• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QUALITATIVE ANALYSIS OF A STOCHASTIC RATIO-DEPENDENT HOLLING-TANNER SYSTEM?

    2018-05-05 07:08:56JingFU付靜

    Jing FU(付靜)

    School of Mathematics,Changchun Normal University,Changchun 130032,China

    E-mail:xibeidaxue232@163.com

    Daqing JIANG(蔣達清)1,2,3 Ningzhong SHI(史寧中)1 Tasawar HAYAT2,4 Ahmed ALSAEDI2

    1.School of Mathematics and Statistics,Key Laboratory of Applied Statistics of MOE,Northeast Normal University,Changchun 130024,China;

    2.Nonlinear Analysis and Applied Mathematics(NAAM)Research Group,Department of Mathematics,Faculty of Science,King Abdulaziz University,Jeddah 121589,Saudi Arabia;

    3.College of Science,China University of Petroleum(East China),Qingdao 266580,China

    4.Department of Mathematics,Quaid-i-Azam University 45320,Islamabad 44000,Pakistan

    E-mail:daqingjiang2010@hotmail.com;shinz@nenu.edu.cn;tahaksag@yahoo.com;aalsaedi@hotmail.com

    1 Introduction

    The famous Holling-Tanner model which is also known as semi-ratio-dependent Holling type II for predator-prey interaction is expressed in the form:

    where N(t)and P(t)represent population densities of the prey and the predator,respectively.Parameters r,s,k,c,and a are positive constants,and represent the growth rate of prey and predator species,the carrying capacity of the prey,capturing rate,and half capturing saturation,respectively.Parameter h>0 is the number of prey required to feed one predator at equilibrium conditions.Recently,more and more mathematicians and biologists have drawn attention on this model and have shown rich dynamical behaviors[1–7].

    The traditional prey-predator models with the functional responses depend on prey density only,and are not demonstrated by the data of numerous experiments and observations[8–10].In fact,the predator has to search and compete for food and the ratio-dependent function of the prey and the predator is more suitable to substitute for the model with complicated interaction between the prey and predator.Then,this model is expressed in the form:

    subjected to the same conditions as given above.Both theoretical and mathematical biologists studied the ratio-dependent Holling-Tanner model(refer to[8,11–14]).In particular,Liang and Pan[12]analyzed system(1.2)and derived rich dynamical properties.Firstly,they nondimensionalized system(1.2)with the scaling rt→t,→N,→P,and assumed the following conditions:

    (A1):αβ+1> β;

    (A2):α>1;

    (A3):(αβ +2)β < (δβ +1)(αβ +1)2;

    (A4):(αβ +2)β > (δβ +1)(αβ +1)2;

    (A5):αβ +1 > max{β,},

    If condition(A1)holds,then system(1.2)has a unique positive equilibrium E?(N?,P?),where,P?= βN?;if condition(A2)holds,then system(1.2)is permanent;if conditions(A1)and(A3)hold,then the positive equilibriumof system(1.2)is locally asymptotical state;if conditions(A1)and(A4)hold,then the positive equilibriumof system(1.2)is an unstable focus or node;If condition(A5)holds,then the positive equilibriumof system(1.2)is globally asymptotical stable in the interior of the first quadrant;If conditions(A1)and(A4)hold,then system(1.2)has a unique limit cycle.

    Most of the works on Holling-Tanner or ratio-dependent Holling-Tanner models are in a deterministic environment.May[15]pointed out that because of continuous fluctuations in the environment,the birth rates,the death rates,competition coefficients,and other parameters involved in model(1.2)exhibit random fluctuation to some extent.Recently,The effect of environment on dynamical behaviors of stochastic modified Holling-Tanner model was investigated by Ji[16,17].And for many other articles on the stochastic models,refer to[18–21].In this article,we express system(1.2)with random perturbation in the following form:

    Throughout this article,let(?,F,{Ft}t≥0,N)be a complete probability space with a filtration{Ft}t≥0.Let Bi(t)(i=1,2)denote the independent standard Brownian motions defined on this probability space.

    2 Existence of the Positive Solution

    If the coefficients of equation satisfy the linear growth condition and local Lipschitz condition,then the stochastic differential equation has a unique global(that is no explosion in a finite time)solution for any given initial value(see[22]).However,the coefficient of system(1.3)neither satisfy the linear growth condition,nor local Lipschitz continuous.In this section,by making the change of variables and the comparison theorem of stochastic differencial equations,we will show there is a unique global positive solution with positive initial value of system(1.3).

    Lemma 2.1There is a unique positive local solution(N(t),P(t))for t∈ [0,τe)of system(1.3)a.s.for any initial value N0>0 and P0>0.

    ProofFirstly,we transform system(1.3)into the following equivalent form

    on t≥ 0 with initial value u(0)=lnN0,v(0)=lnP0.Obviously,the coefficients of Equation(2.1)satisfy the local Lipschitz condition,then there is a unique local solution(u(t),v(t))on t ∈ [0,τe),where τeis the explosion time(see[28]).By It’s formula,it is easy to see that N(t)=eu(t),P(t)=ev(t)is the unique positive local solution to equation(1.3)with initial value N0>0 and P0>0.

    From Lemma 2.1,we know that there is a unique positive local solution of system(1.3).Subsequently,we prove that this solution is global,that is,τe= ∞.We consider the following auxiliary stochastic differential equations:

    with the initial value Φ(0)= φ(0)=N0and Ψ(0)= ψ(0)=P0.The solutions of equations(2.2)and(2.3)are written as

    Using the comparison principle of stochastic differential equation,we have

    From the process of solution Φ(t),φ(t),Ψ(t),ψ(t),it is clear that these solutions are well defined for all t∈ [0,∞)a.s.Thus,we obtain

    Theorem 2.2For any given initial value(N0,P0)∈,there is a unique positive global solution(N(t),P(t))of equation(1.3)for t≥0 a.s.Meanwhile,there exist the functions Φ(t),φ(t),Ψ(t),and ψ(t)such that φ(t)≤ N(t)≤ Φ(t)and ψ(t)≤ P(t)≤ Ψ(t),t≥ 0.

    3 The Long Time Behavior of System(1.3)

    3.1 Persistence

    In this part,we assume that

    Let Φ(t)and φ(t)are solutions of systems(2.2),by the similar approach in Lemma A.1 of Ji[23],under the conditionwe obtain

    and

    This and(2.6)imply that

    and

    Theorem 3.1Under the condition(H),for any initial value(N0,P0)∈,the solution N(t)of system(1.3)is persistence in mean.We have

    Next,using a series of operations and the strong law of large numbers(Ji[23,page 1332–1333]),one has

    and

    On the other hand,from Ji[23](page 1331),we know

    therefore,

    Subsequent proof is similar to Lemma A.1(page 1339)of[23],then it yields

    Consequently,

    Combining(3.2)and(3.3),we have

    Besides,by It?o’s formula,system(1.2)is written as

    Integrating from 0 to t,then dividing by t on both sides of(3.4),it yields

    Letting t→∞,we obtain

    Theorem 3.2The solution(N(t),P(t))of system(1.3)for any initial valuehas

    In addition,with the decreasing intensity of the white noise,we take note that the value of(3.5)converges to the valuein the meaning of time average.In this context,it means that stochastic perturbation does not change the permanence of the deterministic system.

    Definition 3.3System(1.3)is said to be persistence in mean,if

    From(3.5),we directly have

    Theorem 3.4System(1.3)is said to be persistence in mean,if condition(H)hold.

    3.2 Extinction

    We know that the establishment of the persistence of system(1.3)depend on condition(H).Supposing that condition(H)is not satisfied,what then?

    Theorem 3.5Let(N(t),P(t))be the solution of system(1.3)for any initial value(N0,P0)∈R2+,then,

    ProofThe proof is standard and hence is omitted(see Section 3 of[16]).We also obtain the prey and the predator are all extinct ifand

    4 Stationary Distribution and Ergodicity for System(1.3)

    In this section,our object is to investigate the conditions of the existence of a unique stationary distribution of system(1.3).It is useful to prepare some knowledge to prove the theorem in this part(see Section 2 in[17]).

    Let X(t)be a homogeneous Markov process in En?Rndescribed by the following stochastic differential equation:

    Lemma 4.1(see[24])We assume that there exists a bounded domain D?Enwith regular boundary Γ,having the following properties:

    (B.1)In the domain D and some neighborhood thereof,the smallest eigenvalue of the diffusion matrix A(x)is bounded away from zero;

    (B.2)if x ∈ EnD,the mean time τ at which a path issuing from x reaches the set D isfinite,andfor every compact subset k?En.

    Then,we have the following result:

    The Markov process X(t)has a stationary distribution μ(·),for any integrable function f(·)in regard to the measure μ,that is,

    Remark 4.2The proof is given in[24].The existence of stationary distribution with density is referred to Theorem 4.1,p.119 and Lemma 9.4,p.138.The weak convergence and the ergodicity are obtained in Theorem 5.1,p.121 and Theorem 7.1,p130.

    To validate(B.1),it suffices to prove that F is uniformly elliptical in any bounded domain D,wherethat is,there is a positive number M such that(see Chapter 3,p.103 of[24]and Rayleigh’s principle in[25,Chapter 6,p.349]).To validate(B.2),it is enough to show that there exists some neighborhood D and a non-negative C2-function V such that LV is negative for any EnD(details refer to[26,p.1163]).

    Theorem 4.3If condition(H)holds,then for any initial value(N0,P0)∈R2+,(N(t),P(t))of system(1.3)has a unique stationary distribution μ(·)and it is ergodic.

    ProofFirstly,system(1.3)can be expressed by the following form

    and the diffusion matrix is

    which implies condition(B.1)is validated.Next,we need to verify condition(B.2)in Lemma 4.1.

    Define a C2-function V:→R+by

    where N and P are also the positive solution of(1.3)for any initial value(N0,P0),and it is satisfied for k thatWe find(1,k)is the minimum point of(4.1),here V(1,k) > 0.It is verified that V(N,P)is nonnegative.By It?o’s formula,we calculate

    Consider the bounded set

    then

    here,

    We choose sufficiently small∈1,∈2and ∈2=such that

    where K1and K2are defined by(4.6)and(4.7)below.

    Case 1When(N,P)∈D1,we have

    From(4.2),we obtain LV≤?1.

    Case 2For any(N,P)∈D2,we have

    where

    and in view of(4.3),we obtain LV≤?1.

    Case 3If(N,P)∈D3,we have

    where

    and in view of(4.4),this indicates LV≤?1.

    Case 4Supposing(N,P)∈ D4and noticing ∈2= ∈21,then

    From condition(4.5),we also obtain LV≤?1.

    We can take D to be a neighborhood of the rectangular and define a non-negative C2-function such that LV is negative for anywhich implies condition(B.2)in Lemma 4.1 is satisfied.Therefore,the stochastic system(1.3)has a unique stationary distribution μ(·)and it is ergodic.From Theorem 3.2 and Theorem 4.1,we derive the following theorem.

    Theorem 4.4If the condition(H)holds,then for any initial value(N0,P0)∈,the solution(N(t),P(t))of system(1.3)has the property

    5 Numerical Simulation and Discussion

    With the help of matlab software,our outcomes can be examined by the method mentioned in[27].Consider the discretization equation:

    where ξkand ηk(k=1,2,···n)are the Gaussian random variables N(0,1).We obtain the following numerical simulation,through appropriate choice of the parameters.

    Firstly,the numerical simulation with environmental intensities σ1=0.02,σ2=0.04 is carried out.Parameters satisfy conditionsaccording with the condition of Theorem 3.1–3.3.In the left of Figure 1,we observe that the population densities fluctuate around the the equilibrium(N?,P?)of the deterministic system.Stationary distribution of the prey N(t)and the predator P(t)are provided in the right of Figure 1.

    Figure 1 The left pictures express the solutions of systems(1.3)and(1.2)for(N0,P0)=(0.5,0.5),r=0.1,f=0.07,c=0.06,a=1,b=0.1,s=0.51 and m=0.2.The red lines represent the solution(N(t),P(t))of system(1.3),while the blue lines represent the solution(N(t),P(t))of model(1.2),here σ1=0.02,σ2=0.04.The right pictures show system(1.3)has a unique stationary distribution.

    We choose intensities of the white noise σ1=0.01,σ2=0.21,thus Case 1 in Theorem 3.4 is satisfied.In Figure 2,we see that the prey is persistent and the predator is extinct.In Figure 3,choosing parameters such thatandwe can observe that the species P(t)is extinct as Theorem 3.3(ii)has said and the N(t)is also going to die.The last figure expresses the prey and the predator are all extinct according with the conditionsandHowever,the corresponding deterministic system is persistent in Figures 2–4.These show that the strong white noise may make a persistent system to be extinct.

    Figure 2 These figures express the solutions of systems(1.3)and(1.2)for(N0,P0)=(0.5,0.5),r=0.1,f=0.07,c=0.06,a=1,b=0.1,s=0.02,and m=0.2.The red lines represent the solution(N(t),P(t))of system(1.3),while the blue lines represent the solution(N(t),P(t))of model(1.2),here σ1=0.01,σ2=0.21.

    Figure 3 These figures show the solutions of systems(1.3)and(1.2)for(N0,P0)=(0.5,0.5),r=0.1,f=0.07,c=0.09,a=1,b=0.1,s=0.51,m=0.2.The red lines represent the solution(N(t),P(t))of system(1.3),while the blue lines represent the solution(N(t),P(t))of model(1.2),here σ1=0.5,σ2=0.01.

    Figure 4 This group picture illustrates the solutions of systems(1.3)and(1.2)for(N0,P0)=(0.5,0.5),r=0.1,f=0.07,c=0.09,a=1,b=0.1,s=0.02,m=0.2.The red lines represent the solution(N(t),P(t))of system(1.3),while the blue lines represent the solution(N(t),P(t))of model(1.1),here σ1=0.5,σ2=0.21.

    [1]Kooij R E,Arus J T,Embid A G.Limit cycles in the Holling-Tanner model.Publicacions Matematiques,1997,41:149–167

    [2]Wang M,Pang P Y H,Chen W.Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment.Ima Journal of Applied Mathematics,2008,73(5):815–835

    [3]Peng R,Wang M.Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model.Applied Mathematics Letters,2007,20(6):664–670

    [4]Braza P A.The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing.Siam Journal on Applied Mathematics,2003,63(3):889–904

    [5]Li J,Gao W.A strongly coupled predator-prey system with modified Holling-Tanner functional response.Computers Mathematics with Applications,2010,60(7):1908–1916

    [6]Hsu S B,Huang T W.Global stability for a class of predator-prey systems.Siam Journal on Applied Mathematics,1995,55(3):763–783

    [7]Li X H,Lu C,Du X F.Permanence and global attractivity of a discrete semi-ratio-dependent predatorprey system with Holling IV type functional response.Journal of Mathematical Research with Applications,2010,30(3):442–450

    [8]Arditi R,Saiah H.Empirical evidence of the role of heterogeneity in ratio-dependent consumption.Ecology,1992,73(5):1544–1551

    [9]Arditi R,Ginzburg L R,Akcakaya H R.Variation in plankton densities among lakes:a case for ratiodependent predation models.American Naturalist,1991,138(5):1287–1296

    [10]Gutierrez A P.Physiological basis of ratio-dependent predator-prey theory:the metabolic pool model as a paradigm.Ecology,1992,73(5):1552–1563

    [11]Arditi R,Ginzburg L R.Coupling in predator-prey dynamics:ratio dependence.Journal of Theoretical Biology,1989,139(3):311–326

    [12]Liang Z,Pan H.Qualitative analysis of a ratio-dependent Holling-Tanner model.Journal of Mathematical Analysis Applications,2007,334(2):954–964

    [13]Saha T,Chakrabarti C.Dynamical analysis of a delayed ratio-dependent Holling-Tanner predator-prey model.Journal of Mathematical Analysis Applications,2009,358(2):389–402

    [14]Banerjee M,Banerjee S.Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model.Mathematical Biosciences,2012,236(1):64–76

    [15]Fellowes M.Stability and complexity in model ecosystems.Biologist,2001

    [16]Ji C,Jiang D,Shi N.Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation.Journal of Mathematical Analysis Applications,2009,359(2):482–498

    [17]Ji C,Jiang D,Shi N.A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation.Journal of Mathematical Analysis Applications,2011,377(1):435–440

    [18]Lin Y,Jiang D,Jin M.Stationary distribution of a stochastic SLR model with saturated incidence and its asympototic stability.Acta Mathematica Scientia,2015,35B(3):619–629

    [19]Liu Q,Jiang D,Shi N.Dynamical behavior of a stochastic HBV infection model with logistic hepatocyte growth.Acta Mathematica Scientia,2017,37B(4):927–940

    [20]Zu L,Jiang D,O’Regan D.Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predatorprey model with regime switching.Communications in Nonlinear Science Numerical Simulation,2015,29(1-3):1–11

    [21]Liu M,Wang K.Persistence,extinction and global asymptotical stability of a non-autonomous predatorprey model with random perturbation.Applied Mathematical Modelling,2012,36(11):5344–5353

    [22]Mao X.Stochastic Differential Equations and Applications.New York:Horwood,1997

    [23]Ji C,Jiang D,Li X.Qualitative analysis of a stochastic ratio-dependent predator-prey system.Journal of Computational Applied Mathematics,2011,235:1326–1341

    [24]Khasminskii R.Stochastic stability of differential equations.Alphen aan den Rijin:SijthoffNoordhoff,1980

    [25]Gard T.Introduction tostochastic differential equations.New York-Basel:Marcel Dekker Inc,1988

    [26]Strang G.Linear algebra and its applications.Belmont:Thomson Learning Inc,1988

    [27]Higham D J.An algorithmic introduction to numerical simulation of stochastic differential equations.Siam Review,2001,43(3):525–546

    [28]Arnold L.Stochastic differential equations:theory and applications.New York:Wiley,1972

    老鸭窝网址在线观看| 欧美日韩综合久久久久久| 欧美成人午夜精品| 日日摸夜夜添夜夜爱| 欧美亚洲 丝袜 人妻 在线| 考比视频在线观看| 在线观看一区二区三区激情| 2021少妇久久久久久久久久久| √禁漫天堂资源中文www| 亚洲综合色网址| 国产成人影院久久av| 国产av精品麻豆| 国产欧美亚洲国产| 999精品在线视频| 国产精品熟女久久久久浪| 七月丁香在线播放| 在线看a的网站| 亚洲男人天堂网一区| 不卡av一区二区三区| 亚洲欧洲精品一区二区精品久久久| 亚洲综合色网址| 亚洲一区二区三区欧美精品| 亚洲av美国av| 国产在线一区二区三区精| 日日摸夜夜添夜夜爱| 亚洲七黄色美女视频| 97精品久久久久久久久久精品| 国产免费现黄频在线看| 国产野战对白在线观看| 后天国语完整版免费观看| 久久鲁丝午夜福利片| 国产xxxxx性猛交| www.精华液| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 国产色视频综合| 亚洲国产精品999| 色视频在线一区二区三区| 熟女少妇亚洲综合色aaa.| 两性夫妻黄色片| 国产欧美日韩一区二区三 | 亚洲国产欧美网| 色精品久久人妻99蜜桃| 91精品三级在线观看| 91精品三级在线观看| 精品久久久久久久毛片微露脸 | 美女视频免费永久观看网站| 老汉色∧v一级毛片| 97在线人人人人妻| 国产在线一区二区三区精| 一本久久精品| 中文字幕色久视频| 久久国产精品大桥未久av| 亚洲av综合色区一区| 两个人看的免费小视频| 国产黄频视频在线观看| 亚洲久久久国产精品| 免费在线观看影片大全网站 | 久久 成人 亚洲| 中文欧美无线码| 久久毛片免费看一区二区三区| 中国美女看黄片| 亚洲av在线观看美女高潮| 91九色精品人成在线观看| 少妇人妻久久综合中文| 看十八女毛片水多多多| 九草在线视频观看| 国产av精品麻豆| 欧美性长视频在线观看| 久久久久久久精品精品| 欧美日韩国产mv在线观看视频| 丝袜美足系列| 欧美精品啪啪一区二区三区 | 日韩伦理黄色片| 18在线观看网站| 国产精品成人在线| 美女大奶头黄色视频| 欧美日韩亚洲综合一区二区三区_| 午夜福利,免费看| 成年动漫av网址| av视频免费观看在线观看| 久久久精品区二区三区| 超碰成人久久| 看免费av毛片| 中文字幕色久视频| 国产麻豆69| 亚洲av欧美aⅴ国产| 久久精品国产亚洲av高清一级| 亚洲av国产av综合av卡| 亚洲国产av新网站| 欧美日韩国产mv在线观看视频| 免费在线观看影片大全网站 | 国产精品秋霞免费鲁丝片| 精品一区二区三区av网在线观看 | 99国产精品一区二区蜜桃av | 蜜桃国产av成人99| videosex国产| 麻豆国产av国片精品| 亚洲情色 制服丝袜| 亚洲av综合色区一区| 久久毛片免费看一区二区三区| 国产女主播在线喷水免费视频网站| 国产97色在线日韩免费| 在线 av 中文字幕| 久久久欧美国产精品| 最近最新中文字幕大全免费视频 | 欧美在线黄色| 亚洲av欧美aⅴ国产| 成人国语在线视频| 秋霞在线观看毛片| 久久av网站| 欧美成狂野欧美在线观看| av一本久久久久| 亚洲精品日本国产第一区| 人人妻,人人澡人人爽秒播 | 中国国产av一级| 亚洲一区中文字幕在线| 亚洲人成网站在线观看播放| 又大又黄又爽视频免费| 精品卡一卡二卡四卡免费| 国产日韩欧美视频二区| 一本一本久久a久久精品综合妖精| 欧美人与性动交α欧美精品济南到| 丰满迷人的少妇在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 91字幕亚洲| 亚洲人成网站在线观看播放| 久久鲁丝午夜福利片| 欧美日韩黄片免| 蜜桃在线观看..| 天堂俺去俺来也www色官网| 欧美人与性动交α欧美软件| av在线播放精品| 人人妻人人添人人爽欧美一区卜| 国产亚洲午夜精品一区二区久久| 婷婷丁香在线五月| 国产成人91sexporn| 色婷婷av一区二区三区视频| 亚洲欧美成人综合另类久久久| 精品国产乱码久久久久久小说| 国产成人影院久久av| 肉色欧美久久久久久久蜜桃| 最近中文字幕2019免费版| 伊人亚洲综合成人网| 母亲3免费完整高清在线观看| 日韩一本色道免费dvd| 亚洲欧美成人综合另类久久久| 欧美另类一区| 老司机午夜十八禁免费视频| 丰满少妇做爰视频| 国产成人精品久久二区二区免费| 亚洲国产av影院在线观看| 午夜激情久久久久久久| 亚洲精品国产一区二区精华液| 精品久久久精品久久久| 狂野欧美激情性bbbbbb| 99九九在线精品视频| 亚洲色图综合在线观看| 久久久久国产一级毛片高清牌| 日韩制服骚丝袜av| 亚洲精品一二三| 亚洲精品第二区| 久久久精品区二区三区| 国产一级毛片在线| 性色av一级| 欧美成人午夜精品| 性色av一级| 97精品久久久久久久久久精品| 一区二区三区激情视频| 777米奇影视久久| 成人国语在线视频| 免费不卡黄色视频| 99热网站在线观看| www.精华液| 免费一级毛片在线播放高清视频 | 欧美精品人与动牲交sv欧美| 亚洲五月婷婷丁香| 纵有疾风起免费观看全集完整版| 只有这里有精品99| 国产一区亚洲一区在线观看| 天堂8中文在线网| 在现免费观看毛片| 日本欧美视频一区| 最近最新中文字幕大全免费视频 | 欧美中文综合在线视频| 亚洲欧洲日产国产| 无限看片的www在线观看| 亚洲 国产 在线| 国产淫语在线视频| 最新的欧美精品一区二区| 高清av免费在线| 女人爽到高潮嗷嗷叫在线视频| 黑人巨大精品欧美一区二区蜜桃| 欧美激情极品国产一区二区三区| 91国产中文字幕| 美女扒开内裤让男人捅视频| 咕卡用的链子| 777久久人妻少妇嫩草av网站| 午夜福利,免费看| 久久久国产精品麻豆| 久久精品亚洲av国产电影网| 精品一区在线观看国产| 亚洲 欧美一区二区三区| 亚洲国产成人一精品久久久| 99国产精品免费福利视频| 亚洲美女黄色视频免费看| 久久人人爽av亚洲精品天堂| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放| 波多野结衣一区麻豆| 热re99久久国产66热| 免费在线观看影片大全网站 | 好男人视频免费观看在线| 亚洲精品国产色婷婷电影| 中文精品一卡2卡3卡4更新| 亚洲欧美成人综合另类久久久| 爱豆传媒免费全集在线观看| 男女高潮啪啪啪动态图| 久久精品久久精品一区二区三区| 亚洲欧洲日产国产| av在线播放精品| 一本久久精品| 老司机深夜福利视频在线观看 | 国产精品一区二区在线不卡| 欧美国产精品一级二级三级| 国产免费视频播放在线视频| 一本综合久久免费| 久久久久久久大尺度免费视频| 国产在线观看jvid| svipshipincom国产片| 国产成人av教育| 亚洲av男天堂| bbb黄色大片| 日韩av免费高清视频| 99久久99久久久精品蜜桃| 欧美性长视频在线观看| 亚洲欧美精品综合一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久久久久免费高清国产稀缺| 欧美 日韩 精品 国产| 美女午夜性视频免费| 亚洲国产日韩一区二区| 大香蕉久久网| 中国美女看黄片| 精品一区二区三区四区五区乱码 | 亚洲成人免费电影在线观看 | 久久国产精品大桥未久av| 日本av免费视频播放| 久久久久久亚洲精品国产蜜桃av| 国产日韩一区二区三区精品不卡| 亚洲免费av在线视频| 汤姆久久久久久久影院中文字幕| 又大又黄又爽视频免费| 精品一区二区三区四区五区乱码 | 男人添女人高潮全过程视频| 欧美老熟妇乱子伦牲交| 亚洲精品美女久久av网站| 一级,二级,三级黄色视频| 大香蕉久久成人网| 中文精品一卡2卡3卡4更新| 欧美少妇被猛烈插入视频| 亚洲av男天堂| 国产精品一区二区免费欧美 | 无限看片的www在线观看| 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区| a 毛片基地| 波野结衣二区三区在线| 一级片'在线观看视频| 国产成人av激情在线播放| 在线观看免费视频网站a站| 亚洲激情五月婷婷啪啪| 亚洲,一卡二卡三卡| 久久精品aⅴ一区二区三区四区| 一级片免费观看大全| 亚洲色图综合在线观看| 91字幕亚洲| 丝袜人妻中文字幕| 色播在线永久视频| 80岁老熟妇乱子伦牲交| 91麻豆av在线| 少妇粗大呻吟视频| 天天操日日干夜夜撸| 午夜日韩欧美国产| 久久亚洲国产成人精品v| cao死你这个sao货| 脱女人内裤的视频| 国产精品久久久av美女十八| 成年人黄色毛片网站| 在线观看免费高清a一片| 久久av网站| e午夜精品久久久久久久| 亚洲国产成人一精品久久久| 天天操日日干夜夜撸| 久久影院123| 欧美在线黄色| 久久性视频一级片| 久久ye,这里只有精品| 国产精品免费视频内射| 五月开心婷婷网| 亚洲国产精品一区三区| 巨乳人妻的诱惑在线观看| 午夜av观看不卡| 中文字幕av电影在线播放| 熟女av电影| 亚洲人成电影免费在线| 日韩 亚洲 欧美在线| 亚洲成av片中文字幕在线观看| 少妇的丰满在线观看| 亚洲av综合色区一区| 国产伦人伦偷精品视频| 黄色a级毛片大全视频| 久久久欧美国产精品| 日本wwww免费看| 国产精品熟女久久久久浪| 国产av精品麻豆| 久久热在线av| 女人高潮潮喷娇喘18禁视频| 日本午夜av视频| 久久久久网色| 欧美黑人欧美精品刺激| 国产人伦9x9x在线观看| 国产日韩欧美在线精品| 一区在线观看完整版| 韩国高清视频一区二区三区| 精品福利永久在线观看| 高清不卡的av网站| 亚洲视频免费观看视频| av网站在线播放免费| 在线观看www视频免费| 成年美女黄网站色视频大全免费| 啦啦啦在线免费观看视频4| 久久久久久人人人人人| 成人手机av| 欧美精品啪啪一区二区三区 | 国产一区二区三区综合在线观看| av又黄又爽大尺度在线免费看| 久久精品国产a三级三级三级| 18在线观看网站| 日韩免费高清中文字幕av| 成人免费观看视频高清| www.精华液| 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区免费开放| 午夜激情av网站| 色网站视频免费| av天堂久久9| 热99久久久久精品小说推荐| 欧美日韩亚洲国产一区二区在线观看 | 美女高潮到喷水免费观看| 国产精品秋霞免费鲁丝片| 男人爽女人下面视频在线观看| 1024香蕉在线观看| 国产精品人妻久久久影院| 久热爱精品视频在线9| 人人妻人人澡人人爽人人夜夜| 中国美女看黄片| 一本色道久久久久久精品综合| 一二三四在线观看免费中文在| 国产淫语在线视频| 久久久久久久久久久久大奶| 精品欧美一区二区三区在线| 亚洲欧美清纯卡通| videos熟女内射| 国产精品av久久久久免费| 观看av在线不卡| www日本在线高清视频| 国产淫语在线视频| 亚洲一区二区三区欧美精品| www.熟女人妻精品国产| 在线观看www视频免费| 国产一区二区三区综合在线观看| 操美女的视频在线观看| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 精品人妻一区二区三区麻豆| 操出白浆在线播放| 久久人人97超碰香蕉20202| 欧美日韩成人在线一区二区| 曰老女人黄片| 久久免费观看电影| 欧美人与性动交α欧美软件| 国产精品一区二区在线观看99| 亚洲成人手机| 尾随美女入室| svipshipincom国产片| 午夜免费男女啪啪视频观看| 午夜久久久在线观看| 飞空精品影院首页| av福利片在线| 日韩一区二区三区影片| 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 亚洲av日韩在线播放| 亚洲国产欧美网| 人体艺术视频欧美日本| 欧美另类一区| 蜜桃在线观看..| 精品欧美一区二区三区在线| 久久国产精品人妻蜜桃| kizo精华| 久久热在线av| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 久热这里只有精品99| 欧美少妇被猛烈插入视频| 新久久久久国产一级毛片| 老司机午夜十八禁免费视频| 新久久久久国产一级毛片| 女人精品久久久久毛片| 日韩视频在线欧美| 亚洲综合色网址| 日韩精品免费视频一区二区三区| xxx大片免费视频| 男人添女人高潮全过程视频| 免费av中文字幕在线| 久久毛片免费看一区二区三区| 欧美国产精品一级二级三级| 欧美老熟妇乱子伦牲交| 欧美久久黑人一区二区| 黄色视频不卡| 亚洲国产欧美网| 久久人妻福利社区极品人妻图片 | 另类亚洲欧美激情| 欧美久久黑人一区二区| 国产在线免费精品| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区在线观看99| 咕卡用的链子| 男女下面插进去视频免费观看| 欧美日韩精品网址| 亚洲精品日韩在线中文字幕| 亚洲欧美一区二区三区久久| 午夜免费成人在线视频| 国产成人精品在线电影| 国产欧美日韩精品亚洲av| 国产精品国产av在线观看| 美女脱内裤让男人舔精品视频| 亚洲五月婷婷丁香| 18禁黄网站禁片午夜丰满| 美女福利国产在线| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲精品久久久久5区| 大片电影免费在线观看免费| 丰满饥渴人妻一区二区三| 黄色视频不卡| 桃花免费在线播放| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 99热国产这里只有精品6| 男人爽女人下面视频在线观看| 国产伦理片在线播放av一区| bbb黄色大片| 九色亚洲精品在线播放| 成人免费观看视频高清| 午夜久久久在线观看| 侵犯人妻中文字幕一二三四区| 黄频高清免费视频| 啦啦啦啦在线视频资源| 美女主播在线视频| 日本91视频免费播放| 日韩av免费高清视频| 欧美老熟妇乱子伦牲交| 国产成人免费无遮挡视频| 一级毛片黄色毛片免费观看视频| 777久久人妻少妇嫩草av网站| 久久99精品国语久久久| 久久久久久久国产电影| 国产一区亚洲一区在线观看| 久久天堂一区二区三区四区| 日日摸夜夜添夜夜爱| 久久人妻福利社区极品人妻图片 | av不卡在线播放| 99国产精品一区二区三区| 国产野战对白在线观看| 久久人妻福利社区极品人妻图片 | 高清不卡的av网站| 性色av一级| 19禁男女啪啪无遮挡网站| 99热国产这里只有精品6| 欧美日韩国产mv在线观看视频| 91成人精品电影| 亚洲激情五月婷婷啪啪| 国产99久久九九免费精品| 无遮挡黄片免费观看| 亚洲人成电影观看| 丝袜美足系列| 午夜福利一区二区在线看| 黄色片一级片一级黄色片| 亚洲欧美中文字幕日韩二区| 老汉色av国产亚洲站长工具| 久久久久国产一级毛片高清牌| 国产无遮挡羞羞视频在线观看| 亚洲九九香蕉| 人人澡人人妻人| 欧美+亚洲+日韩+国产| 一区在线观看完整版| 国产亚洲精品第一综合不卡| www.熟女人妻精品国产| 亚洲中文av在线| 超碰成人久久| 中文欧美无线码| 精品人妻1区二区| √禁漫天堂资源中文www| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美软件| 只有这里有精品99| 亚洲少妇的诱惑av| 欧美精品一区二区大全| xxx大片免费视频| 老司机午夜十八禁免费视频| 王馨瑶露胸无遮挡在线观看| 亚洲国产看品久久| 亚洲一区二区三区欧美精品| 色综合欧美亚洲国产小说| 国产精品 欧美亚洲| 熟女少妇亚洲综合色aaa.| 国产精品三级大全| 久久热在线av| 美女福利国产在线| 欧美人与性动交α欧美软件| kizo精华| 国产精品人妻久久久影院| 亚洲欧美中文字幕日韩二区| 精品人妻在线不人妻| 麻豆国产av国片精品| 又黄又粗又硬又大视频| 亚洲国产精品国产精品| 国产熟女欧美一区二区| 国产97色在线日韩免费| 99久久99久久久精品蜜桃| 999久久久国产精品视频| 叶爱在线成人免费视频播放| 制服人妻中文乱码| 日本91视频免费播放| 久久99精品国语久久久| 美国免费a级毛片| 在线精品无人区一区二区三| 高清av免费在线| 日韩制服丝袜自拍偷拍| 又大又爽又粗| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| 亚洲伊人久久精品综合| 国产无遮挡羞羞视频在线观看| 永久免费av网站大全| 丁香六月欧美| 国产精品久久久人人做人人爽| 国产精品 国内视频| 啦啦啦视频在线资源免费观看| 日本黄色日本黄色录像| 高清欧美精品videossex| 久久精品亚洲av国产电影网| 精品亚洲成国产av| 欧美久久黑人一区二区| 欧美日韩亚洲综合一区二区三区_| 亚洲熟女毛片儿| 亚洲av男天堂| 亚洲国产精品999| 亚洲欧美清纯卡通| 中文欧美无线码| 国产一区有黄有色的免费视频| 夫妻午夜视频| 女性生殖器流出的白浆| 丝袜脚勾引网站| 免费观看a级毛片全部| 亚洲av在线观看美女高潮| 免费av中文字幕在线| 精品久久久久久久毛片微露脸 | 人妻人人澡人人爽人人| 亚洲五月婷婷丁香| 无遮挡黄片免费观看| 50天的宝宝边吃奶边哭怎么回事| 51午夜福利影视在线观看| 悠悠久久av| 日韩av免费高清视频| 女性生殖器流出的白浆| 侵犯人妻中文字幕一二三四区| 日韩一卡2卡3卡4卡2021年| kizo精华| 老司机深夜福利视频在线观看 | 久久国产精品人妻蜜桃| 免费观看人在逋| 999精品在线视频| 一边亲一边摸免费视频| 国产免费现黄频在线看| 国产亚洲av高清不卡| 国产亚洲精品久久久久5区| 免费在线观看日本一区| 不卡av一区二区三区| 免费黄频网站在线观看国产| 久久精品亚洲av国产电影网| 亚洲精品国产av成人精品| 99国产精品免费福利视频| 后天国语完整版免费观看| 曰老女人黄片| 久久鲁丝午夜福利片| 男女国产视频网站| 青春草视频在线免费观看| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播 | 女人精品久久久久毛片| 精品人妻1区二区| 国产成人91sexporn| 国产高清视频在线播放一区 | 精品福利永久在线观看| 中文乱码字字幕精品一区二区三区| 中文字幕人妻丝袜制服| 人妻人人澡人人爽人人| 你懂的网址亚洲精品在线观看| 9191精品国产免费久久| 久久女婷五月综合色啪小说| 男男h啪啪无遮挡|