• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MULTIPLICITY AND CONCENTRATION BEHAVIOUR OF POSITIVE SOLUTIONS FOR SCHR?DINGER-KIRCHHOFF TYPE EQUATIONS INVOLVING THE p-LAPLACIAN IN RN?

    2018-05-05 07:08:47HuifangJIAGongbaoLI李工寶

    Huifang JIA(賈)Gongbao LI(李工寶)

    Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China E-mail:hf jia@mails.ccnu.edu.cn;ligb@mail.ccnu.edu.cn

    1 Introduction

    In this article,we consider the multiplicity and concentration behavior of positive solutions for the following Schr?dinger-Kirchhofftype problem

    involving the p-Laplacian,where 1<p<N,M:R+→R+,V:RN→R+are continuous function,∈is a small positive parameter,and Δpu=div(|?u|p?2?u)is the p-Laplacian of u.We assume that the potential V satisfies

    (V1)V∈C(RN,R)and

    (V2)for each δ> 0,there is an open and bounded set Λ = Λ(δ) ? RNdepending on δ such that

    and

    Problem(Q∈)is of nonlocal because of the presence of the termwhich implies that the equation in(Q∈)is no longer a pointwise identity.

    Problem(Q∈)is a natural extension of two classes of problems of great importance in applications,namely,Kirchhofftype problems and Schr?dinger type problems.

    (a)When ∈=1,p=2,and V=0,problem(Q∈)becomes the following problem

    which represents the stationary case of Kirchhoffmodel for small transverse vibrations of an elastic string by considering the effects of the changes in the length of the string during the vibrations.

    (b)When M ≡1 and p=2,(Q∈)becomes

    which arises in different models,for example,to get a standing wave,that is,a solution of the form Ψ(x,t)=exp(?iEt/∈)u(x)of the following nonlinear Schr?dinger equation

    where f(t)=|t|s?2t,N > 2,and 2< s< 2?=,and it will led to the study of(1.2).Many studies about the existence and concentration of positive solutions for problem(1.2)appeared in the past decade;see[1,4,16]and the references therein.

    Recently,the following Kirchhofftype equation

    has been studied extensively by many researchers,where f∈C(R3×R,R),and a,b>0 are constants.

    X.He and W.Zou in[7]studied(1.4)under the conditions that f(x,u):=f(u)∈C1(R+,R+)satisfies the Ambrosetti-Rabinowitz condition((AR)condition in short):

    Similarly,J.Wang et al[15],Y.He,G.Li,and S.Peng[9],and G.Li and H.Ye[11]used the same arguments as in[7]to prove the existence of a positive ground state solution for(1.4)when f(x,u):=λf(u)+|u|4u,which exhibits a critical growth,wheref(u)u≥0,f(u)/u3is strictly increasing for u>0,and |f(u)|≤C(1+|u|q)for some 3<q<5,that is,f(x,u)~ λ|u|p?2u+|u|4u(4< p< 6).

    For the case f(x,u)=|u|p?2u(3< p≤ 4),G.Li and H.Ye[10]used the constrained minimization on a new manifold,which is obtained by combining the Nehari manifold and the corresponding Pohozaev’s identity,to get a positive ground state solution to(1.4).

    Recently,Y.He and G.Li in[8]studied the following Kirchhofftype equation with critical nonlinearity:

    where ε is a small positive parameter,a,b> 0,λ > 0,and 2< p≤ 4.The potential V satisfies(V3)V∈C(R3,R)and

    (V4)there is a bounded domain Λ such that

    They constructed a family of positive solutions uε∈ H1(R3)which concentrates around a local minimum of V as ε→ 0.

    M.del Pino and P.Felmer in[4]studied(1.2)with the conditions on V replaced by(V3)and(V4).They proved that(1.2)possesses a positive bound state solution for ε> 0 small which concentrates around the local minima of V in Λ as ε→ 0.

    In[6],G.Figueiredo,N.Ikoma,and J.Junior obtained the existence of positive solutions of the following equation

    concentrating around a local minima of V under the conditions(V3),(V4),and the following conditions on f and M:

    (F1)f∈C(R,R),f(s)=0 if s≤0;

    (F2)?∞<

    (F3)when N ≥ 3,f(s)/s(N+2)/(N?2)→ 0 as s→ ∞ and when N=2,f(s)/eαs2→ 0 as s→∞for any α>0;

    (F4)there exists an s0>0 such thatwhere F(s):=f(t)dt when N≥2,and when N=1,?and there exists a>0 such that M(t)≥>0 for any t≥2;then,there holds→0 as t→∞;

    G.Figueiredo and J.Santos in[5]studied the multiplicity and concentration behavior of positive solutions of the following elliptic problem

    where∈is a small positive parameter,the potential V satisfies(V1)and(V2),and the function M:[0,∞)→R+satisfies

    (M1)M∈C()andM(t)≥ m0> 0,where m0> 0 is a constant;

    (M2)the function t→M(t)is increasing on[0,+∞);

    (M3)for all t1≥t2>0,

    and f satisfies

    (F5)

    (F6)there is a q∈(4,6)such that

    (F7)there is a θ∈(4,6)such that

    (F8)the application

    is nondecreasing in(0,∞).

    Motivated by the results in[5],we study the existence,multiplicity,and concentration behavior of positive solutions of the problem(Q∈)by using the variational method and the penalization method.

    Before stating our main result,we make the following hypotheses:

    (f1)f ∈ C(R,R)and there exist q,with p< q< p?,a1> 0 such that|f(t)|≤ a1(1+|t|q?1)for all t>0;

    (f2)there exists θ> 2p such thatfor all t> 0;

    (f3)f(t)=o(|t|p?1)as t→ 0;

    (f4)the functionis increasing for t> 0.

    We define

    with the norm

    It is easy to see that(E,‖ ·‖E)is a real Banach space.

    We call u ∈ E a weak solution to(Q∈)if for any ? ∈ E,it holds that

    For I∈C1(E,R),we say that(un)?E is a Palais-Smale(PS)sequence at level c(henceforth denoted(PS)c)for I if(un)satisfies

    Moreover,I satisfies the(PS)ccondition if any(PS)csequence possesses a convergent subsequence.

    We recall that,if A is a closed set of a topological space of X,CatX(A)is the Ljusternik-Schnirelmann category of A in X,namely,the least number of closed and contractible sets in X which cover A.

    Our main result is as follows:

    Theorem 1.1Suppose that the function M satisfies(M1)–(M3),the potential V satisfies(V1)–(V2),and the function f satisfies(f1)–(f4).Then,for any δ> 0,there exists a ∈δ> 0 such that,for any ∈∈ (0,∈δ),the problem(Q∈)has at least CatΠδ(Π)positive solutions.Moreover,if u∈denotes one of these positive solutions and η∈∈ RNits global maximum,then

    Remark 1.2Our main result for the problem(Q∈)when p=2 includes the main result of[5]as a special case.A typical example of function f satisfying the conditions(f1)–(f4)is given bywith λi≥ 0 not all null and 2p < qi< p?for all i∈ {1,2,···,k}.Any function of the formsatisfies the hypotheses(M1)–(M3)for all i∈ {1,2,···,k},where m0> 0,b> 0,bi≥ 0,and γi∈ (0,1).

    The proof of Theorem 1.1 is based on the frame work used in[5]which uses the Lusternik-Schnirelmann theory and abstract minimax theorems(see[14,17]).The main difficulties are the appearance of the non-local term and the lack of compactness because of the unboundedness of the domain RN.Moreover,as f is only continuous,we cannot use standard arguments on the Nehari manifold.As we will see later,the competing effect of the nonlocal term with the nonlinearity f(u)and the lack of compactness of the Sobolev’s embedding prevent us from using the variational methods in a standard way.

    Now,we outline the sketch of the proof of our main result.The problem(Q∈)is equivalent to the following problem

    by using the change of variable v(x)=u(∈x).The corresponding energy functional associated with problem()is defined by

    The norm of u ∈ E∈is defined asand E∈is a Banach space under the norm ‖ ·‖∈given above.

    In order to overcome the obstacle caused by the non-compactness because of the unboundness of the domain RN,following[4],we will modify the nonlinearity in a special way and to work with a auxiliary problem.

    Let δ> 0 and the related bounded domain Λ be given as in(V2)and letwhere m0was given in(M1),and a>0 verifyingwhere V0>0 was given in(V1).We consider the following auxiliary problem

    where

    with

    Here,χΛdenotes the characteristic function of the set Λ.

    It is easy to see that under the assumptions(f1)–(f4),g(x,t)is a Caratheodory function satisfying the following assumptions:

    (g1)g∈(x,t)=o(|t|p?1)as t→ 0 uniformly in x ∈ RN;

    (g2)g(x,t)≤f(t)for all x∈RN,t>0;

    (g3)0 < θG∈(x,t)≤ g∈(x,t)t,?(x,t)∈ Λ∈×(0,∞),where θ is given in(f2);

    (g4)

    (g5)for each x∈ Λ,the application t→is increasing in(0,∞),and for each x ∈ RNΛ,the application t→is increasing in(0,a).

    The energy functional I∈:E∈→ R associated with(Q∈,g)is given by

    Using variational method,we can prove that the auxiliary functional I∈satisfies the Palais-Smale condition,and the auxiliary problem(Q∈,g)has a positive ground state solution for all∈>0.

    Because we are interested in giving a multiplicity result for the auxiliary problem(Q∈,g),we need to study the limit problem associated to(),namely,the following problem

    with the energy functional

    This functional is well defined on the spacewith the norm

    for u0∈E0.Next,using the technique due to V.Benci and G.Cerami[2],we establish a relationship between the category of the set Π and the number of solutions for the auxiliary problem,and we will show that(Q∈,g)has multiple positive solutions by using Lusternik-Schnirelmann theory.Finally,we use the Moser iteration technique in[13]to prove that the solutions for the auxiliary problem(Q∈,g)are indeed solutions for the original problem.

    We note that the function f in this article is only a continuous function,then we cannot apply standard arguments by using the Nehari manifold.We overcome this difficulty by the methods given in[14].

    Throughout this article,we use standard notations.For simplicity,we writeR?h to mean the Lebesgue integral of h(x)over a Lebesgue measurable set ??RN.For a Lebesgue measurable set A,we denote the Lebesgue measure of A by|A|.Lp=Lp(RN)(1<p≤∞)is the usual Lebesgue space with the standard norm|·|p.We use“→ ”and“? ”to denote the strong and weak convergence in the related function spaces,respectively.C and Ciwill denote positive constants unless specified.BR(x):={y ∈ RNy ? x|< R,x ∈ RN}. 〈·,·〉denote the dual pair for any Banach space and its dual space.

    2 The Auxiliary Problem

    By using the change of variable v(x)=u(∈x),we see that problem(Q∈)is equivalent to the following problem

    In order to find positive solutions to(),without loss of generality,we shall assume that f(s)=0 for all s≤ 0.The corresponding energy functional associated with problem()is defined by

    ∈given by

    in which the norm of u∈E∈is given by

    We see that J∈∈ C1(E∈,R)and

    From now on,we will denote by E0the space E∈with∈=0.We know that E∈is continuously embedded in Lν(RN)for ν ∈ [p,p?];moreover,E∈is compactly embedded in Lν(A)for ν ∈[p,p?)for any bounded measurable set A ? RN.

    In order to overcome the lack of compactness of the problem(eQ∈),we shall adapt the penalization method introduced by del Pino and Felmer in[4].

    where V0>0 was given as in(V1).Using these numbers,we set the functions

    and

    where Λ was given as in(V2)for related fixed δ> 0,and χΛdenotes the characteristic function of the set Λ.

    Using the above functions,we will study the existence of positive solution for the following auxiliary proble

    where

    Here,we recall that if u∈∈ E is a solution to prpblem(Q∈,g)with

    where Λ∈= Λ/∈,then,u∈(x)is a solution of problem().

    Associated with(Q∈,g),we have the energy functional I∈:E → R given by

    where

    which is well defined on the space E∈and I∈∈ C1(E∈,R).Also,

    Using the definition of g,it follows that

    (g1)g∈(x,t)=o(|t|p?1)as t→ 0 uniformly in x ∈ RN;

    (g2)g(x,t)≤f(t)for all x∈RN,t>0;

    (g3)0 < θG∈(x,t)≤ g∈(x,t)t,?(x,t)∈ Λ∈×(0,∞),where θ is given in(f2);

    (g4)0 ≤ 2pG∈(x,t)≤ g∈(x,t)t≤,?(x,t)∈ (Λ∈)c× (0,∞);

    (g5)for each x∈ Λ,the application t→is increasing in(0,∞)and for each x ∈ RNΛ,the application t→is increasing in(0,a).

    Lemma 2.1The functional I∈satisfies the following conditions:

    (i)There are α0> 0,ρ0> 0 such that

    (ii)There is an e∈ E∈with ‖v‖∈> ρ0and I∈(e)< 0.

    Proof(i)From(g1)and(g2),for every∈>0,we have

    Taking∈=min{1,m0}/2pCppand setting

    we see that there exists an ρ0> 0 such thatas q > p > 1 by(f1),we obtain I∈(v)≥ α0= ρ0η(ρ0)> 0 for all v ∈ E∈,with ‖v‖∈= ρ0.

    (ii)Fix u ∈ E∈with suppu ? Λ∈,and ‖u‖∈=1.By assumption(M3),we see that there is a γ1> 0 such that M(t)≤ γ1(1+t)for all t≥ 0.

    Then,for t>0,we have

    because θ> 2p> p> 1 by(f2).The Lemma 2.1(ii)is then proved by taking v=t0u,with t0>0 large enough.

    The main feature of the auxiliary functional is that it satisfies the Palais-Smale condition as we can see from the next result.

    Proposition 2.2The functional I∈verifies the(PS)ccondition in E∈for any c>0.

    Proof(1)Assume that{un}is a(PS)csequence for I∈,then,

    By using the hypothesis(M3),we deduce thatfor all t≥0.By(g3)and(g4),we obtain

    therefore,{un}is bounded in E∈.Passing to a subsequence,for some u ∈ E∈,we obtain

    Next,we will prove that{un}has a convergent subsequence in E∈.Firstly,we give two claims,

    Claim 1For all R>0,

    Indeed,we assume that‖un‖∈→ t0as n → ∞,we have‖u‖∈≤ t0.Take ηρ∈ C∞(RN)such that

    For each R > 0 fixed,denoting a(ξ,η)=(|ξ|p?2ξ? |η|p?2η,ξ? η),it is well known that a(ξ,η)> 0 for any p > 1 and ξ,η ∈ RNwith ξ/= η.Choosing ρ > R,we obtain

    Setting

    we have

    Observe that

    As{unηρ}is bounded in E∈,we have〈I′∈(un),(unηρ)〉=on(1).Moreover,from a straight forward computation,

    thus,

    On the other hand,from the weak convergence,

    We see that

    We conclude that

    From(2.3),(2.5)–(2.8),we obtain

    Hence,we obtain

    By Lemma 2.1 of[3],for p ≥ 2 and ξ,η ∈ RN,

    for 1 < p < 2 and ξ,η ∈ RN,

    here,d1,d2,d3,and d4are some constants.

    Using the above inequalities,for 1<p<2,we know that

    For p≥2,

    and consequently,

    Claim 2For each ξ> 0,there is an R=R(ξ)> 0 such that

    For R >0,let ηR∈C∞(RN)be such that

    with 0 ≤ ηR(x)≤ 1,|?ηR|≤,and C is a constant independent on R.Because{ηRun}is bounded in E∈,it follows fromthat

    Therefore, fixing R > 0 such that Λ∈? BR2(0)and by using(M1)and(g3),we have

    Thus,

    By using Cauchy-Schwarz and H?lder’s inequality,we have

    As{un}and{unηR}are bounded in E∈,we obtain

    Therefore,for each ξ> 0,there is an R=R(ξ)> 0 such that

    hence,‖un‖∈→ ‖u‖∈,and un→ u in E∈.

    Theorem 2.3Suppose that the conditions(M1)–(M3),(V1)–(V2),and(f1)–(f4)are satisfied.Then,the auxiliary problem(Q∈,g)has a positive ground state solution for all∈> 0.

    ProofThis result follows from Lemma 2.1,Proposition 2.2,and the maximum principle.

    Next,we introduce some tools needed for the multiplicity result of the auxiliary problem(Q∈,g).

    We denote by N∈the associated Nehari manifold of I∈given by

    Set Γu+={x∈RN|u+(x)/=0},letbe the open subset of E∈given by

    The idea of the proof of the next two results comes from[14](See also[5]).

    Lemma 2.4Suppose that the conditions(M1)–(M3),(V1)–(V2),and(f1)–(f4)are satisfied.Then,we have the following results:

    (A1)For each u∈and by hu(t)=I∈(tu),there exists a unique tu>0 such that>0 in(0,tu)and< 0 in(tu,∞).

    (A2)There is a τ>0 independent on u such that tu> τ for all u∈Moreover,for each compact set W?,there is a CW>0 such that tu≤CWfor all u∈W.

    (A3)The mapgiven byis continuous andis a homeomorphism betweenand N∈.Moreover,

    (A4)If there is a sequence(un)?such that dist(un,)→0,then,‖r∈(un)‖∈→ ∞and I∈(r∈(un))→ ∞ as n → ∞ for each ∈> 0.

    ProofIt is clear that,by Lemma 2.1,hu(0)=0,hu(t)>0 for t>0 small,and hu(t)<0 for t> 0 large.Thus,there is a global maximum point tu> 0 of husuch that=0,that is,tuu∈ N∈.We claim that there is a unique tu> 0 such that=0.Indeed,suppose that there exist t1>t2>0 withThen,for i=1,2,

    Therefore,

    By using(M3)and the definition of g,we obtain

    So,

    As u/=0,which is absurd in view of min{m0,1}≤<min{m0,1}.Thus,(A1)is proved.

    which implies that tu≥τ for some τ>0.If W?is compact,then argue by contradiction that there is a sequence{un}?W such that tun→∞.As W is compact,there is a u∈W with un→ u in E∈.By the process of the proof of Lemma 2.1,we know that I∈(tunun)→ ?∞.Note that if v∈ N∈,then,by(M3),(g3),and(g4),we obtain

    Because{tunun}? N∈,which contradicts to the fact that{tunun}? N∈and I∈(tunun)→?∞.This proves(A2).

    So,by(M1),we have

    we conclude that r∈is a bijection betweenand N∈.

    Letting n→∞,we have

    It follows from(f1),(g3),and(g4)that

    for each t>0.Thus,

    By using the definition of r∈,we get

    As t>0 is arbitrary,we have

    We conclude from(M3)that

    for each n ∈ N,so,‖r∈(un)‖∈→ ∞ as n → ∞.The Lemma is proved.

    Now,we define the applications

    The next proposition can be found in[[14],Corollary 2.3],and we omit the proof of it.

    Proposition 2.5Suppose that the conditions(M1)–(M3),(V1)–(V2),and(f1)–(f4)are satisfied.Then,the following properties are obtained:(a)and

    (c)If{un}is a(PS)csequence of Ψ∈,then,{r∈(un)}is a(PS)csequence for I∈.If{un} ? N∈is a bounded(PS)csequence of I∈,then,{(un)}is a(PS)csequence for Ψ∈.

    (d)u is a critical point of Ψ∈if and only if r∈(u)is a nontrivial critical point of I∈.Moreover,the corresponding critical values Ψ∈and I∈coincide,and

    Remark 2.6As in[14],we have the following minimax characterization of the in fimum of I∈over N∈,

    Corollary 2.7([5],Corollary 2.1) The functional Ψ∈given in Proposition 2.5 satisfies the(PS)ccondition on.

    3 Multiplicity of Solutions of Auxiliary Problem

    3.1 The autonomous problem

    In this section,we prove a multiplicity result for problem(Q∈,g).We first consider the associated limit problem of(),which is given as

    with the corresponding energy functional

    We denote by N0the associated Nehari manifold of J0given by

    Lemma 3.1Suppose that the conditions(M1)–(M3),(V1)–(V2),and(f1)–(f4)are satisfied.Then,we obtain the following results:

    (A1)For each u∈and by gu(t)=J0(tu),there is a unique tu>0 such that>0 in(0,tu)and<0 in(tu,∞).

    (A2)There is a τ>0 independent on u such that tu≥ τ for all u∈.Moreover,for each compact set W?there is a CW>0 such that tu≤CWfor all u∈W.

    (A3)The map:→N0given by=tuu is continuous,and r=is a homeomor

    (A4)If there is a sequence{un} ?such that dist(un,)→ 0,then,‖r(un)‖0→ ∞ and J0(r(un))→∞as n→∞for each∈>0.

    ProofThe proof of Lemma 3.1 is similar to that of Lemma 2.4.

    We set the applications

    Proposition 3.2Suppose that the conditions(M1)–(M3),(V1)–(V2),and(f1)–(f4)are satisfied.So,we have the following properties:and

    (c)If{un}is a(PS)csequence of Ψ0,then,{r(un)}is a(PS)csequence of J0.If{un} ? N0is a bounded(PS)csequence of J0,then,{r?1(un)}is a(PS)csequence of Ψ0.

    (d)u is a critical point of Ψ0if and only if r(u)is a nontrivial critical point of J0.Moreover,corresponding critical values coincide and

    ProofThe proof of Proposition 3.2 is similar to that of Proposition 2.5.

    Remark 3.3Similar to Remark 2.6,we have

    Lemma 3.4Assume that{un}?E0is a(PS)csequence for J0satisfying un?0 in E0.Then,one and only one of the following alternatives holds,

    (a)un→0 in E0,or

    (b)there exist constants R,β>0 and sequence{yn}?RNsuch that

    ProofSuppose that case(b)is flase,we would have

    for all R > 0.Since{un}is bounded in E0,again using Lion’s vanishing Lemma(See[12],Lemma 1.1),we have

    By(M1),(f1),and(f3),we obtain

    therefore,un→ 0 in E0,which contradicts our assumption I∈n(un)→ c0.Thus,(a)holds. □

    Theorem 3.5Assume that{un}?E0is a(PS)csequence for J0,where c0is given in Remark 3.3.Then,problem(Q0)has a positive ground state solution.

    ProofArguing as in the proof of Proposition 2.2,we see that{un}is bounded in E0.Now,up to a subsequence,for some u∈E0,we have

    By Lemma 3.4 and c0> 0,we know that u/=0 in E∈.There exists a t0> 0 such that

    Step 1We claim?un→?u a.e.x∈RN.

    By(3.1)–(3.3)and{un}being bounded in E0,we see easily that

    as n→∞.

    hence,by(M1),we have

    For 1<p≤2,from(2.10),we know that

    For p≥2,from(2.9),we obtain

    The above limits(3.12)and(3.13)imply that for some subsequence of{un},we have

    So,from(3.14),we conclude that

    On the other hand,by Vitali’s theorem,it results that

    Step 2We claim thatwhere t0is given in(3.4).

    Now,by(3.1)and(3.3),we have

    and from(M2),it follows thatJust suppose thatwe obtain

    This inequality implies thattherefore,there exists a∈(0,1)such thatCombining this information with the characterization c0,we derive

    On the other hand,from(M3),we getby Fatou’s Lemma,we obtain

    Lemma 3.6([5],Lemma 3.3) Assume that{un}is a sequence in W1,p(RN)such that,as n→∞,J0(un)→c0and{un}?N0.Then,{un}has a convergent subsequence in W1,p(RN).

    ProofThis result can be proven by using,with suitable modifications,the same arguments of[5].

    3.2 Some technical results

    In this subsection,we will establish the relation between the topology of the set Π and the number of positive solutions of(Q∈,g).We choose δ>0 such that Πδ? Λ.Let η ∈([0,∞))be such that 0≤η(t)≤ 1 with

    We denote w to be a positive ground state solution of the problem(Q0)attained by Theorem 3.5 such that J0(w)=c0.For each y∈Π={x∈Λ:V(x)=V0},we define

    with t∈> 0 satisfying

    Let φ∈:Π →N∈be such that

    Lemma 3.7The function φ∈satisfies

    ProofAssume the contrary that the lemma does not hold.We suppose that there exist δ0>0 and a sequence{yn}?Π such that

    By using the change of variableand the definition of φ∈n(yn),we have

    Since φ∈n(yn) ∈ N∈nand g=f in Λ,we get

    and

    Set

    By the Lebesgue’s theorem,as n → ∞,we obtain

    and

    Now,we claim that,up to a subsequence,t∈n→ 1 as n → ∞.Indeed,in view of(3.19),we have

    From continuity of w,there is asuch thatSo,from(f4),we get

    Assume the contrary that there is a subsequence{t∈n}with t∈n→ ∞.Thus,taking n → ∞in(3.24),by(M3)and(f3),we have the fact that the downside converges to in finity and the upside is bounded,which leads to a contradiction.Thus,{t∈n}is bounded,up to a subsequence,we have t∈n→t0≥0.From(3.19),(3.21),(M1),and(f4),we have t0>0.Thus,as n→∞in(3.19),we have

    We get t0=1 from w∈N0.So,taking n→∞in(3.20)and combining(3.21)with(3.22),we get

    which contradicts to(3.17).

    Proposition 3.8Assume that{un}is a sequence in W1,p(RN)such that,as n→∞,

    and

    with∈n→0.Then,there existssuch that the sequencehas a convergent subsequence in W1,p(RN).Moreover,up to a subsequence,forand some y∈Π,we have yn→y.

    ProofDirect calculations shows that{un}is bounded in W1,p(RN),then we can argue as the proof of Lemma 3.4 to obtain a sequence()?RNand positive constants R and α such that

    Let tn>0 be such that(See Lemma 3.1(A1)).We have

    which implies that

    Now,we are going to prove that→y∈M.First,we will prove that{yn}is bounded,where yn=.Indeed,argue by contradiction that there exists a subsequence{yn}with|yn|→∞.Choose R>0 such that Λ?BR(0).Then,for n large enough,we have|yn|≥2R,and for each z∈(0),we have

    Hence,using vn→ v in E0,the above expression,the definition of g,and Lebesgue’s theorem,we obtain

    and therefore,

    which is a contradiction.Hence,{yn}is bounded and yn→ y in RN.If y/∈ Λ,we can proceed as above to deduce that‖vn‖0≤ on(1).

    Next,we prove that y∈Π.Arguing by contradiction again,we assume that V0<V(y).Consequently,from→in E0,Fatou’s Lemma,and the invariance of RNby translations,we have

    which does not make sense and completes the proof.

    Remark 3.9Proposition 3.8 is very important to show that the solution of the auxiliary problem are actually solution of the original problem,and it makes us possible to study the concentration behavior of the solutions.

    Define

    where h1:R+→ R+is a function such that lim∈→0h1(∈)=0.We can conclude from Lemma 3.7 that h1(∈)=|I∈(φ∈(y))?c0|is such that h1(∈)→ 0 as∈→ 0+.By the definition of h1,we know that,for any y∈Π andfor∈>0 small.

    Let ρ > 0 be such that Πδ? Bρ(0),and consider the map χ :RN→ RNdefined by

    We define the barycenter map β∈:N∈→ RNby

    By the definition of χ and Lebesgue’s theorem,we have

    Lemma 3.10For any δ> 0 and Πδ={x ∈ RN:dist(x,Π)≤ δ},we have

    ProofThe proof of this lemma follows from well-known argument and can be found in([5],Lemma 5.5).

    3.3 Multiplicity of solutions for(Q∈,g)

    In this section,we present a relation between the topology of Π and the number of solutions of the auxiliary problem(Q∈,g).Asis not a complete metric space,the method of[1]can not be applied directly,but we can use the result in[14]to fulfill our task.

    Lemma 3.11([14],Theorem 27)If there exist c≥c∈and a compact set K?suchfor some k∈N,wherethencontains at least k critical points of Ψ∈.

    Theorem 3.12Suppose that the conditions(M1)–(M3),(V1)–(V2),and(f1)–(f4)are satisfied.Then,for any δ>0,there exists a>0 such that the auxiliary problem(Q∈,g)has at least CatΠδ(Π)positive solutions for any∈∈(0,).

    ProofFor each∈>0,we define the function ζ∈:Π →by

    From Lemma 3.7,we obtain

    Consider the set

    where the function h1was already introduced in the definition of the setthen,for allthe setis nonempty.

    From the above considerations,we can use Lemma 3.7,Lemma 2.4(A3),equality(3.28),and Lemma 3.10 to obtain>0,such that for any∈∈(0,),the diagram

    is well defined.In view of(3.28),for allwe can denote β∈(φ∈(y))=y+?(∈,y)for all y ∈ Π,where|?(∈,y)|<uniformly in y ∈ Π.Define H(t,y)=y+(1 ? t)?(∈,y).Thus,H:[0,1]× Π → Πδis continuous.Obviously,H(0,y)= β∈(φ∈(y)),H(1,y)=y for all y ∈ Π.That is,H(t,y)is a homotopy between β∈?φ∈=(β∈?r∈)?ζ∈and the inclusion map i:Π → Πδ.Therefore,

    We can use Corollary 2.7 and Lemma 3.11,with c∈≤ c0+h1(∈)=c and K= ζ∈(Π),to conclude that Ψ∈has at least Catζ∈(Π)ζ∈(Π)critical points onCombining Proposition 2.5(d)with(3.29),we deduce that I∈has at least CatΠδ(Π)critical points in

    4 Proof of Theorem 1.1

    In this section,our main purpose is to show that the solutions obtained in Theorem 3.12 are indeed solutions of the original problem().The idea is to prove u∈(x)< a for all x ∈for∈small enough by using the Moser iterative method[13].The following lemma plays a fundamental role in the study of behavior of the maximum points of the solutions and can be found in[5].

    Lemma 4.1Letbe a solution of problem(Q∈,g)with∈n→0+.Then,I∈n(un)→ c0and un∈ L∞(RN).Moreover,for any given γ > 0,there exist R > 0 and n0∈N such that

    ProofThis result can be proven by using,with suitable modifications,the same arguments of[5].

    Proof of Theorem 1.1We fix a small δ> 0 such that Πδ? Λ.

    ClaimThere is a>0 such that for any solution u∈of the auxilary problem(Q∈,g),there holds

    We argue by contradiction that there is a subsequence∈n→0+,un∈such that=0 and

    It is clear that I∈n(un)→ c0as in Lemma 4.1.By Proposition 3.8,we can get a sequence?RNsuch that→y0∈Π.

    For n large and letting r> 0 such that B2r(y0)?Λ,we get

    and

    which contradicts(4.2)and completes the claim.

    Set∈δ=min,and let∈∈(0,∈δ)be fixed.We conclude from Theorem 3.12 that the problem(Q∈,g)has CatΠδ(Π)nontrival solutions.From(4.1)and the definition of g,we obtain g∈(·,u)=f(u).Thus,any solution of the problem(Q∈,g)obtained in Theorem 3.12 is also a solution of the problem().It is clear thatis a solution of the original problem(Q∈).Then,(Q∈)has at least CatΠδ(Π)nontrivial solutions.

    Let{un}? E∈nbe a sequence of solutions of the problem()with ∈n→ 0+.We now study the behavior of the maximum points of un.By(g1),there is a γ>0 such that

    By Lemma 4.1,we obtain R>0 and()?RNsuch that

    Up to a subsequence,we may also assume that

    Indeed,if this is not the case,then,|un|L∞(RN)< γ,and therefore,it follows from=0 and(4.3)that

    The above expression implies that ‖un‖∈n=0,which does not make sense,thus,(4.5)holds.

    Let pn∈RNbe a maximum point of un,we conclude from(4.4)and(4.5)that pnbelongs toHence,for some qn∈BR(0).Sinceis a maximum point of.According to Proposition 3.8,we obtain

    [1]Alves C O,Figueiredo G M.Multiplicity and concentration of positive solutions for a class of quasilinear problems via penalization methods.Adv Nonlinear Stud,2011,11(2):265–294

    [2]Benci V,Cerami G.Multiple positive solutions for some elliptic problems via the Morse theory and the domain topology.Calcular of Variations,1993,2(1):29–48

    [3]Damascelli L.Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonity results.Annales Institut Henri Poincare Nonlinear Analysis,1998,15(4):493–516

    [4]del Pino M,Felmer P L.Local mountain pass for semilinear elliptic problems in unbounded domains.Calc Var Partial Differ Equ,1996,4:121–137

    [5]Figueiredo G M,Santos J R.Multiplicity and concentration behavior of positive solutions for a Schr?dinger-Kirchhofftype problem via penalization method.Esaim Control Optimisation and Calculus of Variations,2014,20:389–415

    [6]Figueiredo G M,Ikoma N,Júnior J R S.Existence and concentration result for the Kirchhofftype equation with general nonlinearities.Arch Rational Mech Anal,2014,213(3):931–979

    [7]He X,Zou W.Existence and concentration behavior of positive solutions for a kirchhoffequation in R3.J Differential Equations,2012,252(2):1813–1834

    [8]He Y,Li G.Standing waves for a class of Kirchhofftype problems in R3involving critical Sobolev exponents.Calc Var Partial Differential Equations,2015,54(3):3067–3106

    [9]He Y,Li G,Peng S.Concentrating bounded states for Kirchhofftype problems in RNinvolving critical Sobolev exponents.Advanced Nonlinear Studies,2014,14(2):483–510

    [10]Li G,Ye H.Existence of positive ground state solutions for the nonlinear Kirchhofftype equations in R3.J Differ Equ,2014,257(2):566–600

    [11]Li G,Ye H.Existence of positive solutions for nonlinear Kirchhofftype equations in R3with critical Sobolev exponent.Math Meth Appl Sci,2015,37(16):2570–2584

    [12]Lions P L.The concentration-compactness principle in the calculus of variations.The locally compact case,part II.Ann Inst H Poincare Anal Non Lineéaire,1984,1:223–283

    [13]Moser J.A new proof of de Giorgís theorem concerning the regularity problem for elliptic differential equations.Commun Pure Appl Math,1960,13:457–460

    [14]Szulkin A,Weth T.The method of Nehari manifold.Handbook of Nonconvex Analysis and Applications.Boston:International Press,2010:597–632

    [15]Wang J,Tian L,Xu J,et al.Multiplicity and concentration of positive solutions for a Kirchhofftype problem with critical growth.J Differential Equations,2012,253(7):2314–2351

    [16]Wang X.On concentration of positive bound states of nonlinear Schr?dinger equations.Commun Math Phys,1993,53:229–244

    [17]Willem M.Minimax Theorems.Boston:Birkh?usee,1996

    国内毛片毛片毛片毛片毛片| 亚洲av成人不卡在线观看播放网| 成人国产综合亚洲| 精品久久久久久成人av| 免费人成视频x8x8入口观看| 最新中文字幕久久久久| 亚洲va日本ⅴa欧美va伊人久久| 国产中年淑女户外野战色| 欧美黑人巨大hd| 国产精品久久久久久精品电影| 日韩欧美 国产精品| 国产精品98久久久久久宅男小说| 亚洲国产欧美网| 成人av在线播放网站| 亚洲内射少妇av| 久久中文看片网| 男女做爰动态图高潮gif福利片| 亚洲美女黄片视频| 久久香蕉精品热| h日本视频在线播放| 亚洲va日本ⅴa欧美va伊人久久| 伊人久久精品亚洲午夜| 亚洲欧美日韩高清在线视频| 国产淫片久久久久久久久 | 91在线观看av| 99久久99久久久精品蜜桃| 国产激情偷乱视频一区二区| 久久草成人影院| 男女视频在线观看网站免费| 欧美性感艳星| 在线免费观看的www视频| 久久久久亚洲av毛片大全| 亚洲 国产 在线| 日韩人妻高清精品专区| 欧美最新免费一区二区三区 | 丝袜美腿在线中文| 偷拍熟女少妇极品色| 在线观看美女被高潮喷水网站 | 人人妻人人澡欧美一区二区| av天堂中文字幕网| 精品久久久久久久久久免费视频| 亚洲欧美精品综合久久99| 特大巨黑吊av在线直播| 亚洲男人的天堂狠狠| 欧美激情在线99| 精品乱码久久久久久99久播| 在线视频色国产色| 在线观看av片永久免费下载| 又紧又爽又黄一区二区| 韩国av一区二区三区四区| 啦啦啦观看免费观看视频高清| 成熟少妇高潮喷水视频| 99久久成人亚洲精品观看| 男人和女人高潮做爰伦理| 一个人免费在线观看电影| 亚洲精品色激情综合| 久久国产乱子伦精品免费另类| 久久香蕉精品热| 久久精品国产亚洲av涩爱 | 欧美av亚洲av综合av国产av| 欧美三级亚洲精品| 天天一区二区日本电影三级| 夜夜躁狠狠躁天天躁| 国产麻豆成人av免费视频| 长腿黑丝高跟| 婷婷六月久久综合丁香| 嫩草影视91久久| 一区二区三区激情视频| 又紧又爽又黄一区二区| 欧美日韩综合久久久久久 | 又紧又爽又黄一区二区| 91九色精品人成在线观看| 国内精品久久久久精免费| 99久久99久久久精品蜜桃| 一个人看视频在线观看www免费 | 女生性感内裤真人,穿戴方法视频| 国产欧美日韩精品亚洲av| 亚洲内射少妇av| 男女视频在线观看网站免费| 三级毛片av免费| 国产日本99.免费观看| 欧美一级毛片孕妇| 日本三级黄在线观看| www.熟女人妻精品国产| 欧美国产日韩亚洲一区| 国产淫片久久久久久久久 | 美女免费视频网站| 国产主播在线观看一区二区| 国产精品一区二区三区四区久久| 99精品欧美一区二区三区四区| 欧美av亚洲av综合av国产av| 好男人电影高清在线观看| 人人妻,人人澡人人爽秒播| 亚洲成人久久性| 伊人久久大香线蕉亚洲五| 欧美av亚洲av综合av国产av| 精品国产美女av久久久久小说| 色综合亚洲欧美另类图片| 国产蜜桃级精品一区二区三区| 日本精品一区二区三区蜜桃| 十八禁网站免费在线| 久久久久久久久大av| 久久中文看片网| 露出奶头的视频| 99国产精品一区二区蜜桃av| 母亲3免费完整高清在线观看| 长腿黑丝高跟| 最新中文字幕久久久久| 一区福利在线观看| 亚洲激情在线av| 天堂动漫精品| 午夜福利18| 在线观看av片永久免费下载| 国产一区二区三区视频了| 国产视频一区二区在线看| 757午夜福利合集在线观看| 国产精品99久久久久久久久| 无限看片的www在线观看| 欧美日韩国产亚洲二区| 国产乱人伦免费视频| 色哟哟哟哟哟哟| av天堂中文字幕网| 久久精品亚洲精品国产色婷小说| 色综合婷婷激情| 99精品在免费线老司机午夜| 国产在视频线在精品| 成人亚洲精品av一区二区| 国产视频内射| 午夜激情福利司机影院| 男人和女人高潮做爰伦理| 精品一区二区三区视频在线 | 国产精品1区2区在线观看.| 国产伦精品一区二区三区四那| 久久国产精品人妻蜜桃| 精品久久久久久久久久久久久| 国产av麻豆久久久久久久| 日韩精品中文字幕看吧| 欧美日韩综合久久久久久 | 亚洲国产欧洲综合997久久,| 深爱激情五月婷婷| 色精品久久人妻99蜜桃| 嫁个100分男人电影在线观看| 亚洲欧美一区二区三区黑人| 香蕉丝袜av| 亚洲黑人精品在线| 狂野欧美白嫩少妇大欣赏| 国产精品 欧美亚洲| 天堂av国产一区二区熟女人妻| 国产欧美日韩精品一区二区| 亚洲欧美日韩高清在线视频| 国产精品电影一区二区三区| 国产亚洲精品一区二区www| 18+在线观看网站| 757午夜福利合集在线观看| 精品国产亚洲在线| 男女午夜视频在线观看| 精华霜和精华液先用哪个| 国产淫片久久久久久久久 | 精品久久久久久,| 亚洲片人在线观看| 淫秽高清视频在线观看| 久久久久国内视频| 久久久国产成人精品二区| 亚洲男人的天堂狠狠| 99久久综合精品五月天人人| 在线播放国产精品三级| 免费一级毛片在线播放高清视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产免费一级a男人的天堂| 在线a可以看的网站| 国语自产精品视频在线第100页| 亚洲精品一卡2卡三卡4卡5卡| 日本黄大片高清| www日本黄色视频网| 乱人视频在线观看| 超碰av人人做人人爽久久 | 一进一出抽搐动态| 成年女人毛片免费观看观看9| 成人亚洲精品av一区二区| 国产激情欧美一区二区| www日本在线高清视频| 亚洲国产高清在线一区二区三| 精品国产超薄肉色丝袜足j| 亚洲一区二区三区色噜噜| 99久久久亚洲精品蜜臀av| 欧美一区二区精品小视频在线| 日韩精品青青久久久久久| 最好的美女福利视频网| 一级a爱片免费观看的视频| 国产精品香港三级国产av潘金莲| 热99在线观看视频| 午夜免费观看网址| 亚洲av免费在线观看| 欧美一区二区国产精品久久精品| 噜噜噜噜噜久久久久久91| 免费看十八禁软件| 成人鲁丝片一二三区免费| 亚洲欧美日韩高清在线视频| 国产毛片a区久久久久| 国产亚洲精品综合一区在线观看| 午夜日韩欧美国产| 国产亚洲精品一区二区www| 亚洲精品在线观看二区| 国产一区二区亚洲精品在线观看| 日韩高清综合在线| 国产97色在线日韩免费| 九色国产91popny在线| 久久国产精品影院| 少妇人妻一区二区三区视频| 久久久久久久久久黄片| 久久久久九九精品影院| 精品无人区乱码1区二区| av片东京热男人的天堂| 毛片女人毛片| 久久久色成人| 国产色爽女视频免费观看| 国产精品99久久99久久久不卡| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品合色在线| 天天一区二区日本电影三级| 日韩欧美国产一区二区入口| 热99在线观看视频| 欧美zozozo另类| 国产v大片淫在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产男靠女视频免费网站| 女生性感内裤真人,穿戴方法视频| 天天躁日日操中文字幕| 亚洲精品影视一区二区三区av| 特大巨黑吊av在线直播| 一个人看视频在线观看www免费 | 他把我摸到了高潮在线观看| 97超视频在线观看视频| 在线观看午夜福利视频| 亚洲av不卡在线观看| 搡老熟女国产l中国老女人| 此物有八面人人有两片| 久久99热这里只有精品18| 精华霜和精华液先用哪个| 99热只有精品国产| 国产精品久久久久久人妻精品电影| 日本黄色片子视频| 国产熟女xx| 欧美又色又爽又黄视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品成人久久久久久| 免费看a级黄色片| 亚洲自拍偷在线| 午夜免费观看网址| 香蕉丝袜av| 欧美色视频一区免费| 老司机福利观看| 国产精品野战在线观看| 婷婷精品国产亚洲av| 2021天堂中文幕一二区在线观| 国产一区二区在线观看日韩 | 国产精品女同一区二区软件 | 国产乱人伦免费视频| 欧美中文日本在线观看视频| 蜜桃久久精品国产亚洲av| 精品一区二区三区av网在线观看| 国产成+人综合+亚洲专区| 亚洲人成网站在线播放欧美日韩| 午夜免费成人在线视频| 久久中文看片网| 岛国在线免费视频观看| 欧美日韩福利视频一区二区| 精品人妻一区二区三区麻豆 | 欧美在线一区亚洲| 国产精品女同一区二区软件 | 熟妇人妻久久中文字幕3abv| 亚洲自拍偷在线| 两个人视频免费观看高清| 免费在线观看成人毛片| 国产又黄又爽又无遮挡在线| 一区二区三区激情视频| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 精品人妻一区二区三区麻豆 | 成人永久免费在线观看视频| 午夜影院日韩av| 观看美女的网站| 桃色一区二区三区在线观看| 天堂av国产一区二区熟女人妻| 亚洲最大成人中文| 大型黄色视频在线免费观看| 精品国产美女av久久久久小说| 99国产精品一区二区蜜桃av| svipshipincom国产片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲自拍偷在线| 乱人视频在线观看| 国产欧美日韩一区二区精品| 国内久久婷婷六月综合欲色啪| netflix在线观看网站| 两个人的视频大全免费| 久久99热这里只有精品18| 亚洲黑人精品在线| 国产又黄又爽又无遮挡在线| 日本黄大片高清| 综合色av麻豆| 成人亚洲精品av一区二区| 久久久久国产精品人妻aⅴ院| 色在线成人网| 最近视频中文字幕2019在线8| 亚洲人与动物交配视频| 99久久成人亚洲精品观看| 欧美不卡视频在线免费观看| 久久这里只有精品中国| 午夜福利在线观看吧| 欧美一级a爱片免费观看看| 国产一级毛片七仙女欲春2| 波多野结衣高清作品| 一本久久中文字幕| 精品午夜福利视频在线观看一区| 脱女人内裤的视频| 两个人的视频大全免费| 九九热线精品视视频播放| 女人被狂操c到高潮| 国语自产精品视频在线第100页| 18禁国产床啪视频网站| 中亚洲国语对白在线视频| 夜夜夜夜夜久久久久| 高潮久久久久久久久久久不卡| 欧美区成人在线视频| 国产免费av片在线观看野外av| 日韩av在线大香蕉| 成熟少妇高潮喷水视频| 成人高潮视频无遮挡免费网站| 亚洲美女黄片视频| 69av精品久久久久久| 蜜桃久久精品国产亚洲av| 久久精品亚洲精品国产色婷小说| 亚洲 国产 在线| 亚洲内射少妇av| 欧美乱妇无乱码| 久久国产精品人妻蜜桃| 一级黄色大片毛片| avwww免费| 狠狠狠狠99中文字幕| 首页视频小说图片口味搜索| 麻豆一二三区av精品| 99久久久亚洲精品蜜臀av| 国产成年人精品一区二区| 最后的刺客免费高清国语| 亚洲不卡免费看| 欧美不卡视频在线免费观看| 一级a爱片免费观看的视频| 超碰av人人做人人爽久久 | 精品久久久久久久久久久久久| 久久久久国产精品人妻aⅴ院| 97人妻精品一区二区三区麻豆| 99精品欧美一区二区三区四区| 毛片女人毛片| 国产精品野战在线观看| 美女免费视频网站| 日韩高清综合在线| 成人精品一区二区免费| 国产真实伦视频高清在线观看 | 亚洲国产精品久久男人天堂| 国产亚洲精品久久久久久毛片| 国产三级黄色录像| 中出人妻视频一区二区| 小说图片视频综合网站| 国产一区二区激情短视频| 欧美色欧美亚洲另类二区| 国产av麻豆久久久久久久| 国产极品精品免费视频能看的| or卡值多少钱| 欧美中文综合在线视频| 日本黄大片高清| 中文字幕熟女人妻在线| 黄色片一级片一级黄色片| 麻豆一二三区av精品| 波多野结衣高清无吗| 色吧在线观看| 一a级毛片在线观看| 亚洲精品久久国产高清桃花| 天堂网av新在线| 久久久久亚洲av毛片大全| 国产高清有码在线观看视频| 国内久久婷婷六月综合欲色啪| 黄色成人免费大全| 高清日韩中文字幕在线| 亚洲欧美日韩高清专用| 午夜免费男女啪啪视频观看 | 又粗又爽又猛毛片免费看| av视频在线观看入口| 制服人妻中文乱码| 嫩草影视91久久| 欧美激情在线99| 亚洲天堂国产精品一区在线| 老汉色∧v一级毛片| 听说在线观看完整版免费高清| 国产精品永久免费网站| 免费在线观看影片大全网站| or卡值多少钱| 精品久久久久久成人av| 精品国产亚洲在线| 床上黄色一级片| 狂野欧美激情性xxxx| 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 日韩大尺度精品在线看网址| 欧美av亚洲av综合av国产av| 美女cb高潮喷水在线观看| 国产在线精品亚洲第一网站| 国内少妇人妻偷人精品xxx网站| 久久久久久国产a免费观看| 成人鲁丝片一二三区免费| 国产黄片美女视频| 国产成人福利小说| 欧美极品一区二区三区四区| 欧美一区二区精品小视频在线| 亚洲av一区综合| 亚洲第一电影网av| 亚洲精品在线美女| 色综合站精品国产| 99久久综合精品五月天人人| 久久精品亚洲精品国产色婷小说| 男女做爰动态图高潮gif福利片| 亚洲最大成人手机在线| 9191精品国产免费久久| 2021天堂中文幕一二区在线观| 动漫黄色视频在线观看| 国产高清激情床上av| 免费观看的影片在线观看| av专区在线播放| 国产男靠女视频免费网站| 99国产精品一区二区蜜桃av| 中文字幕人妻熟人妻熟丝袜美 | 欧美日韩乱码在线| svipshipincom国产片| 不卡一级毛片| 天天添夜夜摸| 国产精品久久电影中文字幕| 亚洲 欧美 日韩 在线 免费| 色综合站精品国产| 91麻豆av在线| 精品国产亚洲在线| 噜噜噜噜噜久久久久久91| 欧美另类亚洲清纯唯美| 午夜福利在线观看免费完整高清在 | 男人的好看免费观看在线视频| 亚洲成av人片在线播放无| 亚洲,欧美精品.| 99久久综合精品五月天人人| 在线观看av片永久免费下载| 嫩草影院入口| 一区二区三区国产精品乱码| 一级a爱片免费观看的视频| 99riav亚洲国产免费| 18+在线观看网站| 香蕉av资源在线| 久久草成人影院| 日韩人妻高清精品专区| 欧美成人a在线观看| 亚洲国产欧美网| 久久精品国产清高在天天线| 久久久久性生活片| 中文亚洲av片在线观看爽| 免费观看人在逋| 窝窝影院91人妻| 亚洲激情在线av| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久九九精品二区国产| 日本a在线网址| av专区在线播放| 一a级毛片在线观看| 久9热在线精品视频| 一个人看视频在线观看www免费 | 中出人妻视频一区二区| 日本免费一区二区三区高清不卡| 欧美成人一区二区免费高清观看| 国产精品99久久久久久久久| 国产一区二区亚洲精品在线观看| 国产高清videossex| 欧美av亚洲av综合av国产av| 免费观看的影片在线观看| 欧美绝顶高潮抽搐喷水| 国产黄a三级三级三级人| 国产久久久一区二区三区| 日韩欧美国产一区二区入口| tocl精华| 欧美日韩精品网址| 国产精品爽爽va在线观看网站| 亚洲在线观看片| 国产伦精品一区二区三区视频9 | 看黄色毛片网站| 色吧在线观看| 蜜桃亚洲精品一区二区三区| 国产精品综合久久久久久久免费| 母亲3免费完整高清在线观看| 欧美+日韩+精品| 国产黄a三级三级三级人| 亚洲国产精品久久男人天堂| 欧美又色又爽又黄视频| 国产精华一区二区三区| 婷婷亚洲欧美| 制服丝袜大香蕉在线| 波多野结衣巨乳人妻| 88av欧美| 国产精品永久免费网站| 美女大奶头视频| 亚洲国产色片| 国产精品1区2区在线观看.| 91在线精品国自产拍蜜月 | 国产高清视频在线观看网站| 麻豆成人av在线观看| 免费观看人在逋| 亚洲一区二区三区不卡视频| 黄色视频,在线免费观看| 国产在线精品亚洲第一网站| 少妇人妻一区二区三区视频| 黄色片一级片一级黄色片| 亚洲 欧美 日韩 在线 免费| 69av精品久久久久久| 91九色精品人成在线观看| 变态另类丝袜制服| 久久人妻av系列| 热99在线观看视频| 又爽又黄无遮挡网站| 国产三级中文精品| 麻豆成人午夜福利视频| 精品国产超薄肉色丝袜足j| 欧美在线一区亚洲| 在线观看舔阴道视频| 久久久久久大精品| 日韩大尺度精品在线看网址| 久久99热这里只有精品18| 又爽又黄无遮挡网站| 又粗又爽又猛毛片免费看| 毛片女人毛片| 波野结衣二区三区在线 | 久久午夜亚洲精品久久| 亚洲精品一卡2卡三卡4卡5卡| 免费大片18禁| 国产亚洲精品一区二区www| 制服丝袜大香蕉在线| 亚洲欧美日韩东京热| 最近最新中文字幕大全免费视频| 中文字幕av在线有码专区| 五月玫瑰六月丁香| 欧美国产日韩亚洲一区| 18禁黄网站禁片免费观看直播| 亚洲人成伊人成综合网2020| 1000部很黄的大片| 嫁个100分男人电影在线观看| 白带黄色成豆腐渣| 亚洲欧美一区二区三区黑人| 亚洲国产欧美网| 国产一区二区在线av高清观看| 国产色爽女视频免费观看| 男女做爰动态图高潮gif福利片| 免费看日本二区| 人人妻人人澡欧美一区二区| 18禁黄网站禁片午夜丰满| 99久久久亚洲精品蜜臀av| 午夜精品在线福利| 成人特级黄色片久久久久久久| 中国美女看黄片| 亚洲专区国产一区二区| 国产精品 国内视频| av福利片在线观看| 精品久久久久久久末码| 亚洲av二区三区四区| 天天躁日日操中文字幕| 亚洲欧美日韩东京热| 香蕉丝袜av| netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 啦啦啦观看免费观看视频高清| 国产91精品成人一区二区三区| 国产 一区 欧美 日韩| 亚洲精品美女久久久久99蜜臀| 成人一区二区视频在线观看| 久久香蕉国产精品| 91在线观看av| 一个人免费在线观看电影| 岛国在线观看网站| 91在线精品国自产拍蜜月 | 99在线人妻在线中文字幕| 看免费av毛片| 亚洲精品国产精品久久久不卡| 少妇的逼水好多| 99国产综合亚洲精品| 99国产精品一区二区三区| 日韩av在线大香蕉| 国产老妇女一区| 国产亚洲av嫩草精品影院| 亚洲 欧美 日韩 在线 免费| 毛片女人毛片| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 精品一区二区三区视频在线观看免费| 性色avwww在线观看| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 精品人妻偷拍中文字幕| aaaaa片日本免费| 亚洲国产精品999在线| 99热这里只有精品一区| 香蕉av资源在线| 亚洲在线观看片| 国产成人福利小说| 看黄色毛片网站| 我要搜黄色片| 欧美不卡视频在线免费观看| 中国美女看黄片| 日本黄大片高清| 狂野欧美白嫩少妇大欣赏| 男女午夜视频在线观看| 精品午夜福利视频在线观看一区| 国内揄拍国产精品人妻在线| 亚洲精品乱码久久久v下载方式 |