• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONTINUOUS FINITE ELEMENT METHODS FOR REISSNER-MINDLIN PLATE PROBLEM?

    2018-05-05 07:09:00HuoyuanDUAN段火元

    Huoyuan DUAN(段火元)

    School of Mathematics and Statistics,Collaborative Innovation Centre of Mathematics,Computational Science Hubei Key Laboratory,Wuhan University,Wuhan 430072,China

    E-mail:hyduan.math@whu.edu.cn

    Junhua MA(馬俊華)

    School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    E-mail:2015202010036@whu.edu.cn

    1 Introduction

    The Reissner-Mindlin plate model describes the deformation of a plate with thick to thin thickness,which is subject to a transverse load in terms of transverse displacement of the midplane and rotation of fibers normal to the midplane.In mixed methods,the shear stress is also taken as an independent variable,which plays a bridge role in the finite element analysis of the Reissner-Mindlin plate problem.

    As we know,it is important how to avoid shear locking phenomenon and boundary-layer effects in designing finite element methods for solving the Reissner-Mindlin plate problem;see[1,2].Mathematically,it amounts to how to establish convergence independent of the thickness of the plate.This independence strongly relies on the uniform smoothness of the shear stress with respect to the plate-thickness.Therefore,how to approximate the shear stress is critical.

    There have been substantial interest in mixed finite element methods or finite element displacement methods,and many articles were available in the literature.Among others,Hu,Ming,and Shi studied several important and useful quadrilateral nonconforming elements;see[3–15].Hybrid elements of practical interest are studied by Xie et al;see[16–21].Some stabilized nonconforming elements are analyzed by Duan;see[22–26].

    With certain projection operators,the shear stress can be well-approximated,such as H(curl;?)local interpolation,H(div;?)(or(H1(?))2)global L2projection,(L2(?))2local L2projection,etc;see[22,23].Some times,if necessary,the Galerkin variational formulation may be modified,as well as the plate-thickness,such as discontinuous Galerkin method,first-order least-squares method,etc;see[27–30]and references therein.These modifications are generally devoted to the stability of the transverse displacement and the convergence of the shear stress.Moreover,using unstandard finite elements for the shear stress can also yield locking-free(even boundary-layer-effects-free)approximating solutions;for example,see[31],etc.Due to locking phenomenon,to develop efficient fast solvers are important;for example,see[32],etc.

    In this article,we propose two new finite element methods to solve the Reissner-Mindlin plate problem.Different from the above literature,we employ continuous elements for transverse displacement and rotation,while shear stress is still element-locally computed.In these methods,the approximating spaces and the norms for the shear stress are important to derive optimal error bounds uniformly in the plate-thickness,in particular for the case of quadrilaterals.

    In the first method,the transverse displacement is approximated by conforming(bi)linear macro-elements,and the rotation by conforming(bi)linear elements enriched by local bubble functions.Moreover,the Galerkin formulation is augmented to enhance the stability of the transverse displacement and a local L2projection operator is introduced,because of the gradient of the space for this variable being not a subspace of that for the shear stress.

    For triangles,we choose the space of discontinuous piecewise constant polynomials for the shear stress,and for quadrilaterals we choose the same space but carrying a local given function.Thus,transforming this method into a mixed form,we show that the method is uniformly stable and uniformly optimally convergent.

    In the second method,the transversedisplacement is approximatedby conforming(bi)quadratic elements,and the rotation by conforming(bi)linear elements.Moreover,the plate-thickness is locally modified.Not any reduction operator is needed,and what choices for the approximating space for the shear stress is unnecessary to consider in practical computations.

    For triangles,we choose the space of discontinuous piecewise linear elements for the shear stress,and for quadrilaterals we choose the space which may be viewed as certain variant of thefirst-order Raviart-Thomas rectangular element also carrying the same local function as in thefirst method.Thus,transforming this method into a mixed form,we also obtain optimal error bounds,uniform in the plate-thickness.

    When analyzing these two methods,the key point for the first method is that we can control the jumps of the normal components of the shear stress across interelement boundaries;while that for the second method is that the transverse displacement may be split as two parts which have different regularities with respect to the plate-thickness and this split make it unnecessary to control the normal traces of the shear stress,since two parts can be independently estimated in different manners.It should be noted that this split-trick can be employed only in the case of using at least(bi)quadratic elements for the transverse displacement,if not any reduction operator is introduced.

    In addition,needless to say,the well-known continuous Helmholtz decomposition for the shear stress is a very useful tool in constructing a reasonable interpolant for this variable.This reasonability means that the uniform regularity of this variable with respect to the platethickness should not be violated.To a great degree,the choices of the finite element spaces for this variable is at the mercy of this decomposition,at least in the case of quadrilaterals.

    An outline of article is arranged as follows:In Section 2,a preliminaries about the Reissner-Mindlin plate model is given.In Section 3,two finite element methods are proposed for triangles and quadrilaterals.In Section 4,the first method is analyzed to obtain stability and convergence.In Section 5,error bounds are derived for the second method.A numerical test is performed in the last section.

    2 The Reissner-Mindlin Plate Model

    Let ? be the midplane occupied by the plate with thickness t> 0.The Reissner-Mindlin plate model under a clamped boundary condition is to find the rotation θ =(θ1,θ2)∈ ((?))2and the transverse displacement w ∈(?)such that(see[2])

    where E(θ)is the linear strain tensor(the symmetric part of the gradient of θ).

    Introducing the shear stress

    as an independent variable,problem(2.1)can be formulated in a mixed form:Find(θ,w,γ)∈such that

    From(2.4),if the exact solution(θ,w,γ)is sufficiently smooth,then we can obtain the partial differential equations as follows:

    where L is the partial differential operator associated with a(·,·).

    In addition,as t → 0,from[33],the solution(θ,w,γ)of(2.4)weakly converges towhere(θ0,w0,γ0)is the solution to the Kirchhoff-Love thin plate problem as follows:

    where

    which is provided with norm

    The following two propositions can be found in[2].

    Proposition 2.1a(·,·)is a symmetric continuous bilinear form onand is(H10(?))2-elliptic,that is,

    Above and below,the letter C denotes the generic positive constant which may take different values at different occurrences,but always independent of the mesh-parameter and the platethickness.In addition,·k,with k ∈ ?,denotes the standard Sobolev norm for Hk(?).

    Proposition 2.2For any γ ∈ (L2(?))2,there holds the following Helmholtz decomposition:

    Proposition 2.3([28]) Let ? be a convex polygonal or smooth bounded domain in the plane.For any t,0< t< C,χ ∈ (L2(?))2,and f ∈ L2(?),there exists a unique solutionsuch that

    and we have

    with γ = ?u+curlp being the Helmholtz decomposition.

    If f=0,then w ∈ H3(?),and we have

    If χ=0,and let w be split into two parts as follows:

    where w0is the solution to(2.6)and wris the residual term,we have

    Proposition 2.4(2.4)and(2.10)can be also respectively written as the augmented and condensed forms as follows:

    where

    ProofNoting that

    we add the following term

    to(2.4)and(2.10),respectively;after a minor arrangement,we get(2.15)–(2.18).

    Remark 2.5In this article,Method(I)will be based on this augmentation form(2.15)-(2.18).Generally,this augmentation may be used to enhance the stability of the transverse displacement when the approximating space for the shear stress does not include the gradient of the approximating space for the transverse displacement.

    Method(II)will be based on(2.1).

    Throughout this article,we always assume that λ =1 and 0 < t< 1 and ? is a convex polygonal or smoothly bounded domain.

    3 The Finite Element Method

    Let Thbe the standard regular triangulation(see[34])of ? into triangles or quadrilaterals,with the mesh-parameter h=maxK∈ThhKand hKthe diameter of K.

    Denote by?K the reference element,and let FK:→K be the usual invertible mapping.With K and?K,we associate four vertices(xi,yi)and(ξi,ηi),(1≤i≤4),respectively.Corresponding to K,we introduce local base functions λi(barycenter coordinates)for triangles,or Ni(ξ,η)=(1+ ξiξ)(1+ ηiη)/4 for quadrilaterals.In addition,Pm(K)is the space of polynomials of order in two variables not greater than m,and Qm(K)?FKis the space of polynomials of order in each variable not greater than m.

    Introducing

    For transverse displacement,we define Whand Zh,respectively,by

    where K is divided into four equal parts by joining the midpoints of the sides,

    For rotation,we define Θhand Σh,respectively,by

    For the shear stress,we define Γhand Dh,respectively,by

    Note that the finite element space Dhfor the shear stress in Method(II)is only for theoretical analysis.If necessary,the shear stress is computed directly from the transverse displacement and rotation(see(3.18)below).

    Let Mhbe composed of macro-elements,where each macro-element M∈Mhconsists of two elements in Thsharing a common edge.Clearly,the base functions of What mid-points are bubbles on corresponding macro-elements.In addition,the number of these base functions is equal to the number of macro-elements in Mh,or the number of edges in S0,where S0is the set of all interior element-edges in Th.Let ?Mbe the base function on M corresponding to the mid-point on the common edge e?M,we introduce

    We also introduce a standard L2-projection operator as follows:

    We now state the two finite element problems as follows:

    Method(I)Find(θh,wh)∈ Θh×Whsuch that

    holds for all(ψh,vh)∈ Θh×Wh,while γh∈ Γhis given by

    where A(·;·)is defined as in(2.17),and g is defined as in(2.18).

    Method(II)Find(θh,wh)∈ Σh×Zhsuch that

    holds for all(ψh,vh)∈ Σh×Zh,while γh∈ Dhis given by

    Remark 3.1Note that in Method(I),we use the augmented bilinear form A(·;·)defined by(2.17),while in Method(II),we use the primal bilinear form a(·;·)defined by(2.2).

    Degrees of freedom for these methods with triangles and quadrilaterals are depicted in Figures 1–6,where?denotes the degree of freedom in the usual sense,while◇ and?denote the degrees of freedom related withandrespectively.

    Figure 1 Method(I)for triangles

    Figure 2 Method(I)for quadrilaterals

    Figure 3 Method(II)for triangles

    Figure 4 Method(II)for quadrilaterals

    Figure 5 γ—P0and P+0for triangles and quadrilaterals in Method(I)

    Figure 6 γ—P1and Q+1for triangles and quadrilaterals in Method(II)

    Remark 3.2The special functionmakes it easy to construct a reasonable interpolant to the shear stress in the case of quadrilaterals;see Lemma 4.5 in Section 4.

    Remark 3.3As far as Method(II)is concerned,the finite element spaces for the shear stress are only used for theoretical analysis,and in practical computations,they are not needed.

    4 Error Analysis for Method(I)

    Method(I)can be stated in the form:Find(θh,wh,γh)∈ Θh×Wh×Γh,such that

    Let nebe the exterior unit normal vector to e,and let[s·ne]be the jump along e and he=|e|,we define

    Lemma 4.1There holds

    ProofThe proof is divided into two steps.

    Step 1Because of s|K∈Y0(K),takingand choosing

    we have

    Step 2Choosing

    which is the subspace of all the base functions in What mid-points,see(3.13).

    Because of s·n being a constant on e,we choose

    and by divs|K=0,we have

    Combining(4.8),(4.9)and(4.12),(4.13),we have(4.6).

    Remark 4.2(4.6)may be viewed as a discret version of(2.8).In addition,the meshdependent norm·his to some degree an approximate form of the minus norm·H?1(div;?),noting that divs|K=0,?K ∈ Th.As it is known in[2,33],when the Reissner-Mindlin plate degenerates into the Kirchhoff-Love thin plate with t→ 0,the right norm for the shear stress is only·H?1(div;?).Therefore,the introduction of·his reasonable at least from the mathematical point of view.

    Theorem 4.3There holds

    on Θh×Wh×Γh.

    ProofWe first see that

    Secondly,from Lemma 4.1,we see that there exists(ψh,vh)∈Θh×Wh,such that

    Then,we get

    Thirdly,(2.8)in Proposition 2.1 implies that there existssuch that

    By the Clément-interpolation([34–36]),we can findsuch that

    Then,by divγ|K=0,we have

    Finally,putting

    where

    and combining(4.16),(4.18),and(4.22),we obtain

    It follows from(4.25)and(4.26)that(4.14)holds.

    In what follows,we show(4.15).In fact,(4.15)results from(4.27)-(4.31)as follows:

    Lemma 4.4There holds

    Proof(4.32)is obviously true for triangles.We next consider quadrilaterals.This was proved in[37].We nevertheless reproduce it here for completeness.

    For all v∈Vh,letwhere vi,(1≤i≤4),are nodal values of v,Ni=(1+ ξiξ)(1+ ηiη)/4,(1 ≤ i ≤ 4),are local base functions,with vertices(ξi,ηi) ∈{(1,1),(?1,1),(?1,?1),(1,?1)}.

    To show(4.32),we only need to show that

    In fact,as

    we have

    By virtue of the shape-regularity of the triangulation Th,we know that

    is a non-singular matrix,and by solving(4.35),we have

    with(ai,bi,di)being some constants.Thus,the proof is finished.

    Lemma 4.5Define an interpolant∈ Γhto γ=?u+curlp withand p∈ H1(?)/? in the following way:

    ProofBy Lemma 4.4,we know that∈Γh.

    Note that

    we have

    It follows that(4.39)holds.

    Theorem 4.6Let(θ,w,γ)and(θh,wh,γh)be the exact solution and the finite element solution,respectively.Then,

    ProofForfrom Theorem 4.3,we have

    Theorem 4.7Under the same hypotheses as in Theorem 4.6,there holds

    ProofWe consider the dual problem:Findsuch that

    whose solution(φ,z,q)satisfies

    where

    (4.45)can be reformulated in the form:Find(φ,z,q)such that

    In(4.45),taking v=w?wh,ψ=θ?θh,and s=γ?γh,we have

    where

    It follows that(4.44)holds.

    Remark 4.8In Method(I),if we add a stabilization term

    to(4.1),then we can use conforming(bi)linear elements for both transverse displacement and rotation,because it is unnecessary to use Whto control the normal traces of the shear stress.However,in this case,(4.1)cannot be reduced into(3.15),because of the jumps term(4.53).

    5 Error Analysis for Method(II)

    Method(II)can be stated as follows:Find(θh,wh,γh)∈ Σh×Zh×Dhsuch that

    Define

    Remark 5.1In Method(II),the jumps across interelement boundaries for the normal components of the shear stress cannot be controlled from Wh,unless Whis(bi)cubic elements.

    Lemma 5.2There holds

    Proof(5.6)is obviously true for triangles.We next consider quadrilaterals.

    As

    from Lemma 4.4,we know that

    which completes the proof.□

    Theorem 5.3There holds

    for all(θ,w,q)∈ Σh×Zh×Dh.

    ProofWe first see that

    Next,by Lemma 5.2,choosing?w∈Dh,we obtain

    with

    In addition,using Clément-interpolation,we can find a χh∈ Σhsuch that

    with

    Finally,choosing

    from(5.10),(5.11),and(5.12),we have

    Moreover,it can be easily seen that

    Hence,(5.9)follows from(5.16)and(5.17).

    Theorem 5.4Let(θ,w,γ)and(θh,wh,γh)be the exact and finite element solutions,respectively.Then,

    ProofOwing to(see Proposition 2.3)

    we define

    as the interpolant to w.Also,as usual,letbe the Lagrangian interpolant to θ,anddefined in the manner similar to Lemma 4.5,is the interpolant toand Phis a standard L2projection operator onto Dh.

    From Theorem 5.3,we have

    where

    Therefore,we have

    Noting that

    from(5.30)and(5.27),we have

    which completes the proof.

    Theorem 5.5Under the same hypotheses as in Theorem 5.4,there holds

    ProofWe consider the dual problem:Find(φ,z,q)∈ (H10(?))2×H10(?)×(L2(?))2such that

    whose solution(φ,z,q)satisfies

    where

    In(5.32),taking v=w?wh,ψ=θ?θh,and s=γ?γh,we have

    where

    Theorem 5.6Under the same hypotheses as in Theorem 5.4,and assuming that w∈H3(?),we have

    ProofIn view of

    we have

    On the other hand,by?Zh?Dh,taking s=?vhin(5.1),we have

    Subtracting(5.43)from(5.42),for all vh∈Zh,we have

    from which we have

    Choosing vh=?wh,we get

    where

    Therefore,from(5.47)and(5.48),we can conclude that(5.40)holds,with the standard interpolation estimation for w??w.

    6 A Numerical Test

    In this section,we give a numerical test to perform Method(II)to con firm the theoretical results obtained in the previous section.

    In Method(II),we use the bilinear element for rotation and the biquadratic element for transverse displacement.We thus consider the following finite element scheme:

    where

    Assume that ?=[0,1]2.Choosing

    such that we have the exact solutions as follows:

    We partition ? into squares,with h=1/8,1/16,1/32,1/64.In addition,set

    and t=0.1,0.01,0.001,0.0001,0.00001.

    We compute the H1and L2-relative errors for w ? whand L2-relative errors for θ ? θh,listing in Tables 1–4.

    Table 1h=1/8

    Table 2 h=1/16

    From Tables 1–4,for any two consecutive sets of error data with respect to the mesh sizes h1 and h2,we can compute the rate of conv:=ln(‖e1‖/‖e2‖)/ln(h1/h2)which is about two.We also see that the errors are independent of the plate-thickness t.This con firms our theoretical results,that is,

    where C is independent of t.

    [1]Arnold D N,Falk R S.The boundary layer for the Reissner-Mindlin plate model.SIAM J Math Anal,1990,21:281–317

    [2]Brezzi F,Fortin M.Mixed and Hybrid Finite Element Methods.New-York:Springer-Verlag,1991

    [3]Hu J,Shi Z C.Analysis of nonconforming rotated Q1 element for the Reissner-Mindlin plate problem//Industrial and Applied Mathematics in China,Ser Contemp Appl Math CAM,10.Beijing:Higher Ed Press,2009:101–111

    [4]Hu J,Shi Z C.Analysis for quadrilateral MITC elements for the Reissner-Mindlin plate problem.Math Comp,2009,78:673–711

    [5]Hu J,Shi Z C.Two lower order nonconforming quadrilateral elements for the Reissner-Mindlin plate.Sci China Ser A,2008,51:2097–2114

    [6]Hu J,Shi Z C.Error analysis of quadrilateral Wilson element for Reissner-Mindlin plate.Comput Methods Appl Mech Engrg,2008,197:464–475

    [7]Hu J,Shi Z C.Two lower order nonconforming rectangular elements for the Reissner-Mindlin plate.Math Comp,2007,76:1771–1786

    [8]Hu J,Shi Z C.On the convergence of Weissman-Taylor element for Reissner-Mindlin plate.Int J Numer Anal Model,2004,1:65–73

    [9]Hu J,Ming P B,Shi Z C.Nonconforming quadrilateral rotated Q1 element for Reissner-Mindlin plate.J Comput Math,2003,21:25–32

    [10]Ming P B,Shi Z C.Optimal L2 error bounds for MITC3 type element.Numer Math,2002,91:77–91

    [11]Ming P B,Shi Z C.Convergence analysis for quadrilateral rotated Q1 elements//Kananaskis A B.Scientific Computing and Applications,Adv Comput Theory Pract,7.New-York:Nova Sci Publ,2001:115–124

    [12]Ming P B,Shi Z C.Nonconforming rotated Q1 element for Reissner-Mindlin plate.Math Models Methods Appl Sci,2001,11:1311–1342

    [13]Ming P B,Shi Z C.Some low order quadrilateral Reissner-Mindlin plate elements//Recent Advances in Scientific Computing and Partial Differential Equations(Hong Kong,2002),Contemp Math,330.Providence,RI:Amer Math Soc,2003:155–168

    [14]Ming P B,Shi Z C.Two nonconforming quadrilateral elements for the Reissner-Mindlin plate.Math Models Methods Appl Sci,2005,15:1503–1517

    [15]Ming P B,Shi Z C.Analysis of some low order quadrilateral Reissner-Mindlin plate elements.Math Comp,2006,75:1043–1065

    [16]Guo Y H,Xie X P.Uniform analysis of a stabilized hybrid finite element method for Reissner-Mindlin plates.Sci China Math,2013,56:1727–1742

    [17]Carstensen C,Xie X P,Yu G Z,Zhou T X.A priori and a posteriori analysis for a locking-free low order quadrilateral hybrid finite element for Reissner-Mindlin plates.Comput Methods Appl Mech Engrg,2001,200:1161–1175

    [18]Yu G Z,Xie X P,Zhang X.Parameter extension for combined hybrid finite element methods and application to plate bending problems.Appl Math Comput,2010,216:3265–3274

    [19]Guo G H,Xie X P.On choices of stress modes for lower order quadrilateral Reissner-Mindlin plate elements.Numer Math J Chin Univ(Engl Ser),2006,15:120–126

    [20]Xie X P.From energy improvement to accuracy enhancement:improvement of plate bending elements by the combined hybrid method.J Comput Math,2004,22:581–592

    [21]Zhou T X,Xie X P.A combined hybrid finite element method for plate bending problems.J Comput Math,2003,21:347–356

    [22]Duan H Y,Liang G P.A locking-free Reissner-Mindlin quadrilateral element.Math Comp,2004,73:1655–1671

    [23]Duan H Y.A finite element method for plate problem.Math Comp,2014,83:701–733

    [24]Duan H Y,Liang G P.Analysis of some stabilized low-order mixed finite element methods for Reissner-Mindlin plates.Comput Methods Appl Mech Engrg,2001,191:157–179

    [25]Duan H Y,Liang G P.An improved Reissner-Mindlin triangular element.Comput Methods Appl Mech Engrg,2002,191:2223–2234

    [26]Duan H Y,Liang G P.Mixed and nonconforming finite element approximations of Reissner-Mindlin plates.Comput Methods Appl Mech Engrg,2003,192:5265–5281

    [27]Arnold D N,Brezzi F,Falk R S,Marini L D.Locking-Free Reissner-Mindlin elements without reduced integration.Comput Methods Appl Mech Engrg,2007,196:3660–3671

    [28]Arnold D N,Falk R S.A uniformly accurate finite element method for the Reissner-Mindlin plate.SIAM J Numer Anal,1989,26:1276–1290

    [29]Behrens E M,Guzmán J.A new family of mixed methods for the Reissner-Mindlin plate model based on a system of first-order equations.J Sci Comput,2011,49:137–166

    [30]Bosing P R,Madureira A L,Mozolevski I.A new interior penalty discontinuous Galerkin method for the Reissner-Mindlin model.Math Models Methods Appl Sci,2010,20:1343–1361

    [31]Zhou T X.The partial projection method in the finite element discretization of the Reissner-Mindlin plate.J Comput Math,1995,13:172–191

    [32]Sch?berl J,Stenberg R.Multigrid methods for a stabilized Reissner-Mindlin plate formulation.SIAM J Numer Anal,2009,47:2735–2751

    [33]Destuynder P.Mathematical Analysis of Thin Shell Problems.Paris:Masson,1991

    [34]Ciarlet P G.The Finite Element Method for Elliptic Problems.Amsterdam:North-Holland,1978

    [35]Clément P.Approximation by finite elements using local regularization.RAIRO Anal Numer,1975,8:77–83

    [36]Girault V,Raviart P A.Finite Element Methods for Navier-Stokes Equations,Theory and Algorithms.Berlin:Springer-Verlag,1986

    [37]Duan H Y,Liang G P.Nonconforming elements in least-squares mixed finite element methods.Math Comp,2004,73:1–18

    自拍偷自拍亚洲精品老妇| 校园人妻丝袜中文字幕| 狂野欧美激情性bbbbbb| 97在线人人人人妻| 国产精品一区二区三区四区免费观看| 亚洲熟女精品中文字幕| 久久精品综合一区二区三区| 国产精品熟女久久久久浪| 99热这里只有精品一区| 国产欧美亚洲国产| 成人黄色视频免费在线看| a级毛片免费高清观看在线播放| 亚洲最大成人手机在线| 国产日韩欧美亚洲二区| av天堂中文字幕网| 亚洲欧美成人综合另类久久久| 天美传媒精品一区二区| 韩国av在线不卡| 久久精品国产a三级三级三级| 亚洲图色成人| 青春草视频在线免费观看| 在线观看一区二区三区激情| 久久国内精品自在自线图片| 丰满人妻一区二区三区视频av| 九色成人免费人妻av| 99久久精品热视频| 亚洲一区二区三区欧美精品 | 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 亚洲三级黄色毛片| av在线蜜桃| 中国三级夫妇交换| 国产在视频线精品| 又黄又爽又刺激的免费视频.| 看十八女毛片水多多多| 26uuu在线亚洲综合色| 久久99热这里只频精品6学生| 欧美丝袜亚洲另类| 人人妻人人看人人澡| 1000部很黄的大片| 高清av免费在线| 日韩亚洲欧美综合| 亚洲丝袜综合中文字幕| 中文天堂在线官网| 欧美少妇被猛烈插入视频| 成年人午夜在线观看视频| 又黄又爽又刺激的免费视频.| 国产熟女欧美一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 80岁老熟妇乱子伦牲交| 天天躁夜夜躁狠狠久久av| 一级片'在线观看视频| 2021少妇久久久久久久久久久| 高清在线视频一区二区三区| 高清午夜精品一区二区三区| 在线观看三级黄色| 亚洲国产精品成人久久小说| 日韩一区二区视频免费看| 中文天堂在线官网| 舔av片在线| 麻豆乱淫一区二区| 特级一级黄色大片| 日韩伦理黄色片| 久久97久久精品| 女的被弄到高潮叫床怎么办| 99久久九九国产精品国产免费| 精品久久久久久久久亚洲| 嫩草影院新地址| 国产精品伦人一区二区| 特级一级黄色大片| 少妇人妻 视频| 毛片一级片免费看久久久久| 97在线人人人人妻| 三级国产精品欧美在线观看| 久久久久久久午夜电影| a级毛色黄片| 中文资源天堂在线| 国产午夜精品久久久久久一区二区三区| 噜噜噜噜噜久久久久久91| 一级黄片播放器| 18+在线观看网站| 汤姆久久久久久久影院中文字幕| 视频中文字幕在线观看| 成人亚洲精品av一区二区| 国产欧美亚洲国产| 久久99热这里只有精品18| 王馨瑶露胸无遮挡在线观看| 中文在线观看免费www的网站| 国产有黄有色有爽视频| 久久人人爽人人爽人人片va| 97精品久久久久久久久久精品| 欧美老熟妇乱子伦牲交| 久久精品国产自在天天线| 卡戴珊不雅视频在线播放| 别揉我奶头 嗯啊视频| 国产男女超爽视频在线观看| 777米奇影视久久| 国产人妻一区二区三区在| 午夜免费观看性视频| 2022亚洲国产成人精品| 一区二区三区四区激情视频| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线观看免费完整高清在| 亚洲国产欧美在线一区| 麻豆乱淫一区二区| 搞女人的毛片| 高清日韩中文字幕在线| 男人和女人高潮做爰伦理| 成年女人在线观看亚洲视频 | 国产欧美日韩一区二区三区在线 | av女优亚洲男人天堂| 久久这里有精品视频免费| av在线观看视频网站免费| 91久久精品国产一区二区三区| 亚洲精品国产成人久久av| 日韩成人伦理影院| 免费av观看视频| 91狼人影院| 久久精品国产亚洲av涩爱| 国产成人午夜福利电影在线观看| 色综合色国产| 在线观看av片永久免费下载| 亚洲伊人久久精品综合| 日本av手机在线免费观看| 中文乱码字字幕精品一区二区三区| 成年av动漫网址| 97超碰精品成人国产| 精品国产露脸久久av麻豆| 久久精品国产自在天天线| 一级二级三级毛片免费看| 国产老妇伦熟女老妇高清| 日本三级黄在线观看| 麻豆成人av视频| 日韩欧美 国产精品| 99热网站在线观看| 夫妻午夜视频| 女的被弄到高潮叫床怎么办| 国产成人精品久久久久久| 18禁裸乳无遮挡动漫免费视频 | 亚洲av日韩在线播放| 不卡视频在线观看欧美| 国产男女超爽视频在线观看| 精品酒店卫生间| 一级毛片黄色毛片免费观看视频| 我要看日韩黄色一级片| 久久久久久伊人网av| av免费观看日本| 黄片wwwwww| 亚洲国产欧美人成| 久久综合国产亚洲精品| 水蜜桃什么品种好| 国产精品麻豆人妻色哟哟久久| 五月开心婷婷网| 自拍偷自拍亚洲精品老妇| 国产亚洲午夜精品一区二区久久 | 亚洲精品一二三| 午夜福利网站1000一区二区三区| 美女国产视频在线观看| 亚洲精品影视一区二区三区av| 麻豆精品久久久久久蜜桃| 亚洲丝袜综合中文字幕| 亚洲欧美精品自产自拍| 亚洲一级一片aⅴ在线观看| 女人十人毛片免费观看3o分钟| 别揉我奶头 嗯啊视频| 亚洲电影在线观看av| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 一级毛片黄色毛片免费观看视频| 一级二级三级毛片免费看| 九九爱精品视频在线观看| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久 | 国产精品国产三级国产av玫瑰| 国产 精品1| 久久精品国产亚洲av涩爱| 日韩大片免费观看网站| 久久99热6这里只有精品| 国产成人精品福利久久| 国产男人的电影天堂91| 香蕉精品网在线| 肉色欧美久久久久久久蜜桃 | 99久久九九国产精品国产免费| 精品午夜福利在线看| 国产精品一二三区在线看| 看十八女毛片水多多多| 日本猛色少妇xxxxx猛交久久| 久久精品久久久久久久性| av福利片在线观看| 国产精品精品国产色婷婷| 亚洲美女搞黄在线观看| 日韩av不卡免费在线播放| 啦啦啦中文免费视频观看日本| 真实男女啪啪啪动态图| av在线观看视频网站免费| 国产免费一区二区三区四区乱码| 久久久欧美国产精品| 日韩不卡一区二区三区视频在线| 欧美xxxx性猛交bbbb| 看免费成人av毛片| 国产男女内射视频| 蜜桃久久精品国产亚洲av| 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 成人欧美大片| 日韩制服骚丝袜av| 韩国av在线不卡| 国产老妇女一区| 国产亚洲最大av| 日本三级黄在线观看| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩卡通动漫| 久热这里只有精品99| eeuss影院久久| 久久久久网色| 三级经典国产精品| 我要看日韩黄色一级片| 国产免费又黄又爽又色| 视频区图区小说| 久久精品夜色国产| 日本-黄色视频高清免费观看| 亚洲最大成人av| 麻豆成人午夜福利视频| 日韩一区二区三区影片| 久久久精品94久久精品| 偷拍熟女少妇极品色| 午夜福利视频1000在线观看| 精品人妻一区二区三区麻豆| 成人亚洲欧美一区二区av| 日韩制服骚丝袜av| 美女内射精品一级片tv| 亚洲成人一二三区av| 伊人久久精品亚洲午夜| 大码成人一级视频| 亚洲精品国产av蜜桃| 久久久久久九九精品二区国产| 少妇猛男粗大的猛烈进出视频 | 中文精品一卡2卡3卡4更新| 亚洲成人一二三区av| av在线蜜桃| 91久久精品国产一区二区成人| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄| 国产精品99久久99久久久不卡 | 久久久久性生活片| av在线蜜桃| 午夜福利视频精品| 91狼人影院| 久久久国产一区二区| 内地一区二区视频在线| 只有这里有精品99| 国产老妇伦熟女老妇高清| 三级经典国产精品| 在线观看国产h片| 最近最新中文字幕大全电影3| 成人黄色视频免费在线看| 午夜爱爱视频在线播放| 全区人妻精品视频| 久久99热这里只频精品6学生| 久久精品熟女亚洲av麻豆精品| 亚洲欧美成人综合另类久久久| 麻豆乱淫一区二区| 日韩人妻高清精品专区| 毛片女人毛片| 伦理电影大哥的女人| 综合色av麻豆| 男女无遮挡免费网站观看| 亚洲国产av新网站| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲在久久综合| 欧美少妇被猛烈插入视频| 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在| 美女视频免费永久观看网站| 看黄色毛片网站| 插逼视频在线观看| 18禁裸乳无遮挡动漫免费视频 | 欧美日韩亚洲高清精品| 男女那种视频在线观看| 麻豆成人av视频| 国产成人freesex在线| 亚洲精品一二三| 美女主播在线视频| 能在线免费看毛片的网站| 联通29元200g的流量卡| 婷婷色麻豆天堂久久| 日日摸夜夜添夜夜爱| 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| 国产精品爽爽va在线观看网站| 晚上一个人看的免费电影| 大陆偷拍与自拍| 久久久国产一区二区| 成年免费大片在线观看| 亚洲av二区三区四区| 亚洲自偷自拍三级| 久久久久国产精品人妻一区二区| 大香蕉久久网| 99久久中文字幕三级久久日本| 在现免费观看毛片| av福利片在线观看| 性插视频无遮挡在线免费观看| 99re6热这里在线精品视频| av一本久久久久| 夜夜爽夜夜爽视频| 中文精品一卡2卡3卡4更新| 极品少妇高潮喷水抽搐| 亚洲欧美成人综合另类久久久| 蜜桃亚洲精品一区二区三区| 中文欧美无线码| 人妻少妇偷人精品九色| 欧美精品一区二区大全| av女优亚洲男人天堂| 一个人看的www免费观看视频| 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 久久精品久久精品一区二区三区| 日本熟妇午夜| 嫩草影院新地址| av在线亚洲专区| 国产亚洲最大av| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看| 欧美高清性xxxxhd video| 哪个播放器可以免费观看大片| 国产视频内射| 国产精品无大码| 国产精品国产三级国产专区5o| 国产乱人视频| 韩国av在线不卡| 男女边摸边吃奶| 熟女人妻精品中文字幕| 欧美精品人与动牲交sv欧美| 亚洲人与动物交配视频| 中文字幕av成人在线电影| 国产精品熟女久久久久浪| 97超碰精品成人国产| 国产成人精品婷婷| 亚洲图色成人| 七月丁香在线播放| videos熟女内射| 亚洲欧美成人综合另类久久久| 中文字幕亚洲精品专区| 精品国产乱码久久久久久小说| 亚洲精品中文字幕在线视频 | a级一级毛片免费在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久大尺度免费视频| 国产真实伦视频高清在线观看| 韩国高清视频一区二区三区| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 亚洲精品,欧美精品| 青春草国产在线视频| 大陆偷拍与自拍| 欧美成人一区二区免费高清观看| 熟女电影av网| 在线 av 中文字幕| 中文天堂在线官网| 久久人人爽人人片av| 精品人妻偷拍中文字幕| 国产乱来视频区| av在线观看视频网站免费| 久久久久性生活片| 国产真实伦视频高清在线观看| 女人被狂操c到高潮| av播播在线观看一区| 欧美丝袜亚洲另类| 精品人妻视频免费看| 亚洲精品456在线播放app| 亚洲天堂av无毛| 又爽又黄无遮挡网站| 国产精品无大码| 亚洲精品中文字幕在线视频 | 亚洲欧美成人精品一区二区| 国产精品秋霞免费鲁丝片| 日韩成人av中文字幕在线观看| a级毛色黄片| 黄色配什么色好看| 国产精品国产三级国产av玫瑰| 又爽又黄a免费视频| 国产成人免费观看mmmm| tube8黄色片| 亚州av有码| 成人综合一区亚洲| 男女边吃奶边做爰视频| 亚洲国产精品999| 超碰av人人做人人爽久久| 亚洲国产精品999| 色视频在线一区二区三区| 日本熟妇午夜| 好男人视频免费观看在线| 国产高清不卡午夜福利| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 久久人人爽人人片av| 2021天堂中文幕一二区在线观| 亚洲成人一二三区av| 精品久久久久久久久亚洲| 亚洲美女搞黄在线观看| 97超视频在线观看视频| 日韩一区二区视频免费看| 丰满乱子伦码专区| 久久久久久久久久成人| 国产成人a∨麻豆精品| 在线a可以看的网站| 婷婷色综合www| 天堂中文最新版在线下载 | 精品国产一区二区三区久久久樱花 | 国产精品偷伦视频观看了| 国产一级毛片在线| 日韩制服骚丝袜av| 夜夜爽夜夜爽视频| 亚洲最大成人av| 在线精品无人区一区二区三 | 亚洲图色成人| 最近最新中文字幕免费大全7| 国产高清三级在线| 久久久精品94久久精品| 国产精品99久久久久久久久| 大片免费播放器 马上看| 国产精品久久久久久久电影| 亚洲成人久久爱视频| 免费高清在线观看视频在线观看| 国产精品蜜桃在线观看| 亚洲av男天堂| 久久这里有精品视频免费| 国产精品精品国产色婷婷| 亚洲最大成人中文| 日韩免费高清中文字幕av| 午夜福利网站1000一区二区三区| 99热这里只有是精品在线观看| av国产免费在线观看| 日本三级黄在线观看| 黑人高潮一二区| 午夜视频国产福利| 国产精品三级大全| 日韩视频在线欧美| 男人舔奶头视频| 国产淫片久久久久久久久| 国产有黄有色有爽视频| 国产高清有码在线观看视频| 久久久久久久亚洲中文字幕| 亚洲精品成人久久久久久| 国产精品99久久99久久久不卡 | 午夜福利在线在线| 国产男人的电影天堂91| 99久久人妻综合| 欧美日韩视频精品一区| 狂野欧美激情性bbbbbb| 日本-黄色视频高清免费观看| 亚洲国产精品成人综合色| 国产精品人妻久久久久久| 欧美精品国产亚洲| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 干丝袜人妻中文字幕| 在线观看av片永久免费下载| 日韩欧美精品免费久久| 亚洲国产日韩一区二区| 18禁在线播放成人免费| kizo精华| 91精品伊人久久大香线蕉| 国产有黄有色有爽视频| 少妇人妻精品综合一区二区| 美女主播在线视频| 国产精品麻豆人妻色哟哟久久| 97在线视频观看| 内射极品少妇av片p| 美女内射精品一级片tv| 男的添女的下面高潮视频| 欧美丝袜亚洲另类| 九九久久精品国产亚洲av麻豆| 国产免费又黄又爽又色| 超碰av人人做人人爽久久| 免费av不卡在线播放| 国产精品熟女久久久久浪| 婷婷色麻豆天堂久久| 在线亚洲精品国产二区图片欧美 | 免费av观看视频| 国产免费视频播放在线视频| 午夜福利网站1000一区二区三区| 成人二区视频| 爱豆传媒免费全集在线观看| 亚洲国产精品999| 美女内射精品一级片tv| 日韩人妻高清精品专区| 亚洲精品国产av蜜桃| 在线观看三级黄色| 久久久久久久久久成人| 最近手机中文字幕大全| 亚洲精品日韩在线中文字幕| 别揉我奶头 嗯啊视频| 国产成人福利小说| 久久久久国产网址| 老司机影院成人| 日韩欧美精品v在线| 中文在线观看免费www的网站| 丰满乱子伦码专区| 亚洲成色77777| 熟女人妻精品中文字幕| 26uuu在线亚洲综合色| 国产色婷婷99| 免费观看性生交大片5| 成年女人看的毛片在线观看| 久久精品久久久久久久性| 日日撸夜夜添| 中文资源天堂在线| 一本久久精品| 日产精品乱码卡一卡2卡三| 丝瓜视频免费看黄片| 国产亚洲午夜精品一区二区久久 | 色婷婷久久久亚洲欧美| 欧美日韩视频精品一区| 男人添女人高潮全过程视频| 亚洲色图综合在线观看| 高清黄色对白视频在线免费看| 婷婷成人精品国产| 777米奇影视久久| 中文字幕人妻丝袜一区二区 | 国产精品偷伦视频观看了| 十八禁高潮呻吟视频| 亚洲精品国产色婷婷电影| 波野结衣二区三区在线| 日韩 亚洲 欧美在线| 视频区图区小说| 两个人免费观看高清视频| 啦啦啦视频在线资源免费观看| 欧美在线一区亚洲| 天天躁夜夜躁狠狠躁躁| 免费av中文字幕在线| 成人亚洲精品一区在线观看| 97精品久久久久久久久久精品| 精品国产一区二区久久| 亚洲视频免费观看视频| 欧美乱码精品一区二区三区| 视频在线观看一区二区三区| 亚洲少妇的诱惑av| 国产精品女同一区二区软件| 成年美女黄网站色视频大全免费| 热re99久久精品国产66热6| 国产精品亚洲av一区麻豆 | av电影中文网址| 成人手机av| 天天影视国产精品| 亚洲色图综合在线观看| 母亲3免费完整高清在线观看| 熟妇人妻不卡中文字幕| 亚洲精品国产色婷婷电影| 色网站视频免费| 国产乱来视频区| 成人国语在线视频| 亚洲精品美女久久久久99蜜臀 | 久热这里只有精品99| 丝袜美足系列| 只有这里有精品99| 国产精品麻豆人妻色哟哟久久| 久久久久久久精品精品| 男的添女的下面高潮视频| 日韩制服丝袜自拍偷拍| 在线观看国产h片| 免费观看人在逋| 久久精品久久久久久久性| 大码成人一级视频| 亚洲中文av在线| 免费黄色在线免费观看| 最新在线观看一区二区三区 | 黄频高清免费视频| 国产精品蜜桃在线观看| 欧美国产精品一级二级三级| 国产av精品麻豆| 国产无遮挡羞羞视频在线观看| 大码成人一级视频| 女人久久www免费人成看片| 亚洲精品第二区| 一本色道久久久久久精品综合| 久久久久精品人妻al黑| 97人妻天天添夜夜摸| 亚洲伊人久久精品综合| 亚洲,欧美,日韩| 免费日韩欧美在线观看| 日韩精品有码人妻一区| 国产精品久久久人人做人人爽| 日韩欧美精品免费久久| 男人操女人黄网站| 一区二区日韩欧美中文字幕| 久久精品国产综合久久久| 国产一区二区三区av在线| avwww免费| 欧美日韩国产mv在线观看视频| 街头女战士在线观看网站| 精品视频人人做人人爽| 亚洲婷婷狠狠爱综合网| 两性夫妻黄色片| 日韩一区二区视频免费看| 丰满少妇做爰视频| 国产熟女午夜一区二区三区| 欧美精品高潮呻吟av久久| 中国国产av一级| 夫妻性生交免费视频一级片| 婷婷色综合www| av网站免费在线观看视频| 黄网站色视频无遮挡免费观看| 看非洲黑人一级黄片| 国产色婷婷99| 天堂8中文在线网| 国产av精品麻豆| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| 国产又爽黄色视频| 亚洲av电影在线观看一区二区三区|