent of q and h.

    Lemma 2.4For w∈Vh,there hold

    ProofIt is adequate to proveand the other terms are proved similarly.Note that

    By Cauchy inequality,we have

    Multiplying both sides by hx,i+1/2hyjhzk,and making the summation,we have

    then we complete the proof.

    The mid-step partition is defined by refining the large-step partition of ?={[0,1]}3uniformly,where the step is assigned by 1/2 or 1/4 times the large step,and hc=hp/l for l=2 or l=4.Other notations are defined above.

    The small-step partition of ?={[0,1]}3is defined uniformly,

    where M1,M2,and M3are positive constants.Three steps along different directions and nodes are denoted byD(Xi?1,jk)],and define Di,j+1/2,k,Di,j?1/2,k,Dij,k+1/2,Dij,k?1/2similarly.Define

    3 The Procedures of Mixed Volume Element-Characteristic Mixed Volume Element Method

    3.1 The procedures

    To apply mixed volume element method,we rewrite the flow equation(1.7)in the following standard form

    For the concentration(1.8),noting that the flow transports along the characteristics,so we use the method of characteristics to approximate the first-order hyperbolic term and construct a computational algorithm of strong stability and of high order accuracy with large time steps.To argue the diffusion term using mixed volume element method,we reexpress(1.8)as follows:

    The characteristic derivative of(3.2a)is approximated by the backward difference quotient,

    The procedures of mixed volume element of(3.1)are defined by

    Because the saturations of(1.9)are computed with high order of accuracy,so the computational work is quite large.The method of characteristics is applied to treat hyperbolic term,and it has some advantages of stability and accuracy.LetWe state(1.9)as follows:

    The characteristic derivative in(3.6)is treated by using the backward difference quotient operator

    The procedures of characteristic fractional step difference of(3.6)are stated as follows:

    Initial approximations are listed as follows:

    Numerical solutions are computed by the method of mixed volume element-characteristic mixed volume element below.From(1.6)and elliptic projections of mixed volume element,we getandthen defineandUsing scheme(3.4)and the method of conjugate gradient obtains{C1,G1}.Similarly,we obtain{U1,P1}from(3.5).Next,we use the parallel scheme(3.8a)–(3.8c)and the algorithm of speedup to get the values of transient layersthen to get the values atThe computation at the first time level is completed.After the same computation,we haveone by one from the procedures(3.4),(3.5),and(3.8a)–(3.8c).Finally,we can obtain all the numerical solutions after repeated computations,and see that the solutions exist and are unique from the condition(C).

    3.2 Local conservation of mass

    Suppose that the problem(3.1)–(3.2)has no source or sink,that is,q ≡ 0,and suppose that the boundary condition is impermeable.Then,for simplicity,suppose that the first two partitions are the same(that is l=1)on each element Jc∈ ?,Jc= ?ijk=[xi?1/2,xi+1/2]×[yj?1/2,yj+1/2]× [zk?1/2,zk+1/2].The local conservation of mass is interpreted as follows for the concentration equation

    where Jcis an element of mid-step partition of ?,and γJcdenotes the outer normal vector to the boundary?Jc.Discrete formulation of local conservation is stated in the following theorem for(3.4a).

    Theorem 3.1If q≡0,then on each element Jc∈?,it holds that for the scheme(3.4a),

    ProofFor v∈Sh,letthen we rewrite(3.4a)as follows

    Using the notations of Section 2,

    Substituting(3.13)into(3.12),then we complete the proof.

    Then,the conservation of mass on the whole domain is derived as follows.

    Theorem 3.2Suppose that q≡0 and the boundary condition is impermeable.Then,the whole conservation of mass of(3.4a)holds,

    ProofSumming(3.11)on all the elements,we have

    3.3 Auxiliary elliptic projections

    In this subsection,we define the elliptic projections to determine initial approximations(3.9)and to show convergence analysis in the next section.Define{?C,?G}∈Sh×Vhby the following equations:

    where g=?D?c.

    Lemma 3.3If the coefficients and exact solutions of(1.1)-(1.6)satisfy(C)and(R),then there exist two positive constantsindependent of h,Δt such that

    4 Convergence Analysis

    In this section,we give convergence argument for a model problem.In(1.7)and(1.8),some coefficients are simplified as follows:ρi≈ ρr,αi≈ αr,ρ(c,p)≈ ρ0,μ(c)≈ μ0,a(c,p)=which is reasonable for ”slight-compressibility”low seepage problem[8,47].Then,

    where ρ0,α0,μ0are positive constants.Therefore,the procedures of(1.7)and(1.8)are simplified as follows:

    Error functions π and σ are considered first.Subtracting(3.17a)(t=tn+1)and(3.17b)(t=tn+1)from(4.3a)and(4.3b),respectively

    Take v= ?tπnin(4.5a).Make the difference of(4.5b)at tn+1and at tn,divide the difference by Δt,and take w= σn+1.Summing the two resulting formulations,and noting that for A≥0,

    then we have

    From(C)and Lemma 3.3,we have

    Using(4.7)to consider the right-hand terms of(4.6),we obtain

    Multiplying the both sides of(4.8)by Δt,summing them on t(0≤ n ≤ L),and noting that σ0=0,we have

    Error function of the concentration is discussed.Subtracting(3.16a),(3.16b)at t=tn+1respectively from(4.4a),(4.4b),and taking v= ξn+1,w= αn+1,then

    Consider the sum of(4.10a)and(4.10b),

    Using(4.2)t=tn+1,we have

    The left-hand terms of(4.12)are estimated by usingand the righthand terms are denoted by T1,T2,···,T8,

    T1is considered first.Noting thatwe have

    Multiplying the both sides of(4.14)by ψn+1and estimating it in m-norm,we obtain

    Therefore,

    Applying Lemma 3.3,we estimate T2 and T3by

    T4,T5,and T6are estimated from the following statement.Let f be defined on ?,denoting three functions,andand let Z denote the normal vector of Un+1?un+1.Then,

    then we get three arguments from(4.17):

    From Lemma 3.3 and(4.9),

    As g?c(X)is a mean value of partial derivative of,so it can be estimated by.From(4.18a),

    and give a constraint condition

    The function gfis bounded by

    Define a transformation

    It follows from(4.21)and(4.22)that

    Then,gfis bounded by

    T5is argued using(4.19),Lemma 3.3,and Sobolev embedding theorem[48],

    It follows obviously from(4.19)thatand it shows thatin(4.8).Similar to[11],we have

    By negative norm estimates,T7and T8are bounded by

    Applying(4.8),(4.16),(4.18),(4.26),and(4.27)for the both sides of(4.12),we have

    Multiplying the both sides of(4.28)by 2Δt,summing them on t(0≤ n≤ L),noting that ξ0=0,and using the Gronwall’lemma,we get

    It remains to testify the induction hypothesis(4.21).It is true for n=0 obviously from ξ0=0.Assume that(4.21)holds for 1≤n≤L.From(4.29)and(4.22),we have

    Then,the induction hypothesis is proved for n=L.

    Error functions of component saturations are considered.LetFor a model problem,(1.9)turns into

    Suppose that c(X,t)is known and regular.Cancelling the values of transition layersfrom(3.8a),(3.8b),and(3.8c),we have the following equivalent formulation

    Making the difference of(4.31)(t=tn+1)and(4.32)(t=tn+1),

    Considering(4.9),(3.7),and(4.33)together,we get

    Multiplying the both sides of(4.34)by,summing by parts and giving an inner product form,we obtain

    The first term on the right-hand side of(4.36)is considered.Considering the fact that

    (4.22),and(4.9)together,we have

    where ?hdenotes a small-step partition of ?,

    The second term on the right-hand side of(4.36)is estimated by

    The fifth term on the right-hand side of(4.36)is discussed.Note that

    Because of the regularity of φc,the last term of(4.38b)is treated by

    The other two parts of the fifth term are discussed similarly.Then,

    For the last term on the right-hand side of(4.36),we cancelsimilarly by using Cauchy inequality,and get

    Considering(4.37),(4.39),(4.40),and(4.36),we obtain

    Summing the resulting estimate(4.41)on α(1≤α≤nc),then summing them on t(0≤n≤L),and noting that=0,α=1,2,···,nc,we have

    Collecting(4.9),(4.29),(4.43),and Lemma 3.3,we conclude the following statement.

    Theorem 4.1Suppose that exact solutions of(4.1)–(4.2)are regular(R)and coefficients are positive definite(C).Adopt the procedures(4.3)and(4.4)to get numerical solutions,then use the schemes(3.8a),(3.8b)and(3.8c)to solve equation(4.31).The constraint condition(4.22)holds.Then,

    5 Numerical Examples

    We assume that Darcy velocity u is given,and adopt the characteristics-mixed volume element scheme to approximate a convection-diffusion equation first,

    where ? =(0,1)× (0,1)× (0,1)and ν is the outer normal vector to ??.Darcy velocity u=(u1,u2,u3)Tis defined as follows:

    f and c0are defined suitably such that exact solution is c=e?εtcos(πx1)cos(πx2)cos(πx3)/(3π).

    The concentration and its adjoint function of(5.1)are approximated by the characteristicsmixed volume element.Take Δt=0.001,t=1.0,and give numerical results for different cases ε=1,10?3,10?8.Error data ofc?Ch,g?Ghare shown in Table 1 and Table 2,where·hdenotes discrete l2norm.Errors become small as step decreases,and the convergence rate is about second order no less than first order.At x3=0.28152,the approximations of c?C and g ? G for ε=10?3are shown in Figures 2–5.

    Table 1 Error data ofc?Chfor Example 1

    Table 1 Error data ofc?Chfor Example 1

    ?

    Table 2 Error data ofg?Ghfor Example 1

    Table 2 Error data ofg?Ghfor Example 1

    ?

    Figure 2 Section graph of c at t=1,h=1/16

    Figure 3 Section graph of C at t=1,h=1/16

    Figure 4 Arrow graph of g at t=1,h=1/16

    Figure 5 Arrow graph of G at t=1,h=1/16

    From Table 1,Table 2,and Figures 2–5,we can conclude that this scheme is stable and efficient to simulate the functions c and g,and it is effective for small ε.

    We use the scheme of mixed volume element-characteristic mixed finite element to solve another elliptic-convection-diffusion problem,

    ? =(0,1)×(0,1)×(0,1)and ν is the outer normal vector to the boundary ??.F,f,and c0are defined properly such that exact solutions are

    where x4=x1,x5=x2.We use the scheme of mixed volume element to approximate the first equation of(5.2),and use the characteristics-mixed finite element to solve the second equation.Numerical data are shown for ε=10?3in Table 3 and Figures 6–13.

    Table 3 Error data for Example 2

    Figure 6 Section graph of p at t=1,h=1/16

    Figure 7 Section graph of P at t=1,h=1/16

    Figure 8 Arrow graph of u at t=1,h=1/16

    Figure 9 Arrow graph of U at t=1,h=1/16

    Figure 10 Section graph of c at t=1,h=1/16

    Figure 11 Section graph of C at t=1,h=1/16

    Figure 12 Arrow graph of g at t=1,h=1/16

    Figure 13 Arrow graph of G at t=1,h=1/16

    From Table 3 and Figures 6–13,we find that this numerical method is effective in solving convection-diffusion problems.

    6 Conclusions and Discussions

    Numerical simulation of three-dimensional chemical oil recovery in porous media is discussed in this article.A composite method of mixed finite volume element-characteristic mixed volume element is presented and its convergence analysis is shown.In Section 1,mathematical model is stated,and physical background and some related international study are introduced.In Section 2,some notations and preparations are introduced,and three different partitions(large-step,mid-step and small-step)are defined for approximating three unknown functions.In Section 3,the authors put forward the method of mixed volume element-characteristic mixed volume element.The flow equation is treated by a conservative mixed volume element scheme and the accuracy of Darcy velocity is improved by one order.The method of characteristic mixed volume element is applied to solve the concentration,where the convection term is treated by the method of characteristics and the diffusion term is approximated by the method of mixed volume element.The composite scheme improves computational stability and accuracy greatly and it has the nature of conservation most important in numerical simulation of underground seepage mechanics.The method of characteristic fractional step difference is used to solve the saturation equations of different components whose computational work is the largest.By dividing the problem into three one-dimensional subproblems and using the algorithm of speedup,the computational work is shorten greatly and the computational efficiency is improved.In Section 4,we show convergence analysis using the priori estimates of differential equations and special techniques to derive second order error estimates in l2norm.It is most important to improve the famous convergence result of 3/2-order of Arbogast and Wheeler.In Section 5,two numerical examples are illustrated to support theoretical analysis and numerical data show that the method is feasible and efficient in actual applications especially in waste disposal problem of environmental science.

    In this article,several interesting conclusions are stated as follows:

    (I)The method has physical nature of conservation,and it is most important in numerical simulation of underground seepage mechanics especially in chemical oil recovery.

    (II)The method is a composite combination of mixed volume element,the characteristics,and fractional step difference,so it has strong stability and high accuracy.Therefore,it is more useful especially in simulating large-scaled engineering problems on three-dimensional complicated region.

    (III) The method increases convergence rate of 3/2-order of Arbogast and Wheeler to second order,and it gives a powerful tool to solve the problem better[1–6,24,46].

    AcknowledgementsThe authors express their deep appreciation to Prof.J.Douglas Jr,Prof.R.E.Ewing,and Prof.L.S.Jiang for their many helpful suggestions in the series research on numerical simulation of oil reservoir.

    [1]Ewing R E,Yuan Y R,Li G.Finite element for chemical- flooding simulation.Proceeding of the 7th International conference finite element method in flow problems.The University of Alabama in Huntsville,Huntsville,Alabama:UAHDRESS,1989:1264–1271

    [2]Yuan Y R.Theory and application of numerical simulation of energy sources.Beijing:Science Press,2013:257–304

    [3]Yuan Y R,Yang D P,Qi L Q,et al.Research on algorithms of applied software of the polymer.Qinlin Gang,Proceedings on chemical flooding.Beijing:Petroleum Industry Press,1998:246–253

    [4]Institute of Mathematics,Shandong University,Exploration Institute of Daqing Petroleum Administration Bureau.Research and application of the polymer flooding software(summary of”Eighth-Five” national key science and technology program,Grant No.85-203-01-08),1995.10

    [5]Institute of Mathematics,Shandong University,Exploration and development of Daqing Petroleum Corporation.Modification of solving mathematical models of the polymer and improvement of reservoir description(DQYT-1201002-2006-JS-9765).2006.10

    [6]Institute of Mathematics,Shandong University,Shengli Oilfield Branch,China Petroleum&Chemical.Research on key technology of high temperature and high salinity chemical agent displacement(2008ZX05011-004),83-106.2011.3

    [7]Bird R B,Lightfoot W E,Stewart E N.Transport Phenomenon.New York:John Wiley and Sons,1960

    [8]Ewing R E.The Mathematics of Reservior Simulation.Philadelphia:SIAM,1983

    [9]Douglas J Jr.Finite difference method for two-phase in compressible flwo in porous media.SIAM J Numer Anal,1983,20(4):681–696

    [10]Russell T F.Time stepping along characteristics with incomplete interaction for a Galerkin approximation of miscible displacement in porous media.SLAM J Numer Anal,1985,22(5):970–1013

    [11]Ewing R E,Russell T F,Wheeler M F.Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics.Comput Methods Appl Mech Engrg,1984,47(1/2):73–92

    [12]Douglas Jr J,Yuan Y R.Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedure.Numerical Simulation in Oil Rewvery.New York:Springer-Berlag,1986:119–132

    [13]Yuan Y R.Characteristic finite difference methods for positive semidefinite problem of two phase miscible flow in porous media.J Systems Sci Math Sci,1999,12(4):299–306

    [14]Yuan Y R.Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions.Chin Sci Bull,1996,41(22):2027–2032

    [15]Todd M R,O’Dell P M,Hirasaki G J.Methods for increased accuracy in numerical reservoir simulators.Soc Petrol Engry J,1972,12(6):521–530

    [16]Bell J B,Dawson C N,Shubin G R.An unsplit high-order Godunov scheme for scalar conservation laws in two dimensions.J Comput Phys,1988,74(1):1–24

    [17]Johnson C.Streamline diffusion methods for problems in fluid mechanics//Finite Element in Fluids VI.New York:Wiley,1986

    [18]Yang D P.Analysis of least-squares mixed finite element methods for nonlinear nonstationary convectiondiffusion problems.Math Comp,2000,69(231):929–963

    [19]Dawson C N,Russell T F,Wheeler M F.Some improved error estimates for the modified method of characteristics.SIAM J Numer Anal,1989,26(6):1487–1512

    [20]Cella M A,Russell T F,Herrera I,Ewing R E.An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equations.Adv Water Resour,1990,13(4):187–206

    [21]Raviart P A,Thomas J M.A mixed finite element method for second order elliptic problems//Mathematical Aspects of the Finite Element Method.Lecture Notes in Mathematics,606.Berlin:Springer-Verlag,1977

    [22]Douglas J Jr,Ewing R E,Wheeler M F.Approximation of the pressure by a mixed method in the simulation of miscible displacement.RAIRO Anal Numer,1983,17(1):17–33

    [23]Douglas J Jr,Ewing R E,Wheeler M F.A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media.RAIRO Anal Numer,1983,17(3):249–265

    [24]Arbogast T,Wheeler M F.A charcteristics-mixed finite element methods for advection-dominated transport problems.SIAMJ Numer Anal,1995,32(2):404–424

    [25]Douglas J Jr,Roberts J E.Numerical methods for a model for compressible miscible displacement in porous media.Math Comp,1983,41(164):441–459

    [26]Yuan Y R.The characteristic finite element alternating direction method with moving meshes for nonlinear convection-dominated diffusion problems.Numer Meth Part D E,2006,22(3):661–679

    [27]Yuan Y R.The modified method of characteristics with finite element operator-splitting procedures for compressible multi-component displacement problem.J Syst Sci Complexj,2003,16(1):30–45

    [28]Yuan Y R.The characteristic finite difference fractional steps method for compressible two-phase displacement problem(in Chinese).Sci Sin Math,1999,42(1):48–57

    [29]Yuan Y R.The upwind finite difference fractional steps methods for two-phase compressible flow in porous media.Numer Meth Part D E,2003,19(1):67–88

    [30]Sun T J,Yuan Y R.An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method.J Comput Appl Math,2009,228(1):391–411

    [31]Sun T J,Yuan Y R.Mixed finite method and characteristics-mixed finite element method for a slightly compressible miscible displacement problem in porous media.Math Comput Simulat,2015,107:24–45

    [32]Cai Z.On the finite volume element method.Numer Math,1991,58(1):713–735

    [33]Li R H,Chen Z Y.Generalized difference of differential equations.Changchun:Jilin University Press,1994

    [34]Russell T F.Rigorous block-centered discritization on inregular grids:Improved simulation of complex reservoir systems.Project Report.Tulsa:Research Comporation,1995

    [35]Weiser A,Wheeler M F.On convergence of block-centered finite difference for elliptic problems.SIAM J Numer Anal,1988,25(2):351–375

    [36]Jones J E.A mixed volume method for accurate computation of fluid velocities in porous media[D/OL].Denver,Co:University of Colorado,1995

    [37]Cai Z,Jones J E,Mccormilk S F,Russell T F.Control-volume mixed finite element methods.Comput Geosci,1997,1(3):289–315

    [38]Chou S H,Kawk D Y,Vassileviki P.Mixed volume methods on rectangular grids for elliptic problem.SIAM J Numer Anal,2000,37(3):758–771

    [39]Chou S H,Kawk D Y,Vassileviki P.Mixed volume methods for elliptic problems on trianglar grids.SIAM J Numer Anal,1998,35(5):1850–1861

    [40]Chou S H,Vassileviki P.A general mixed covolume frame work for constructing conservative schemes for elliptic problems.Math Comp,1999,68(227):991–1011

    [41]Rui H X,Pan H.A block-centered finite difference method for the Darcy-Forchheimer Model.SIAM J Numer Anal,2012,50(5):2612–2631

    [42]Pan H,Rui H X.Mixed element method for two-dimensional Darcy-Forchheimer model.J Sci Comput,2012,52(3):563–587

    [43]Yuan Y R,Cheng A J,Yang D P,Li C F.Convergence analysis of an implicit upwind difference fractional step method of three-dimensional enhanced oil recovery percolation coupled system.Sci China Math,2014,44(10):1035–1058

    [44]Yuan Y R,Cheng A J,Yang D P,Li C F.Theory and application of fractional steps characteristic- finite difference method in numerical simulation of second order enhanced oil production.Acta Mathematica Scientia,2015,35B(4):1547–1565

    [45]Yuan Y R.Fractional step finite difference method for multi-dimensional mathematical-physical problems.Beijing:Science Press,2015.6

    [46]Shen P P,Liu M X,Tang L.Mathematical model of petroleum exploration and development.Beijing:Science Press,2002

    [47]Ewing R E,Wheeler M F.Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratis case.Proc Special Year in Numerical Anal.Lecture Notes#20.Univ Maryland,College Park,1981:151–174

    [48]Nitsche J.Linear splint-funktionen and die methoden von Ritz for elliptishce randwert probleme.Arch for Rational Mech and Anal,1968,36:348–355

    [49]Douglas J Jr.Simulation of miscible displacement in porous media by a modified method of characteristic procedure//Dundee.Numerical Analysis,1981.Lecture Notes in Mathematics,912.Berlin:Springer-Verlag,1982

    猜你喜歡
    楊青
    商業(yè)綜合體中的兒童娛樂空間設(shè)計研究
    他從武漢來
    他從武漢來
    故事會(2020年8期)2020-04-21 07:44:12
    姐妹
    長城(2019年3期)2019-08-08 04:14:05
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    The use of emotional factors in English study
    Quantum Measurement of Two-Qubit System in Damping Noise Environment?
    我行我秀
    Un secret doux
    甜甜的秘密
    欧美潮喷喷水| 变态另类丝袜制服| 欧美激情在线99| 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添av毛片 | 国产精品日韩av在线免费观看| 一边摸一边抽搐一进一小说| 99久久成人亚洲精品观看| 91在线观看av| 此物有八面人人有两片| or卡值多少钱| 欧美3d第一页| 亚洲va日本ⅴa欧美va伊人久久| 22中文网久久字幕| 欧美性猛交黑人性爽| 久久九九热精品免费| 久久草成人影院| 搡老熟女国产l中国老女人| 午夜福利高清视频| 欧美日韩中文字幕国产精品一区二区三区| 精品人妻熟女av久视频| 亚洲中文日韩欧美视频| 国产精品久久久久久亚洲av鲁大| 亚洲狠狠婷婷综合久久图片| 国产成人av教育| 啦啦啦观看免费观看视频高清| 99视频精品全部免费 在线| 精品国产三级普通话版| 岛国在线免费视频观看| 日本三级黄在线观看| 欧美精品啪啪一区二区三区| 成人三级黄色视频| 最近视频中文字幕2019在线8| 能在线免费观看的黄片| 国产av麻豆久久久久久久| av在线蜜桃| 亚洲自偷自拍三级| 亚洲成人久久爱视频| 免费观看精品视频网站| 日韩一本色道免费dvd| 亚洲自偷自拍三级| 久久午夜亚洲精品久久| 免费观看精品视频网站| 欧美又色又爽又黄视频| 欧美日韩乱码在线| 韩国av在线不卡| 精品久久久久久久人妻蜜臀av| 国产高潮美女av| 国产精品人妻久久久影院| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 悠悠久久av| 亚洲熟妇中文字幕五十中出| 午夜精品久久久久久毛片777| 亚洲在线自拍视频| 成人毛片a级毛片在线播放| 欧美精品国产亚洲| 简卡轻食公司| 亚洲无线观看免费| 午夜福利欧美成人| 久久久久国内视频| 成人欧美大片| 精品人妻1区二区| 乱人视频在线观看| 最新在线观看一区二区三区| 亚洲欧美日韩东京热| 精品久久久久久,| 亚洲av一区综合| 国产精品久久久久久久久免| av天堂中文字幕网| 丰满人妻一区二区三区视频av| 99riav亚洲国产免费| 尤物成人国产欧美一区二区三区| 身体一侧抽搐| 久久人人爽人人爽人人片va| 亚洲欧美激情综合另类| 欧美不卡视频在线免费观看| 91麻豆精品激情在线观看国产| 日韩高清综合在线| 久久国产精品人妻蜜桃| 中文字幕av成人在线电影| 久久久久久国产a免费观看| 午夜激情欧美在线| 看免费成人av毛片| 国产高清激情床上av| 中国美女看黄片| 中文字幕人妻熟人妻熟丝袜美| 在线观看免费视频日本深夜| 国产一区二区激情短视频| 51国产日韩欧美| 国产亚洲精品av在线| 午夜影院日韩av| 午夜亚洲福利在线播放| 亚洲avbb在线观看| 1000部很黄的大片| 少妇裸体淫交视频免费看高清| 成年女人毛片免费观看观看9| 亚洲最大成人中文| 国产精品,欧美在线| 久久九九热精品免费| 精品国内亚洲2022精品成人| 午夜影院日韩av| 欧美激情在线99| 国产精品国产高清国产av| 午夜免费成人在线视频| 嫩草影院入口| 国产精品电影一区二区三区| 午夜影院日韩av| 天美传媒精品一区二区| 免费看av在线观看网站| 欧美最新免费一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲美女视频黄频| 麻豆国产av国片精品| 亚洲欧美日韩高清在线视频| 12—13女人毛片做爰片一| 欧美一区二区国产精品久久精品| 蜜桃亚洲精品一区二区三区| 精品一区二区三区视频在线观看免费| 免费高清视频大片| 91麻豆av在线| 亚洲精品一卡2卡三卡4卡5卡| 色吧在线观看| 亚洲国产色片| 日韩国内少妇激情av| 九九久久精品国产亚洲av麻豆| www.www免费av| 联通29元200g的流量卡| 91av网一区二区| 最近最新免费中文字幕在线| a级一级毛片免费在线观看| 亚洲精品在线观看二区| 日韩欧美精品免费久久| 人人妻人人看人人澡| 亚洲精品日韩av片在线观看| 禁无遮挡网站| 国产av麻豆久久久久久久| 村上凉子中文字幕在线| 久久亚洲真实| 国产在线男女| 男女下面进入的视频免费午夜| 国产成人影院久久av| 精品国内亚洲2022精品成人| 最新中文字幕久久久久| 国产真实乱freesex| 韩国av一区二区三区四区| 一区福利在线观看| 在线免费观看不下载黄p国产 | 欧美xxxx黑人xx丫x性爽| 久久久精品大字幕| 18禁黄网站禁片免费观看直播| 日韩欧美精品免费久久| 国产伦一二天堂av在线观看| 他把我摸到了高潮在线观看| 国产精品美女特级片免费视频播放器| 国产精品国产高清国产av| 97超视频在线观看视频| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 亚洲国产欧美人成| 国产久久久一区二区三区| 国产精品亚洲一级av第二区| 久久精品夜夜夜夜夜久久蜜豆| 日日干狠狠操夜夜爽| 少妇人妻精品综合一区二区 | 69人妻影院| 久久久久久久久久久丰满 | 精品久久久久久久末码| 大又大粗又爽又黄少妇毛片口| 午夜免费成人在线视频| 国产亚洲精品久久久com| 少妇的逼水好多| 亚洲精品日韩av片在线观看| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 国产蜜桃级精品一区二区三区| 国产欧美日韩一区二区精品| 欧美不卡视频在线免费观看| 久久久精品欧美日韩精品| 99热这里只有精品一区| 久久欧美精品欧美久久欧美| 日韩高清综合在线| 亚洲欧美日韩东京热| 国产成年人精品一区二区| 两人在一起打扑克的视频| 亚洲av二区三区四区| АⅤ资源中文在线天堂| 老司机午夜福利在线观看视频| 国产亚洲精品久久久久久毛片| 国产精品日韩av在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 在线观看av片永久免费下载| 亚洲精品久久国产高清桃花| 国产精品乱码一区二三区的特点| 色哟哟·www| 女的被弄到高潮叫床怎么办 | aaaaa片日本免费| 看十八女毛片水多多多| 国国产精品蜜臀av免费| 亚洲男人的天堂狠狠| av在线蜜桃| 日日干狠狠操夜夜爽| 日韩大尺度精品在线看网址| 精品国产三级普通话版| 成人av在线播放网站| 日日摸夜夜添夜夜添av毛片 | 国产亚洲精品综合一区在线观看| 在线观看一区二区三区| 桃色一区二区三区在线观看| 亚洲成人久久性| 嫩草影院新地址| 国内精品久久久久精免费| 精品人妻视频免费看| 春色校园在线视频观看| 不卡视频在线观看欧美| АⅤ资源中文在线天堂| 天堂影院成人在线观看| 亚洲精品成人久久久久久| 99在线视频只有这里精品首页| 免费看光身美女| 久久精品影院6| 老司机福利观看| 欧美日韩黄片免| 日本免费a在线| 精品一区二区三区av网在线观看| 久久亚洲精品不卡| 免费看日本二区| 精品一区二区三区人妻视频| 色精品久久人妻99蜜桃| 不卡视频在线观看欧美| 亚洲狠狠婷婷综合久久图片| 99精品在免费线老司机午夜| 久久精品国产亚洲av香蕉五月| 熟女人妻精品中文字幕| 全区人妻精品视频| 欧美zozozo另类| 成人精品一区二区免费| 长腿黑丝高跟| 国产大屁股一区二区在线视频| 日本五十路高清| 男人的好看免费观看在线视频| 欧美日韩国产亚洲二区| 亚洲av免费在线观看| 亚洲人成伊人成综合网2020| 在线天堂最新版资源| 在线观看美女被高潮喷水网站| 精品一区二区三区av网在线观看| 3wmmmm亚洲av在线观看| 干丝袜人妻中文字幕| 动漫黄色视频在线观看| 在线观看午夜福利视频| 国产人妻一区二区三区在| 欧美日本视频| 少妇的逼好多水| 蜜桃久久精品国产亚洲av| 亚洲av中文av极速乱 | 国产精品久久久久久亚洲av鲁大| 男插女下体视频免费在线播放| 搞女人的毛片| 国产精品自产拍在线观看55亚洲| 99精品在免费线老司机午夜| 我的女老师完整版在线观看| 亚洲美女搞黄在线观看 | 我要搜黄色片| 午夜日韩欧美国产| 亚洲av成人av| 成人美女网站在线观看视频| 我的女老师完整版在线观看| 久久久久久久久久久丰满 | 日韩 亚洲 欧美在线| 国产精品1区2区在线观看.| 亚洲性夜色夜夜综合| 国产成人a区在线观看| 久久精品国产自在天天线| 99热6这里只有精品| 国产高清不卡午夜福利| 免费人成视频x8x8入口观看| 欧美日韩国产亚洲二区| 欧美性猛交黑人性爽| 日本一本二区三区精品| www.色视频.com| 美女高潮的动态| 国产爱豆传媒在线观看| 在线免费十八禁| 国产精品亚洲一级av第二区| 久久午夜福利片| 老司机深夜福利视频在线观看| 床上黄色一级片| 国产在视频线在精品| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 亚洲第一区二区三区不卡| 免费人成视频x8x8入口观看| 黄色一级大片看看| 日本爱情动作片www.在线观看 | 亚洲精品一区av在线观看| 久久久国产成人免费| 99视频精品全部免费 在线| 欧美zozozo另类| 国产伦在线观看视频一区| 国产成人福利小说| 精品国内亚洲2022精品成人| 亚洲av免费在线观看| 亚洲国产精品久久男人天堂| 国产不卡一卡二| 国产69精品久久久久777片| 欧美一区二区精品小视频在线| 性色avwww在线观看| 国产精品一区二区三区四区免费观看 | 偷拍熟女少妇极品色| 成人欧美大片| 床上黄色一级片| 99热这里只有是精品50| 美女黄网站色视频| 国产色爽女视频免费观看| 久久亚洲精品不卡| 久久精品国产亚洲av天美| www日本黄色视频网| 亚洲一区高清亚洲精品| 自拍偷自拍亚洲精品老妇| 国产精品美女特级片免费视频播放器| 成人毛片a级毛片在线播放| 国产亚洲精品久久久com| 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产亚洲二区| 午夜亚洲福利在线播放| 亚洲va日本ⅴa欧美va伊人久久| av在线天堂中文字幕| 精品久久久久久久人妻蜜臀av| 久久精品影院6| 亚洲在线自拍视频| 免费高清视频大片| 精品久久久久久久久久免费视频| 国产高清视频在线观看网站| 成人美女网站在线观看视频| 久久精品影院6| 成人美女网站在线观看视频| 长腿黑丝高跟| a级一级毛片免费在线观看| 99在线人妻在线中文字幕| 九色国产91popny在线| 黄色女人牲交| 最近最新中文字幕大全电影3| 99久久精品热视频| 黄色丝袜av网址大全| 九九久久精品国产亚洲av麻豆| 99热这里只有精品一区| 日韩欧美一区二区三区在线观看| 国产又黄又爽又无遮挡在线| 深夜精品福利| 国产精品电影一区二区三区| 欧美性猛交黑人性爽| 免费一级毛片在线播放高清视频| 国产精品三级大全| 人人妻人人看人人澡| a级毛片免费高清观看在线播放| 免费在线观看日本一区| 久久精品综合一区二区三区| netflix在线观看网站| 九九热线精品视视频播放| 可以在线观看毛片的网站| 床上黄色一级片| 免费人成在线观看视频色| 国产国拍精品亚洲av在线观看| 啦啦啦观看免费观看视频高清| 亚洲熟妇中文字幕五十中出| 国产精品野战在线观看| 中文字幕熟女人妻在线| 国产免费男女视频| 少妇猛男粗大的猛烈进出视频 | 熟妇人妻久久中文字幕3abv| 69人妻影院| 看免费成人av毛片| 久久天躁狠狠躁夜夜2o2o| 一个人看的www免费观看视频| 夜夜爽天天搞| 亚洲人成网站在线播放欧美日韩| 午夜免费激情av| 在线天堂最新版资源| 禁无遮挡网站| 22中文网久久字幕| 久久99热6这里只有精品| 人人妻人人澡欧美一区二区| 亚洲欧美精品综合久久99| 91午夜精品亚洲一区二区三区 | 亚洲av成人精品一区久久| 欧美成人性av电影在线观看| 中文在线观看免费www的网站| 男女啪啪激烈高潮av片| 欧美xxxx黑人xx丫x性爽| 国产伦在线观看视频一区| 国产精品,欧美在线| 亚洲男人的天堂狠狠| 亚洲成人中文字幕在线播放| 亚洲人与动物交配视频| 国产高潮美女av| 男人和女人高潮做爰伦理| 亚洲国产精品合色在线| 极品教师在线免费播放| 看片在线看免费视频| 国产亚洲91精品色在线| 国产精品永久免费网站| 午夜福利欧美成人| 免费看日本二区| 久久精品91蜜桃| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添小说| 搡女人真爽免费视频火全软件 | 亚洲精品色激情综合| 51国产日韩欧美| 国产毛片a区久久久久| 亚洲国产欧美人成| 国产aⅴ精品一区二区三区波| 村上凉子中文字幕在线| 99精品久久久久人妻精品| 在线a可以看的网站| 黄色视频,在线免费观看| 黄色欧美视频在线观看| 精品国产三级普通话版| xxxwww97欧美| 人妻夜夜爽99麻豆av| 精品久久久久久久末码| 搞女人的毛片| 黄色一级大片看看| 亚洲国产欧美人成| 最近最新中文字幕大全电影3| 婷婷色综合大香蕉| 在线看三级毛片| 动漫黄色视频在线观看| 亚洲国产精品成人综合色| 在线播放无遮挡| 精品久久久久久久久av| 久久精品国产亚洲av天美| 搡老岳熟女国产| 内地一区二区视频在线| 亚洲国产欧洲综合997久久,| 国产亚洲精品av在线| 欧美成人性av电影在线观看| 国产亚洲精品久久久久久毛片| 1024手机看黄色片| 国产三级在线视频| 欧美高清性xxxxhd video| 亚洲一级一片aⅴ在线观看| 国产一区二区亚洲精品在线观看| 韩国av一区二区三区四区| 日本爱情动作片www.在线观看 | 少妇人妻一区二区三区视频| 欧美高清性xxxxhd video| 国产精品国产三级国产av玫瑰| 欧美潮喷喷水| 偷拍熟女少妇极品色| 亚洲色图av天堂| 禁无遮挡网站| 午夜福利在线在线| 国产精品久久电影中文字幕| 国产精品国产三级国产av玫瑰| 99久久精品一区二区三区| 我要搜黄色片| 99视频精品全部免费 在线| 别揉我奶头~嗯~啊~动态视频| 国产男靠女视频免费网站| 色av中文字幕| 88av欧美| 国产午夜精品论理片| 毛片一级片免费看久久久久 | 一区二区三区免费毛片| 欧美日韩黄片免| aaaaa片日本免费| 男人舔女人下体高潮全视频| 亚洲人成网站高清观看| 极品教师在线免费播放| 国产高清不卡午夜福利| bbb黄色大片| 男女啪啪激烈高潮av片| 久99久视频精品免费| 两个人的视频大全免费| 久久天躁狠狠躁夜夜2o2o| 欧美日本视频| 亚洲av日韩精品久久久久久密| 天堂网av新在线| 黄色女人牲交| 国产中年淑女户外野战色| 久久精品91蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 少妇丰满av| 精品无人区乱码1区二区| 亚洲成人久久性| 嫁个100分男人电影在线观看| 国产视频一区二区在线看| 日本 欧美在线| 人妻制服诱惑在线中文字幕| 亚洲狠狠婷婷综合久久图片| 日日夜夜操网爽| 色吧在线观看| 色尼玛亚洲综合影院| 少妇被粗大猛烈的视频| 蜜桃亚洲精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 在线天堂最新版资源| 俺也久久电影网| 成人特级黄色片久久久久久久| a在线观看视频网站| 国产熟女欧美一区二区| 嫁个100分男人电影在线观看| 国产精品久久久久久久电影| 国产成人影院久久av| 婷婷精品国产亚洲av| 国产精品久久久久久av不卡| 婷婷亚洲欧美| 久久亚洲真实| av天堂中文字幕网| 日韩欧美精品免费久久| 九九在线视频观看精品| 性色avwww在线观看| 亚洲电影在线观看av| 久久午夜亚洲精品久久| 12—13女人毛片做爰片一| 日韩亚洲欧美综合| 久久久午夜欧美精品| 亚洲美女搞黄在线观看 | 国产成人av教育| 一区福利在线观看| a级一级毛片免费在线观看| 丝袜美腿在线中文| 一进一出抽搐gif免费好疼| 亚洲av不卡在线观看| 99在线人妻在线中文字幕| 国内精品一区二区在线观看| 欧美色视频一区免费| 精品久久久久久久久亚洲 | 69人妻影院| 麻豆久久精品国产亚洲av| 国产精品久久久久久久久免| 久久人人爽人人爽人人片va| 成人国产综合亚洲| 人妻少妇偷人精品九色| 亚洲美女视频黄频| 人人妻人人看人人澡| 亚洲精华国产精华精| 此物有八面人人有两片| 级片在线观看| 国产精品女同一区二区软件 | 欧美丝袜亚洲另类 | 麻豆一二三区av精品| 性插视频无遮挡在线免费观看| 亚洲 国产 在线| 99久久成人亚洲精品观看| 国产精品自产拍在线观看55亚洲| 亚洲成人免费电影在线观看| 最新在线观看一区二区三区| 亚洲18禁久久av| 亚洲国产精品合色在线| 精品人妻熟女av久视频| 国产免费av片在线观看野外av| 免费av观看视频| 日韩高清综合在线| 国产真实伦视频高清在线观看 | 免费看美女性在线毛片视频| 不卡一级毛片| 婷婷丁香在线五月| 精品久久久久久久久av| 婷婷精品国产亚洲av| 亚洲欧美激情综合另类| 97超视频在线观看视频| 亚洲欧美日韩东京热| 国产人妻一区二区三区在| 九九久久精品国产亚洲av麻豆| 亚洲成av人片在线播放无| 18禁裸乳无遮挡免费网站照片| 村上凉子中文字幕在线| 大又大粗又爽又黄少妇毛片口| av视频在线观看入口| 中文字幕av成人在线电影| 精品久久久久久久久久久久久| 听说在线观看完整版免费高清| 久久香蕉精品热| 日本黄色片子视频| 国产精品一区二区三区四区久久| 欧美不卡视频在线免费观看| 一级黄片播放器| 久久中文看片网| 久久久久久久久久成人| 成人性生交大片免费视频hd| 久久亚洲精品不卡| 亚洲无线观看免费| 国产淫片久久久久久久久| 亚洲美女视频黄频| 亚洲国产日韩欧美精品在线观看| 亚洲最大成人手机在线| avwww免费| 亚洲国产日韩欧美精品在线观看| 日本欧美国产在线视频| 成人国产麻豆网| 日韩一区二区视频免费看| 日韩欧美精品免费久久| 搡老岳熟女国产| 少妇的逼水好多| 久久国内精品自在自线图片| 男女下面进入的视频免费午夜| 亚洲午夜理论影院| 午夜精品在线福利| 久久精品夜夜夜夜夜久久蜜豆| 在线观看舔阴道视频| 麻豆国产av国片精品| www.色视频.com| 免费看光身美女| 午夜激情欧美在线| 88av欧美| 亚洲经典国产精华液单| 女人被狂操c到高潮| 九色成人免费人妻av| 在线观看66精品国产| 99久国产av精品| 日韩强制内射视频|