• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Travelingwave solutionstosome nonlinear fractional partialdifferential equationsthroughtherational(G ′ /G ) -expansionmethod

    2018-05-03 02:21:03TrikulIslmAliAkrAulKlmAzd
    關(guān)鍵詞:陳雷指示精神認(rèn)真學(xué)習(xí)

    Trikul Islm M. Ali Akr Aul Klm Azd

    a Department of Mathematics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh

    b Department of Applied Mathematics, Rajshahi University, Rajshahi, Bangladesh

    1.Introduction

    The behavior of natural phenomena at scales small enough can noticeably be described by fractional order differential equation than the differential equation of integer order. The necessity of fractional derivatives becomes apparent in modeling of electrical and mechanical properties of real materials, as well as in the description of rheological properties of rocks. As a result, fractional differential equations have gained considerable popularity and importance due to its realistic application in various fi elds of science and engineering and have proved to be valuable tools for the modeling of many physical phenomena. In the last few decades, many researchers paid deep attention to examine closed form traveling wave solutions to the nonlinear partial differential equations(NPDEs) of fractional order and analyze the physical phenomena relevance to science and engineering. Therefore, in literature they have made a signi fi cant contribution to construct the exact solutions of nonlinear fractional differential equations of physical interest. Nonlinear fractional equations have become the focus of many researches due to their frequent appearance in various applications, such as in the signal processing, control theory, systems identi fi cation, solid state physics, condensed matter physics, plasma physics, optical fi bers, chemical kinematics, electrical circuits, bio-genetics,fl uid fl ow and other areas [1–3] . The closed form wave solutions of the equations [4–7] are deeply helpful to comprehend the mechanisms of the phenomena as well as their further application in practical life. Several powerful and ef fi cient methods have been proposed by many researchers to investigate the exact traveling wave solutions of integer order and also fractional order NPDEs; as for instance the fractional subequation method [8,9] , the Adomian decomposition method[10,11] , the variational iteration method [12–14] , the (G′/G)-expansion method and its various modi fi cations [15–17] , the homotopy perturbation method [18–20] , the differential transformation method [21,22] , the fi nite element method [23] , the fi nite difference method [24] , the Exp-function method [25–29] , the method of lines [30,31] , the He’s polynomial [32] ,the reproducing kernel method [33–35] , the solitary ansatz approach and the Hirota bilinear method [36] , the extended tanh and hirota method [37] , the extended modi fi ed direct algebraic method [38–40] , the reductive perturbation method [41–43] , the modi fi ed extended tanh function method [44,45] , the exp(-φ(ξ))-expansion method [46,47] , the auxiliary equation method [48,49] , the modi fi ed simple equation method[50] and others [51–58] .

    In this article, our aim is to examine new and further general closed form traveling wave solutions to some fractional NPDEs, namely the space-time fractional foam drainage equation and the space-time fractional symmetric regularized long wave (SRLW) equation in the sense of conformable fractional derivative [59] . The conformable fractional derivative of a functionf: [0, ∞ ) →Rof orderαis de fi ned as:

    If the above limit exists, thenfis calledα-differentiable.Letα∈ (0, 1] andf,gbeα-differentiable at a pointt>0, thenTαsatis fi es the following properties:

    (i)Tα(af+bg)=aTα(f)+bTα(g), for alla,b∈R

    (ii)Tα(tp)=ptp-α, for allp∈R

    (iii)Tα(λ)= 0, for all constant functionsf(t)=λ

    (iv)Tα(fg)=fTα(g)+gTα(f)

    (v)Tα(f/g)= {gTα(f)-fTα(g)}/g2

    (vi) If, in addition,fis differentiable, thenTα(f)(t)=

    We employ the recently established rational (G′/G)-expansion method [60] which provides new and more general closed form traveling wave solutions to the equations mentioned above.

    whereui=ui(t,x1,x2,...,xn),i= 1,...,kare unknown functions,Fis a polynomial inuiand it’s various partial derivatives including the derivatives of fractional order.

    Step 1:Let us consider the nonlinear fractional composite transformation

    Eq. (1) , with the aid of transformation (2) is turned into the following ordinary differential equation of integer order with respect to the variableξ:

    Step 2:For convenient, we integrate Eq. (3) one or more times as possibility and integral constant can be set to zero as soliton solutions are sought.

    Step 3:We reveal the solution of Eq. (3) in terms of (G′/G)as follows [48] :

    whereanandbnare non-zero constants to be determined later andG=G(ξ)satis fi es the second order ODE:

    whereλandμare real constants.

    Eq. (5) can be re-written as

    whose general solutions are given by

    2.Delineation of the method

    In this section, the main steps of the rational (G′/G)-expansion method is discussed for fi nding exact analytic solutions of nonlinear partial differential equations of fractional order.

    Suppose a fractional partial differential equation in the independent variablest,x1,x2,...,xnis given as follows:

    whereAandBare arbitrary constants.

    Step 4:To determine the positive integern, we substitute(4) along with (5) into (3) and balance between the highest order derivatives and the highest order nonlinear terms appearing in (3) . Furthermore, if the degree ofu(ξ) is de fi ned as deg [u(ξ)] =n, the degree of the other expressions are as follows:

    Step 5:Substituting (4) together with (5) into (3) , we obtain a polynomial equation with indeterminate (G′/G). Setting each coef fi cient of (G′/G) to zero gives a system of algebraic equations. Solve this system of equations forai,bi,λ, andμby means of the symbolic computation software, such as Maple 13.

    Step 6:We use the values ofai,bi,λ, andμtogether with(7) into (4) to obtain the closed form traveling wave solutions of the nonlinear fractional partial differential Eq. (1) .

    3.Implementation of the method

    In this section, we make use the rational (G′/G)-expansion method to construct the general closed form traveling wave solutions to the nonlinear space-time fractional foam drainage equation and space-time fractional symmetric regularized long wave (SRLW) equation.

    3.1. The space-time fractional foam drainage equation

    Consider the space-time fractional foam drainage[61,62] equation

    Eq. (8) has appeared as a simple model for describing the fl ow of liquid through channels and nodes between the bubbles, driven by gravity and capillarity. The fractional complex transformation

    wherekandlare constants, permit us to reduce Eq. (8) into the following ODE:

    Balancing the highest order derivative and the nonlinear term appearing in Eq. (10) , we deduce thatn= 1 . Thus, the solution of Eq. (4) reduces to the form

    Substituting (11) into (10) , the left hand side becomes a polynomial in (G′/G). Setting each coef fi cient of this polynomial to zero, yields a set of algebraic equations (for simplicity, we omit them to display) fora0,b0,a1,b1,k,l. Solving this over-determined set of equations with the aid of computer algebra, like Maple 13, provides the following results:

    whereb0,b1,k,λandμare arbitrary constants.

    whereb0,k,λandμare arbitrary constants.

    whereb1,k,λandμare arbitrary constants.

    Now, using the solutions assembled in (15) - (17) and simplifying, we achieve the following nine types of traveling wave solutions:

    For case 1:

    Whenλ2-4μ>0, the hyperbolic function solution becomes

    whereAandBare arbitrary constants. SinceAandBare arbitrary constants one might arbitrarily choose their values. Thus, if we chooseA/= 0 butB= 0, then after simpli fi cation, solution (18) becomes

    Settingλ=4,μ=3 ,k=1 ,b0=b1=1/2 into solution(19) and simplifying,we attain

    Whenλ2-4μ<0, the trigonometric function solution is found in the form of

    Settingλ= 4,μ= 8 ,k= 1 ,b0=b1= 1/2 into solution(22) and simplifying, we attain

    4月19日,水利部部長、部抗震救災(zāi)領(lǐng)導(dǎo)小組組長陳雷主持召開水利部抗震救災(zāi)領(lǐng)導(dǎo)小組第二次全體會議,認(rèn)真學(xué)習(xí)貫徹4月17日中共中央政治局常委會議重要部署和胡錦濤總書記關(guān)于抗震救災(zāi)的重要指示精神,進一步安排部署下一步水利抗震救災(zāi)工作。

    Whenλ2-4μ= 0, we obtain the rational solution as

    Settingλ= 2,μ= 1 ,k= 1 ,b0= 1/2,b1= 1 ,A= 0 in solution (24) and simplifying, we attain

    For cases 2 and 3, we might also achieve three types of closed form traveling wave solutions, such as hyperbolic function solution, trigonometric function solution and rational function solution. But, the solutions for cases 2 and 3 have not been recorded to evade the displeasure to the readers. The results obtained above are new and further general than the existing results.

    3.2. The space-time fractional symmetric regularized long wave (SRLW) equation

    Let us consider the space-time fractional symmetric regularized long wave (SRLW) equation

    which arises in several physical applications including ion sound waves in plasma. This equation describes weakly nonlinear ion acoustic and space-charge waves and the real-valuedu(x,t) corresponds to the dimensionless fl uid velocity with a decay condition.

    Introducing the fractional complex transformation

    wherekandcare constants, Eq. (26) reduces to the following ODE:

    Integration of Eq. (28) twice yields,

    whererandsare integral constants. Applying the homogeneous balance method to Eq. (29) reduces the solution of Eq. (4) into the form

    Inserting solution (30) into Eq. (29) possesses a polynomial equation in (G′/G) and setting the coef fi cients of like terms to zero, yields a set of algebraic equations (for minimalism, we omit them to exhibit) fora0 ,b0 ,a1 ,b1 ,a2 ,b2 ,c,k,r,s.Solving this set of equations with the aid of symbolic computer software, like Maple 13, provides the following results:

    whereb0,c,k,λandμare all arbitrary constants.

    Putting the values set out in (31) into solution of Eq. (30) ,give

    Now, making use the solutions provided in (7) into(32) and simplifying, we achieve the following traveling wave solutions:

    Whenλ2-4μ>0, the hyperbolic function solution becomes

    Whenλ2-4μ<0, the trigonometric function solution becomes

    The results obtained above are new and more general than the existing results.

    Whenλ2-4μ= 0, then from (31) , it can be founda0=0,a1= 0,a2= 0 and thusu(ξ)= 0. Therefore, this trivial solution has not been written here.

    4.Conclusion

    In this article, we investigated the exact traveling wave solutions to some NPDEs of fractional order, namely the spacetime fractional foam drainage equation and the space-time fractional symmetric regularized long wave (SRLW) equation by the recently established rational (G′/G)-expansion method.Three types of closed form analytical solutions including the generalized hyperbolic function solutions, trigonometric function solutions and rational solutions are successfully constructed for the fractional equations mentioned above which are very promising and encouraging. The obtained solutions might be signi fi cant to analyze the fl ow of liquid through channels and nodes between the bubbles driven by gravity and capillarity, weakly nonlinear ion acoustic and space-charge waves and the dimensionless fl uid velocity with a decay condition. To the best of our knowledge, the results achieved in this article have not been reported in the earlier literature.The suggested method can be employed to construct new and further general traveling wave solutions of the obstacle, unilateral, free, moving, and contact problems which arises in various branches of science and engineering.

    Acknowledgment

    The authors wish to take this opportunity to express their sincere gratitude to the anonymous referees for their valuable comments and suggestions that greatly improved the manuscript.

    [1] I. Podlubny , Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA,1999 .

    [2] X.J. Yang , Local Fractional Functional Analysis and Its Applications,Asian Academic Publisher, Hong Kong, 2011 .

    [3] X.J. Yang , Advanced Local Fractional Calculus and Its Applications,World Science Publisher, New York, NY, USA, 2012 .

    [4] W.X. Ma , B. Fuchssteiner , Int. J. Nonlin. Mech. 31 (1996) 329–338 .

    [5] W.X. Ma , DT Zhou , Acta Math. Scita. 17 (1997) 168–174 .

    [6] W.X. Ma , Phys. Lett. A 301 (2002) 35–44 .

    [7] W.X. Ma , Phys. A 343 (2004) 219–237 .

    [8] S. Zhang , H.Q. Zhang , Phys. Lett. A 375 (2011) 1069–1073 .

    [9] S. Guo , L. Mei , Y. Li , Y. Sun , Phys. Lett. A 376 (2012) 407–411 .

    [10] Y. Hu , Y. Luo , Z. Lu , J. Comput. Appl. Math. 215 (2008) 220–229 .

    [11] A.M.A. El-Sayed , S.H. Behiry , W.E. Raslan , Comput. Math. Appl. 59(2010) 1759–1765 .

    [12] M. Inc , J. Math. Anal. Appl 345 (2008) 476–484 .

    [13] Z. Odibat , S. Momani , Comput. Math. Appl. 58 (2009) 2199–2208 .

    [14] S.T. Mohyud-Din , M.A. Noor , K.I. Noor , M.M. Hosseini , Int. J. Nonlinear Sci. Numer. Simul. 11 (2010) 87–92 .

    [15] J. Feng , W. Li , Q. Wan , Appl. Math. Comput. 217 (2011) 5860–5865 .

    [16] B. Zheng , Commun. Theor. Phys. 58 (2012) 623–630 .

    [17] M.N. Alam , M.A. Akbar , S.T. Mohyud-Din , Chin. Phys. B 23 (2014)020203 .

    [18] K.A. Gepreel , Appl. Math. Lett. 24 (2011) 1428–1434 .

    [19] S.T. Mohyud-Din , A. Yildirim , S. Sariaydin , Int. J. Numer. Methods Heat Fluid Flow 21 (2011) 272–281 Emerald .

    [20] S.T. Mohyud-Din , A. Yildirim , S.A. Sezer , Int. J. Numer. Methods Heat Fluid Flow 21 (2011) 822–827 .

    [21] S. Momani , Z. Odibat , V.S. Erturk , Phys. Lett. A 370 (2007) 379–387 .

    [22] Z. Odibat , S. Momani , Appl. Math. Lett. 21 (2008) 194–199 .

    [23] W. Deng , SIAM J. Numer. Anal. 47 (2008) 204–226 .

    [24] G.H. Gao , Z.Z. Sun , Y.N. Zhang , J. Comput. Phys. 231 (2012)2865–2879 .

    [25] S.T. Mohyud-Din , Y. Khan , N. Faraz , A. Yildirim , Int. J. Numer. Methods Heat Fluid Flow 22 (2012) 335–341 .

    [26] M.A. Noor , S.T. Mohyud-Din , A. Waheed , E.A. Al-Said , Appl. Math.Comput. 216 (2010) 477–483 Elsevier .

    [27] S.T. Mohyud-Din, M.A. Noor, K.I. Noor, Math. Problems Eng. 2009(2009) 234849 Hindawi 25 pages, doi: 10.1155/ 2009/ 234849.

    [28] M.A. Noor , S.T. Mohyud-Din , A. Waheed , Acta Appl. Math. 104 (2008)131–137 Springer .

    [29] S.T. Mohyud-Din , M.A. Noor , A. Waheed , Z. Naturforsch. A –J. Phys.Sci. 65a (2010) 78–84 .

    [30] S.T. Mohyud-Din , E. Negahdary , M. Usman , Int. J. Numer. Methods Heat Fluid Flow 22 (2012) 641–658 .

    [31] M.S. Hashemi , M. Inc , E. Karatas , A. Akgul , J. Adv. Phys. 6 (2017)413–417 .

    [32] S.T. Mohyud-Din , M.A. Noor , K.I. Noor , Int. J. Nonlinear Sci. Numer.Simul. 10 (2009) 223–229 .

    [33] A. Akgul, M. Inc, E. Karatas, D. Baleanu, Adv. Diff. Equ. 2015 (2015)220, doi: 10.1186/s13662- 0015- 0558- 8 .

    [34] A. Akgul , M. Inc , E. Karatas , DCDS-S Impact Factor 2014 (2015)0.567 .

    [35] A. Akgul , Y. Khan , E.K. Akgul , D. Baleanu , M.M.A. Qurashi , J. Nonlinear Sci. Appl. 10 (2017) 4408–4417 .

    [36] M. Inc , B. Kilic , E. Karatas , A. Akgul , J. Adv. Phys. 6 (2017) 288–293 .

    [37] M. Inc , B. Kilic , E. Karatas , Open Phys. 14 (2016) 76–80 .

    [38] A.R. Seadawy , Comput. Math. Appl 70 (2015) 345–352 .

    [39] M. Arshad , A.R. Seadawy , L. Dianchen , J. Wang , Results Phys. 6 (2016)1136–1145 .

    [40] A.R. Seadawy , M. Arshad , L. Dianchen , Eur. Phys. J. Plus 132 (162)(2017) 1–20 .

    [41] A.R. Seadawy , Comput. Math. Appl. 71 (2016) 201–212 .

    [42] A.R. Seadawy , Stat. Mech. Appl. Phys. A 455 (2016) 44–51 .

    [43] E.S. Selima , A.R. Seadawy , X. Yao , Eur. Phys. J. Plus 131 (2016) 425 .

    [44] M.M.A. Khater , J. Appl. Math. Bioinf. 6 (2016) 37–48 .

    [45] E.H.M. Zahran , M.M.A. Khater , Appl. Math. Modell. 40 (2016)1769–1775 .

    [46] A.R. Seadawy , D. Lu , M.M.A. Khater , J. Ocean Eng. Sci. 2 (2017)137–142 .

    [47] M.M.A. Khater , Cogent Math. 3 (2016) 1–16 .

    [48] A.R. Seadawy , Eur. Phys. J. Plus 132 (2017) 29 .

    [49] A.R. Seadawy , L. Dianchen , Results Phys 6 (2016) 590–593 .

    [50] M.M.A. Khater , Global J. Sci. Front. Res. (F) 15 (2015)ISSN:2249-4626 .

    [51] W.X. Ma , Y. You , Trans. Am. Math. Soc. 357 (2004) 1753–1778 .

    [52] W.X. Ma , Y. You , Solitons Fractals 22 (2004) 395–406 .

    [53] W.X. Ma , H. Wu , J. He , Phys. Lett. A 364 (2007) 29–32 .

    [54] D. Lu , A.R. Seadawy , M.M.A. Khater , Results Phys. 7 (2017)2028–2035 .

    [55] A.R. Seadawy , D. Lu , M.M.A. Khater , Optik –Int. J. Light Electron Opt. 143 (2017) 104–114 .

    [56] A.R. Seadawy , Optik – Int. J. Light Electron Opt. 139 (2017) 31–43 .

    [57] A.R. Seadawy, Math. Met. Appl. Sci. 40 (2017) 1598–1607.

    [58] A.R. Seadawy , K.E. Rashidy , Pramana –J. Phys. 87 (2016) 20 .

    [59] R. Khalil , M.A. Horani , A. Yousef , M. Sababheh , J. Comput. Appl.Math. 264 (2014) 65–67 .

    [60] M.T. Islam , M.A. Akbar , A.K. Azad , Nonlinear Stud. 6 (2015) 1–11 .

    [61] K.A. Gepreel , S. Omran , Chin. Phys. B 21 (2012) 110204 .

    [62] Z. Dahmani , M.M. Mesmoudi , R. Bebbouchi , E. J. Qual. Theory Diff.Equ. 30 (2008) 1–10 .

    猜你喜歡
    陳雷指示精神認(rèn)真學(xué)習(xí)
    Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
    張慶偉在深入學(xué)習(xí)貫徹落實習(xí)近于總書記對東北地區(qū)和黑龍江重要講話重要指示精神座談會上強調(diào) 持續(xù)深入落實習(xí)近平總書記重要講話重要指示精神 不斷把龍江全面振興全方位振興各項事業(yè)推向前進 王文濤講話 陳海波出席
    貫徹總書記指示精神 開創(chuàng)人大工作新局面
    陳雷膠漆
    國家體育總局組織學(xué)習(xí)中央關(guān)于“兩學(xué)一做”學(xué)習(xí)教育常態(tài)化制度化指示精神
    時尚“吃播”陳雷:邊吃邊秀邊掙錢
    華人時刊(2016年16期)2016-04-05 05:57:23
    不負(fù)重托 勤奮工作 把總書記重要指示落到實處——各地關(guān)工委認(rèn)真學(xué)習(xí)貫徹習(xí)近平重要指示精神
    中國火炬(2015年10期)2015-07-25 09:51:14
    滿懷信心希望 認(rèn)真學(xué)習(xí)貫徹
    中國火炬(2013年12期)2013-07-24 14:16:27
    認(rèn)真學(xué)習(xí)黨的十八大精神
    中國火炬(2012年12期)2012-07-24 14:13:31
    認(rèn)真學(xué)習(xí)貫徹黨的十七屆六中全會精神 以實際行動迎接黨的十八大召開
    中國火炬(2011年12期)2011-07-24 14:21:45
    又大又黄又爽视频免费| 久久久久精品性色| 飞空精品影院首页| 热99久久久久精品小说推荐| 精品国产一区二区三区久久久樱花| 日产精品乱码卡一卡2卡三| 在线观看三级黄色| 国产精品嫩草影院av在线观看| 男人舔女人的私密视频| 国产白丝娇喘喷水9色精品| 久久99精品国语久久久| 国产精品久久久久久精品古装| 如何舔出高潮| 男人舔女人的私密视频| 久久久a久久爽久久v久久| 国产色婷婷99| 男女无遮挡免费网站观看| 另类亚洲欧美激情| 欧美+日韩+精品| 少妇高潮的动态图| 国产男女超爽视频在线观看| 99国产综合亚洲精品| 日本免费在线观看一区| 人妻一区二区av| 国产精品无大码| 久久女婷五月综合色啪小说| 国产在线免费精品| 高清视频免费观看一区二区| 国产成人一区二区在线| 热99久久久久精品小说推荐| 久久av网站| 午夜免费男女啪啪视频观看| 热99久久久久精品小说推荐| 久久这里有精品视频免费| 少妇被粗大的猛进出69影院 | 日本欧美视频一区| 少妇的逼水好多| 97超碰精品成人国产| 久久免费观看电影| 一级a做视频免费观看| 免费日韩欧美在线观看| 在线观看人妻少妇| 欧美最新免费一区二区三区| 一本色道久久久久久精品综合| 啦啦啦视频在线资源免费观看| 欧美3d第一页| 十八禁网站网址无遮挡| 又大又黄又爽视频免费| av卡一久久| 国产欧美日韩一区二区三区在线| 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 久久午夜福利片| av线在线观看网站| 五月开心婷婷网| 少妇被粗大猛烈的视频| 18禁在线无遮挡免费观看视频| 精品99又大又爽又粗少妇毛片| 国产白丝娇喘喷水9色精品| 视频区图区小说| 黄色毛片三级朝国网站| 精品99又大又爽又粗少妇毛片| 女人久久www免费人成看片| 看非洲黑人一级黄片| 精品少妇久久久久久888优播| 性色av一级| 欧美老熟妇乱子伦牲交| 美女主播在线视频| 成人无遮挡网站| 亚洲少妇的诱惑av| 日本-黄色视频高清免费观看| 最近最新中文字幕免费大全7| 丰满少妇做爰视频| 婷婷成人精品国产| 国产xxxxx性猛交| 99精国产麻豆久久婷婷| 国产精品偷伦视频观看了| 中国国产av一级| 一级黄片播放器| 午夜免费男女啪啪视频观看| 五月伊人婷婷丁香| 亚洲 欧美一区二区三区| 国产精品久久久久久久久免| 国产高清不卡午夜福利| 五月玫瑰六月丁香| 人妻少妇偷人精品九色| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区av在线| 视频中文字幕在线观看| 欧美成人精品欧美一级黄| 成人免费观看视频高清| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 黄色一级大片看看| www.色视频.com| 春色校园在线视频观看| 久久精品aⅴ一区二区三区四区 | www.色视频.com| 日韩免费高清中文字幕av| 亚洲第一av免费看| 成人手机av| 黄色怎么调成土黄色| 欧美成人精品欧美一级黄| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 亚洲精品成人av观看孕妇| 亚洲,欧美,日韩| 国产精品成人在线| 99九九在线精品视频| 午夜福利视频在线观看免费| 国产免费一级a男人的天堂| 夫妻午夜视频| 在线免费观看不下载黄p国产| kizo精华| 美女国产视频在线观看| 男人爽女人下面视频在线观看| 成人午夜精彩视频在线观看| 亚洲精品,欧美精品| 亚洲精品av麻豆狂野| 亚洲av在线观看美女高潮| 99国产综合亚洲精品| 又粗又硬又长又爽又黄的视频| 黄色视频在线播放观看不卡| 久久久久久久久久成人| 爱豆传媒免费全集在线观看| 麻豆精品久久久久久蜜桃| 亚洲久久久国产精品| 26uuu在线亚洲综合色| av卡一久久| 国产一区有黄有色的免费视频| 亚洲一码二码三码区别大吗| 国产综合精华液| 午夜精品国产一区二区电影| 免费观看在线日韩| 色视频在线一区二区三区| 国产精品99久久99久久久不卡 | 国产精品国产三级专区第一集| av播播在线观看一区| 亚洲av成人精品一二三区| 男女边吃奶边做爰视频| 毛片一级片免费看久久久久| 国产日韩欧美视频二区| 精品亚洲成国产av| 在线观看免费视频网站a站| 人体艺术视频欧美日本| 国产欧美日韩综合在线一区二区| 伦理电影免费视频| 老司机影院成人| 男人舔女人的私密视频| 国产深夜福利视频在线观看| 亚洲av在线观看美女高潮| 亚洲欧美成人精品一区二区| kizo精华| 亚洲精品aⅴ在线观看| 哪个播放器可以免费观看大片| 少妇的逼好多水| 久久97久久精品| 久久久久精品性色| 人人妻人人爽人人添夜夜欢视频| 精品久久蜜臀av无| 久久精品久久久久久久性| av有码第一页| 欧美精品av麻豆av| 亚洲伊人色综图| 男女免费视频国产| 国产免费视频播放在线视频| 亚洲国产毛片av蜜桃av| av免费观看日本| 婷婷色综合www| 国产精品人妻久久久久久| 日韩精品有码人妻一区| 狂野欧美激情性bbbbbb| 久久鲁丝午夜福利片| 亚洲成国产人片在线观看| 九色亚洲精品在线播放| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 18禁动态无遮挡网站| 一级毛片黄色毛片免费观看视频| 国产日韩一区二区三区精品不卡| 国产日韩欧美在线精品| 日韩伦理黄色片| 夜夜骑夜夜射夜夜干| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 亚洲精品日本国产第一区| 欧美激情 高清一区二区三区| 最新中文字幕久久久久| 在线 av 中文字幕| 看十八女毛片水多多多| 美女xxoo啪啪120秒动态图| 韩国精品一区二区三区 | 麻豆乱淫一区二区| 一级毛片黄色毛片免费观看视频| 国产日韩一区二区三区精品不卡| 欧美97在线视频| 国产精品成人在线| 国产精品一区www在线观看| 在线天堂中文资源库| 国产男人的电影天堂91| 亚洲精品一区蜜桃| av播播在线观看一区| 午夜福利影视在线免费观看| 国产又爽黄色视频| 美女脱内裤让男人舔精品视频| 涩涩av久久男人的天堂| 亚洲av福利一区| 九色成人免费人妻av| 国产成人a∨麻豆精品| av在线app专区| 国产在线视频一区二区| 亚洲av日韩在线播放| 两性夫妻黄色片 | 久久影院123| 午夜老司机福利剧场| 亚洲精品中文字幕在线视频| 97超碰精品成人国产| freevideosex欧美| 国产视频首页在线观看| 美女国产高潮福利片在线看| 老女人水多毛片| 90打野战视频偷拍视频| 波多野结衣一区麻豆| 欧美性感艳星| 侵犯人妻中文字幕一二三四区| 久久久欧美国产精品| 一级片免费观看大全| 欧美国产精品一级二级三级| 在线观看www视频免费| 国产av码专区亚洲av| 青青草视频在线视频观看| 在线观看一区二区三区激情| 人人妻人人澡人人看| 午夜激情av网站| 伦理电影大哥的女人| 精品一区在线观看国产| 国产在线一区二区三区精| 国产精品国产三级专区第一集| 日韩免费高清中文字幕av| 深夜精品福利| 亚洲欧洲精品一区二区精品久久久 | 人妻 亚洲 视频| 久久久久精品久久久久真实原创| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区久久久樱花| 国产日韩一区二区三区精品不卡| 日韩一区二区视频免费看| 久久久久精品久久久久真实原创| 蜜桃国产av成人99| 最新的欧美精品一区二区| 一级毛片我不卡| 免费在线观看完整版高清| 亚洲av福利一区| 九九爱精品视频在线观看| 亚洲精品aⅴ在线观看| 丝袜美足系列| 亚洲精品美女久久av网站| 一边亲一边摸免费视频| 国产精品久久久av美女十八| 一区二区av电影网| 999精品在线视频| 午夜福利网站1000一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩一区二区| 欧美日韩视频高清一区二区三区二| 美女中出高潮动态图| 国产极品粉嫩免费观看在线| 国产成人欧美| 国产永久视频网站| 久久久久精品性色| 久久99一区二区三区| 好男人视频免费观看在线| 深夜精品福利| 观看av在线不卡| 在线观看国产h片| 国产爽快片一区二区三区| 香蕉丝袜av| 国产亚洲最大av| 中文字幕制服av| 插逼视频在线观看| 精品一区在线观看国产| 国产爽快片一区二区三区| 天堂中文最新版在线下载| 国产精品三级大全| 如何舔出高潮| 在线看a的网站| 国产精品一区二区在线不卡| 999精品在线视频| 国产av精品麻豆| 少妇的逼好多水| 欧美成人精品欧美一级黄| 欧美日韩一区二区视频在线观看视频在线| 一级毛片电影观看| 中文字幕亚洲精品专区| 全区人妻精品视频| 欧美国产精品一级二级三级| 亚洲国产欧美日韩在线播放| 美女脱内裤让男人舔精品视频| 欧美精品av麻豆av| 免费黄网站久久成人精品| 高清黄色对白视频在线免费看| 久久午夜福利片| 欧美激情极品国产一区二区三区 | 性高湖久久久久久久久免费观看| 天美传媒精品一区二区| 美女中出高潮动态图| 久久久亚洲精品成人影院| 国产一区有黄有色的免费视频| kizo精华| a级毛片在线看网站| 91久久精品国产一区二区三区| 99热6这里只有精品| 亚洲三级黄色毛片| 精品福利永久在线观看| 丰满迷人的少妇在线观看| 自线自在国产av| 亚洲欧美一区二区三区黑人 | 亚洲伊人久久精品综合| 色婷婷久久久亚洲欧美| 97超碰精品成人国产| 亚洲欧美成人综合另类久久久| 中文字幕精品免费在线观看视频 | 国产视频首页在线观看| 如何舔出高潮| 男女下面插进去视频免费观看 | 久久亚洲国产成人精品v| 大香蕉久久成人网| 激情视频va一区二区三区| 美女大奶头黄色视频| 老司机亚洲免费影院| 插逼视频在线观看| 国产精品久久久久成人av| 99视频精品全部免费 在线| 丝袜美足系列| 国产一区二区激情短视频 | 久久久久久人妻| 如日韩欧美国产精品一区二区三区| 亚洲人与动物交配视频| 亚洲av国产av综合av卡| 欧美xxxx性猛交bbbb| 午夜福利网站1000一区二区三区| 亚洲欧美中文字幕日韩二区| 人成视频在线观看免费观看| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 午夜91福利影院| 五月开心婷婷网| 亚洲精品av麻豆狂野| 免费大片黄手机在线观看| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av涩爱| 久久午夜综合久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 黄色怎么调成土黄色| 亚洲久久久国产精品| 久久人人爽av亚洲精品天堂| 午夜免费男女啪啪视频观看| 伦理电影免费视频| 人妻一区二区av| 两个人看的免费小视频| 免费看光身美女| 黄色怎么调成土黄色| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂| 国产一区二区三区综合在线观看 | 国产av码专区亚洲av| 日韩欧美精品免费久久| 亚洲第一区二区三区不卡| 午夜老司机福利剧场| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 亚洲欧美一区二区三区黑人 | 亚洲丝袜综合中文字幕| 久久久精品94久久精品| 国产成人一区二区在线| 亚洲,一卡二卡三卡| 欧美激情极品国产一区二区三区 | 亚洲av日韩在线播放| 在线 av 中文字幕| 亚洲精品视频女| 少妇熟女欧美另类| 中文欧美无线码| 亚洲精品中文字幕在线视频| 国产极品粉嫩免费观看在线| 十八禁高潮呻吟视频| 精品久久久久久电影网| av线在线观看网站| 我的女老师完整版在线观看| 男人添女人高潮全过程视频| 国产片内射在线| 18禁国产床啪视频网站| 久久青草综合色| 岛国毛片在线播放| 9191精品国产免费久久| 亚洲第一区二区三区不卡| 国产精品嫩草影院av在线观看| 男女下面插进去视频免费观看 | 日韩中字成人| 成年av动漫网址| 精品久久久久久电影网| 国产日韩欧美在线精品| 欧美另类一区| 99re6热这里在线精品视频| 久久精品久久精品一区二区三区| 波野结衣二区三区在线| 日本欧美国产在线视频| 男女边摸边吃奶| 建设人人有责人人尽责人人享有的| 日产精品乱码卡一卡2卡三| 最近手机中文字幕大全| 久久这里有精品视频免费| 一本色道久久久久久精品综合| 黑人欧美特级aaaaaa片| 男人操女人黄网站| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 亚洲精品乱码久久久久久按摩| 人人妻人人添人人爽欧美一区卜| 久久狼人影院| 日本av免费视频播放| videossex国产| 久热这里只有精品99| 亚洲欧美成人综合另类久久久| 麻豆乱淫一区二区| 亚洲精品aⅴ在线观看| 午夜91福利影院| 久久av网站| 啦啦啦在线观看免费高清www| 纯流量卡能插随身wifi吗| 婷婷色麻豆天堂久久| 我要看黄色一级片免费的| 女人久久www免费人成看片| 黄片播放在线免费| 国产一区有黄有色的免费视频| 人人妻人人澡人人看| 激情视频va一区二区三区| 欧美亚洲日本最大视频资源| 99精国产麻豆久久婷婷| 亚洲国产欧美在线一区| 精品一品国产午夜福利视频| 成人影院久久| 国产成人一区二区在线| 亚洲婷婷狠狠爱综合网| 人成视频在线观看免费观看| 欧美丝袜亚洲另类| 菩萨蛮人人尽说江南好唐韦庄| 一级爰片在线观看| 久久久精品94久久精品| 在线天堂中文资源库| 久久精品国产综合久久久 | 最后的刺客免费高清国语| 高清黄色对白视频在线免费看| 99热6这里只有精品| 日本午夜av视频| 熟妇人妻不卡中文字幕| 波多野结衣一区麻豆| 久久精品国产亚洲av天美| 色婷婷av一区二区三区视频| 亚洲精品久久成人aⅴ小说| 一级毛片电影观看| 黄色配什么色好看| 日韩免费高清中文字幕av| 美女大奶头黄色视频| 欧美3d第一页| 日日撸夜夜添| 久久毛片免费看一区二区三区| 久久综合国产亚洲精品| 久久久久久久久久人人人人人人| 97人妻天天添夜夜摸| 欧美亚洲 丝袜 人妻 在线| 中文字幕免费在线视频6| 色吧在线观看| 97超碰精品成人国产| 国产免费视频播放在线视频| 亚洲av日韩在线播放| 国产亚洲一区二区精品| 日本wwww免费看| 天天影视国产精品| 成人18禁高潮啪啪吃奶动态图| 性高湖久久久久久久久免费观看| 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 久久人人97超碰香蕉20202| 精品午夜福利在线看| 亚洲精华国产精华液的使用体验| 久久韩国三级中文字幕| 寂寞人妻少妇视频99o| 建设人人有责人人尽责人人享有的| 亚洲欧洲国产日韩| 成人综合一区亚洲| 人人澡人人妻人| 成人亚洲欧美一区二区av| 国产成人aa在线观看| 日本午夜av视频| 又黄又爽又刺激的免费视频.| 搡老乐熟女国产| av有码第一页| 下体分泌物呈黄色| 国产 一区精品| 日本91视频免费播放| 国产亚洲最大av| 国产白丝娇喘喷水9色精品| 中文乱码字字幕精品一区二区三区| 街头女战士在线观看网站| 国产深夜福利视频在线观看| 免费av中文字幕在线| 大香蕉久久网| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| tube8黄色片| 欧美性感艳星| 国产精品久久久久久久电影| 久久99热6这里只有精品| 国产一区二区在线观看av| 人妻 亚洲 视频| 啦啦啦视频在线资源免费观看| 久久99一区二区三区| 亚洲精品中文字幕在线视频| 五月玫瑰六月丁香| 不卡视频在线观看欧美| 国产亚洲精品久久久com| 成人手机av| 免费黄频网站在线观看国产| 夫妻午夜视频| 久久女婷五月综合色啪小说| 最近的中文字幕免费完整| 少妇人妻 视频| 久久精品熟女亚洲av麻豆精品| 91在线精品国自产拍蜜月| 中文字幕人妻丝袜制服| 免费看av在线观看网站| 一级毛片 在线播放| 中国美白少妇内射xxxbb| 美国免费a级毛片| 国产精品偷伦视频观看了| 国产亚洲av片在线观看秒播厂| 久久热在线av| 国产有黄有色有爽视频| 人妻系列 视频| 菩萨蛮人人尽说江南好唐韦庄| 另类亚洲欧美激情| 久久精品国产综合久久久 | 乱人伦中国视频| 男女国产视频网站| 99国产综合亚洲精品| 建设人人有责人人尽责人人享有的| 国产成人免费观看mmmm| 人妻一区二区av| 2021少妇久久久久久久久久久| 国产 一区精品| 精品国产一区二区三区四区第35| 人人妻人人添人人爽欧美一区卜| 制服丝袜香蕉在线| 国产欧美日韩一区二区三区在线| 一级a做视频免费观看| videosex国产| 国产精品国产三级国产专区5o| 日韩大片免费观看网站| 99国产精品免费福利视频| 久久国内精品自在自线图片| 中文欧美无线码| 国产xxxxx性猛交| 日日摸夜夜添夜夜爱| 欧美精品一区二区大全| 中文字幕制服av| 免费av中文字幕在线| 久久久久久久久久人人人人人人| 国产精品一二三区在线看| 国产欧美另类精品又又久久亚洲欧美| 日本黄色日本黄色录像| 黄色视频在线播放观看不卡| 亚洲伊人久久精品综合| 国产毛片在线视频| www日本在线高清视频| 26uuu在线亚洲综合色| 少妇被粗大的猛进出69影院 | 看免费成人av毛片| 亚洲人与动物交配视频| 一级毛片 在线播放| 精品少妇黑人巨大在线播放| 曰老女人黄片| 亚洲国产av新网站| 宅男免费午夜| 一本大道久久a久久精品| 欧美人与性动交α欧美精品济南到 | 久热久热在线精品观看| 国产亚洲欧美精品永久| 久久女婷五月综合色啪小说| 国产亚洲一区二区精品| 国产亚洲欧美精品永久| 亚洲av电影在线进入| 激情视频va一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 女性生殖器流出的白浆| 人妻系列 视频| 欧美精品国产亚洲| 人人妻人人澡人人爽人人夜夜| 侵犯人妻中文字幕一二三四区| 亚洲成国产人片在线观看| 免费大片黄手机在线观看| 最近的中文字幕免费完整| 国产精品国产三级国产av玫瑰| 亚洲在久久综合| 中文乱码字字幕精品一区二区三区| 草草在线视频免费看| 国产精品不卡视频一区二区| 老司机影院成人| 精品一区二区免费观看| 亚洲性久久影院| 9热在线视频观看99| 精品久久久久久电影网| 91精品三级在线观看| 亚洲四区av| 在线观看免费日韩欧美大片| 亚洲图色成人|