• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anumerical techniquebasedon collocation methodfor solvingmodi fi ed Kawaharaequation

    2018-05-03 02:21:00TurgutAkBttlGziKrkoc

    Turgut Ak S. Bttl Gzi Krkoc

    a Department of Transportation Engineering, Yalova University, Yalova, 77200 Turkey

    b Department of Mathematics, Faculty of Science and Art, Nevsehir Haci Bektas Veli University, Nevsehir, 50300 Turkey

    1.Introduction

    The dynamics of shallow water waves is a seriously growing research area in the area of fl uid dynamics. There are several models that are available to focus on this area of research.A few well known models that are frequently visible in journals and text books are Korteweg–de Vries (KdV) equation[1–3] , modi fi ed KdV equation [4–8] , Peregrine equation [9] ,Benjamin–Bona–Mahony equation [10–12] , Boussinesq equation [13,14] and many more [15,16] . For coupled system,where two-layered shallow water waves are studied, several models are proposed there too. These are Bona–Chen equation [17] , Gear–Grimshaw model [18,19] , Zahreamoghaddam model [20] and others. This paper will focus on single layered shallow water fl uids that are observed along sea shores and beaches. The model that will be focused in this paper is known as modi fi ed Kawahara equation (mKE).

    Modi fi ed Kawahara equation has been studied in the past during several occasions [21–28] . This equation models water waves in long wave regime for moderate values of surface tension [22] . It was analyzed that KdV equation fails in this context since the cubic term in dispersion relation vanishes and thus fi fth order dispersion terms stands relevant. The detail of this analysis is reported during 2006 [22] .

    This paper discusses the numerical analysis of modi fi ed Kawahara equation using septic B-splines. The motion of single solitary waves is analyzed in details using this form of numerical simulations. Interaction of two and three solitary waves, stability analysis are all detailed in this paper with initial wave form being Gaussian type.

    2.The governing equation and septic B-splines

    In this study, we will consider the modi fi ed Kawahara equation

    with the physical boundary conditionsU→ 0 asx→ ± ∞ ,whereα,βandγare positive parameters and the subscriptsxandtdenote the differentiation. To implement the numerical method, solution domain is restricted over an intervala≤x≤b. Boundary conditions will be selected from thefollowing homogeneous boundary conditions:

    Table 1Septic B-spline function and its derivatives at nodes x m .

    and the initial condition

    The septic B-splinesφm(x), (m= -3(1)N+ 3 ), at the knotsxmare de fi ned over the interval [a,b] by Ref. [29] .φm(x)

    The set of functions {φ-3(x),φ-2(x),φ-1(x),...,φN+1(x),φN+2(x),φN+3(x)} forms a basis for functions de fi ned over[a,b]. The approximate solutionUN(x,t) to the exact solutionU(x,t) is given by

    whereδi(t) are time dependent parameters to be determined from the boundary and weighted residual conditions. Each septic B-spline covers eight elements so that each element[xm,xm+1] is covered by eight splines. The values ofφm(x)and its derivative may be tabulated as in Table 1 .

    Using trial function (5) and septic splines (4) , the values ofU,U′ ,U′ ′ ,U′′′ ,Uiv,Uv,Uviat the knots are determined in terms of the element parametersδmby

    where the symbols′,′′,′′′,iv,vandvidenotes differentiation with respect tox, respectively. The splinesφm(x) and its two principle derivatives vanish outside the interval [xm-4,xm+4] .

    3.Collocation fi nite element method

    Now, we identify the collocation points with the knots and use Eq. (6) to evaluateUm, its necessary space derivatives and substitute into Eq. (1) to obtain the set of the coupled ordinary differential equations. For the linearization technique we get the following equation:

    where

    and.denotes derivative with respect to time. If time parametersδi’s and its time derivatives ˙δi’s in Eq. (7) are discretized by the Crank–Nicolson formula and usual fi nite difference approximation, respectively,

    we obtain a recurrence relationship between two time levelsnandn+ 1 relating two unknown parametersfori=m-3,m-2,...,m+ 2,m+ 3

    where boundary conditions and can be used to eliminateδ-3,δ-2,δ-1andδN+1,δN+2,δN+3from the system (10) which then becomes a matrix equation for theN+ 1 unknownsd=(δ0,δ1 ,...,δN)Tof the form

    The matricesAandBare septa-diagonal(N+ 1)×(N+ 1)matrices and so they are easily solved. Two or three inner iterations are applied to the termat each time step to cope with the non-linearity caused byZm.Before the commencement of the solution process, initial parametersd0must be determined by using the initial condition and following derivatives at the boundaries;

    So we have the following matrix form for the initial vectord0;

    where

    For the linearization technique, the termU2in non-linear termU2Uxis taken as

    The system (10) consists of(N+ 1)linear equations including(N+ 7)unknown parameters (δ-3,δ-2,δ-1,...,δN+1,δN+2,δN+3)T. To obtain a unique solution to this system, we need six additional constraints. These are obtained from the

    4.Stability analysis

    The stability analysis is based on the von Neumann theory. The growth factorξof the error in a typical mode of amplitude

    wherekis the mode number andhthe element size, is determined from a linearization of the numerical scheme. In order to apply the stability analysis, the Kawahara equation can be linearized by assuming that the quantityU2in the non-linear termU2Uxis locally constant. Substituting the Fourier mode(16) into (10) gives the growth factorξof the form

    where

    Table 2Invariants and error norms for single solitary wave with α = β = γ = 1 ,h = 0. 1 and Δt = 0. 05 .

    The modulus of |ξ| is 1, therefore the linearized scheme is unconditionally stable.

    5.Numerical examples and results

    Numerical results of the mKdV equation are obtained for four problems: the motion of single solitary wave, interaction of two and three solitary waves and evolution of solitons. We use the error normL2and the error normL∞

    Fig. 1. Single solitary wave pro fi le for α = β = γ = 1 , h = 0. 1 , Δt = 0. 05 and 0 ≤ t ≤ 100.

    Fig. 2. Motion of the single solitary wave for α = β = γ = 1 , h = 0. 1 and Δt = 0. 05 at a) t = 0, b) t = 30, c) t = 70, d) t = 100.

    to calculate the difference between analytical and numerical solutions at some speci fi ed times. Kawahara Eq. (1) possesses only two conservation constants given by

    which correspond to conversation of mass and momentum, respectively [30] . In the simulation of solitary wave motion, the invariantsI1andI2are monitored to check the conversation of the numerical algorithm.

    5.1. The motion of single solitary wave

    The solitary wave solution of the Kawahara Eq. (1) is given by considered with the boundary conditionsU→ 0 asx→ ± ∞ and the initial condition

    whereα,β,γandx0are arbitrary constants. The initial condition is

    For the numerical simulation of the motion of a single solitary wave, parametersα=β=γ= 1,h= 0.1 andΔt= 0.05 over the interval [ -50,50 ] are chosen. For these parameters, the solitary wave has an amplitude 0.94868. The conserved quantities and error normsL2andL∞are shown at selected times up to timet= 100.The obtained results are tabulated in Table 2 . It can be seen from the Table 2 that the error normsL2andL∞are found to be small enough and the quantities in the invariants remain almost constant during the computer run. Percentage of relative changes ofI1andI2are found to be 1.164 × 10-4%, 6.854 × 10-10%,respectively. In Fig. 1 , the numerical solutions are displayed att= 0,20,40,...,100. The graphs are plotted numerical solution of single soliton withα=β=γ= 1,h= 0.1 andΔt= 0.05 at selected times fromt= 0 tot= 100,in Fig. 2 .Errors distributions at timet= 100 are depicted for solitary waves amplitudes 0.94868 in Fig. 3 to show the errors between the analytical and numerical results over the problem domain.

    Fig. 3. Error for α = β = γ = 1 , h = 0. 1 and Δt = 0. 05 , at t = 100.

    Table 3Comparison of invariants for the interaction of two solitary waves with α=β = γ = 1 , h = 0. 1 , Δt = 0. 05 , c 1 = 0. 85 , c 2 = 0. 35 , x 1 = 0 and x 2 = 20.

    Table 4Comparison of invariants for the interaction of three solitary waves with α = β = γ = 1 , h = 0. 1 , Δt = 0. 05 , c 1 = 0. 85 , c 2 = 0. 50, c 3 = 0. 25 , x 1 =-20, x 2 = 0 and x 3 = 20.

    Table 5Invariants for Gaussian initial condition with α = β = γ = 1 and h = Δt =0. 25 at 0 ≤ t ≤ 5.

    5.2. Interaction of two solitary waves

    Secondly, we consider the interaction of two solitary waves by using the initial condition given by the linear sum of two well separated solitary waves having various amplitudes

    Fig. 4. Interaction of two solitary waves for α = β = γ = 1 , h = 0. 1 , Δt = 0. 05 , c 1 = 0. 85 , c 2 = 0. 35 , x 1 = 0 and x 2 = 20 at a) t = 0, b) t = 30, c) t = 40,d) t = 50, e) t = 60, f) t = 100.

    For the simulation, the parametersα=β=γ= 1,h= 0.1,Δt= 0.05,c1 = 0.85,c2 = 0.35,x1 = 0 andx2 =20 are chosen over the range -50 ≤x≤ 100. The experiment are run fromt= 0 tot= 100 and the calculated values of the invariantsI1andI2obtained by the present method are tabulated in Table 3 . It is seen that the obtained values of the invariants remain almost constant during the computer run.

    Fig. 4 shows the development of the interaction of two solitary waves. It is clear from the fi gure that, att= 0 the greater solitary wave at the left position of the smaller solitary wave, at the beginning of the run. With the increases of the time the greater solitary wave catches up the smaller until at timet= 30,the smaller solitary wave being absorbed.The overlapping process continues untilt= 60,greater soli-tary wave has overtaken the smaller solitary wave and get in the process of the separating. At timet= 100, the interaction is complete and the greater solitary wave has separated completely.

    Fig. 5. Interaction of three solitary waves for α = β = γ = 1 , h = 0. 1 , Δt = 0. 05 , c 1 = 0. 85 , c 2 = 0. 50, c 3 = 0. 25 , x 1 = -25 , x 2 = 0 and x 3 = 20 at a)t = 0, b) t = 40, c) t = 60, d) t = 90, e) t = 110, f) t = 150.

    5.3. Interaction of three solitary waves

    Thirdly, we consider the interaction of three solitary waves by using the initial condition given by the linear sum of three well separated solitary waves having various amplitudes

    Fig. 6. Evolution of waves for α = β = γ = 1 and h = Δt = 0. 25 at a) t = 0, b) t = 1 , c) t = 3 , d) t = 5 .

    For the computational work, the parametersα=β=γ= 1,h= 0.1,Δt= 0.05,c1 = 0.85,c2 = 0.50,c3= 0.25,x1= -25,x2= 0 andx3= 20 are taken over the range -50 ≤x≤ 100. Simulations are done up to timet= 150. Table 4 displays values of the conserved quantities pending the travelling. It is seen from the Table 4 that the obtained values of the invariants remain almost during the computer run. In Fig. 5 , the interaction of three solitary waves is depicted. As it is seen from the Fig. 5 , interaction started about timet= 40,overlapping processes occurred between timet= 40 andt= 110 and waves started to resume their original shapes after the timet= 150.

    6.Evolution of solitons

    Evolution of a train of solitons of the Kawahara equation has been studied using the Gaussian initial condition

    The values ofα=β=γ= 1,h= 0.25 andΔt= 0.25 are chosen at the region of the -100 ≤x≤ 100. The numerical computations are done up tot= 5 . The values of the two invariants of motion are presented in Table 5 . Percentage of relative changes ofI1andI2are found to be 1.782 ×10-8%,4.048 ×10-8%, respectively. As seen in the Fig. 6 , evolution of any soliton doesn’t occur with Gaussian initial condition.However, as time progressed it is observed that the waves made oscillation increasingly.

    7.Conclusion

    In this paper, we have obtained the solitary wave solutions of the modi fi ed Kawahara equation by using collocation method based on septic B-spline functions. To prove the performance of numerical scheme, the error normsL2,L∞for single solitary wave and two invariantsI1andI2for three test problems have been calculated. It has been observed that the error norms are satisfactorily small and the invariants are well conserved. Also, the linearized numerical scheme is unconditionally stable. The method successfully models the motion and interaction of the solitary waves and evolution of solitons.Finally, we can say that this method can a reliable method for obtaining the numerical solutions of similar type non-linear equations.

    Acknowledgment

    The author, is grateful to The Scienti fi c and Technological Research Council of Turkey for granting scholarship for Ph.D.studies.

    [1] D.J. Korteweg , G. de Vries , Philos. Mag. 39 (1895) 422–443 .

    [2] H.N.A. Ismail , K.R. Raslan , G.S.E. Salem , Appl. Math. Comput. 154(1) (2004) 17–29 .

    [3] H. Triki , T. Ak , S.P. Moshokoa , A. Biswas , Ocean Eng. 114 (2016)192–203 .

    [4] T. Ak , S.B.G. Karakoc , A. Biswas , Iran. J. Sci. Technol. Trans. A Sci.41 (4) (2017a) 1109–1121 .

    [5] T. Ak , S.B.G. Karakoc , A. Biswas , Scientia Iranica B 24 (3) (2017b)1148–1159 .

    [6] A. Biswas , K.R. Raslan , Phys. Wave Phenom. 19 (2) (2011) 142–147 .

    [7] K.R. Raslan , H.A. Baghdady , Int. J. Res. Rev. Appl. Sci. 18 (1) (2014)59–64 .

    [8] K.R. Raslan , H.A. Baghdady , Gen. Math. Notes 27 (1) (2015) 101–113 .

    [9] L. Girgis , E. Zerrad , A. Biswas , Int. J. Ocean. Oceanogr. 4 (1) (2010)45–54 .

    [10] A.-M. Wazwaz , Commun. Nonlinear Sci. Numer. Simul. 10 (8) (2005)855–867 .

    [11] A. Biswas , Commun. Nonlinear Sci. Numer. Simul. 15 (10) (2010)2744–2746 .

    [12] A.-M. Wazwaz , H. Triki , Commun. Nonlinear Sci. Numer. Simul. 16(3) (2011) 1122–1126 .

    [13] A.-M. Wazwaz , Commun. Nonlinear Sci. Numer. Simul. 13 (5) (2008)889–901 .

    [14] E.V. Krishnan , S. Kumar , A. Biswas , Nonlinear Dyn. 70 (2012)1213–1221 .

    [15] T. Ak , S. Dhawan , S.B.G. Karakoc , S.K. Bhowmik , K.R. Raslan , Math.Modell. Anal. 22 (3) (2017) 373–388 .

    [16] T. Ak , S.B.G. Karakoc , H. Triki , Eur. Phys. J. Plus 131 (10) (2016)356–370 .

    [17] A. Biswas , E.V. Krishnan , P. Suarez , A.H. Kara , S. Kumar , Indian J.Phys. 87 (2) (2013) 169–175 .

    [18] A. Biswas , M.S. Ismail , Appl. Math. Comput. 216 (12) (2010)3662–3670 .

    [19] H. Triki , A.H. Kara , A.H. Bhrawy , A. Biswas , Acta Physica Polonica A 125 (5) (2014) 1099–1107 .

    [20] H. Zareamoghaddam , Middle-East J. Sci. Res. 7 (6) (2011) 1061–1064 .

    [21] A.-M. Wazwaz , Appl. Math. Comput. 145 (1) (2003) 133–150 .

    [22] M. Haragus , E. Lombardi , A. Scheel , J. Math. Fluid Mech. 8 (2006)482–509 .

    [23] A.-M. Wazwaz , Phys. Lett. A 360 (4–5) (2007) 588–592 .

    [24] A. Biswas , Appl. Appl. Math. 3 (2) (2008) 218–223 .

    [25] A. Biswas , E. Zerrad , Adv. Stud. Theor. Appl. Mech. 1 (1) (2008a)39–44 .

    [26] A. Biswas , E. Zerrad , Fizika A 17 (3) (2008b) 103–108 .

    [27] A. Biswas , Appl. Math. Lett. 22 (2) (2009) 208–210 .

    [28] S.B.G. Karakoc , H. Zeybek , T. Ak , Stat. Optim. Inf. Comput. 2 (2014)211–221 .

    [29] P.M. Prenter , Splines and Variational Methods, John Wiley, New York,1975 .

    [30] R.P. Malik , On Fifth Order KdV Type Equation, Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Moscow,1997 .

    久久99精品国语久久久| 欧美最新免费一区二区三区| 国产精品久久久久久久电影| 国产精品偷伦视频观看了| 亚洲熟女精品中文字幕| xxx大片免费视频| 久久久久久国产a免费观看| 一区二区三区四区激情视频| 国产老妇伦熟女老妇高清| 亚洲美女搞黄在线观看| 午夜免费观看性视频| 亚洲国产日韩一区二区| 黄色日韩在线| 汤姆久久久久久久影院中文字幕| 亚洲美女视频黄频| 男女边吃奶边做爰视频| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜爱| 青春草国产在线视频| 秋霞伦理黄片| 亚洲电影在线观看av| 精品久久久久久电影网| 少妇猛男粗大的猛烈进出视频 | 亚洲自拍偷在线| 久久久久久久午夜电影| 国产黄色视频一区二区在线观看| 联通29元200g的流量卡| 人人妻人人澡人人爽人人夜夜| 十八禁网站网址无遮挡 | 国产成人一区二区在线| 国产又色又爽无遮挡免| 国产成人精品福利久久| 国产精品一区二区三区四区免费观看| av福利片在线观看| 人妻夜夜爽99麻豆av| 国产乱人视频| 少妇人妻一区二区三区视频| 日韩制服骚丝袜av| 一级毛片电影观看| 人妻系列 视频| 日韩欧美一区视频在线观看 | 国产老妇伦熟女老妇高清| 欧美bdsm另类| 熟女电影av网| 伦理电影大哥的女人| 午夜免费观看性视频| 丝瓜视频免费看黄片| 黄色欧美视频在线观看| 麻豆成人av视频| 寂寞人妻少妇视频99o| 亚洲美女视频黄频| 一区二区三区免费毛片| 中文字幕久久专区| 国产精品国产三级专区第一集| 久久久久久久午夜电影| 51国产日韩欧美| 日韩欧美一区视频在线观看 | 18+在线观看网站| 男女边摸边吃奶| 久久久久久久午夜电影| 嘟嘟电影网在线观看| 久久久久久久久久成人| 国内揄拍国产精品人妻在线| 卡戴珊不雅视频在线播放| 在线亚洲精品国产二区图片欧美 | 亚洲精品国产av成人精品| 97在线人人人人妻| av天堂中文字幕网| xxx大片免费视频| 成年人午夜在线观看视频| 国产免费又黄又爽又色| 日韩av不卡免费在线播放| 男女国产视频网站| 久久99热6这里只有精品| 免费av观看视频| av在线观看视频网站免费| 我要看日韩黄色一级片| 中文字幕免费在线视频6| 少妇高潮的动态图| 免费不卡的大黄色大毛片视频在线观看| 精品久久久精品久久久| 国产日韩欧美亚洲二区| 亚洲av成人精品一区久久| 97在线视频观看| 少妇猛男粗大的猛烈进出视频 | 女人久久www免费人成看片| 在线看a的网站| freevideosex欧美| 黑人高潮一二区| 亚洲aⅴ乱码一区二区在线播放| 18禁动态无遮挡网站| 亚洲色图av天堂| 国产伦精品一区二区三区视频9| 一区二区三区免费毛片| 午夜免费观看性视频| 婷婷色麻豆天堂久久| 亚洲av电影在线观看一区二区三区 | 99热这里只有是精品50| 亚洲av中文av极速乱| 美女xxoo啪啪120秒动态图| 成人鲁丝片一二三区免费| 日本熟妇午夜| 国产精品国产三级国产av玫瑰| 美女cb高潮喷水在线观看| 亚洲人成网站高清观看| 神马国产精品三级电影在线观看| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 最近中文字幕2019免费版| 中国三级夫妇交换| 乱系列少妇在线播放| 在线播放无遮挡| 日本午夜av视频| 国产黄片视频在线免费观看| 最近最新中文字幕大全电影3| 亚洲精品aⅴ在线观看| 亚洲国产欧美人成| 中文字幕制服av| 99精国产麻豆久久婷婷| 777米奇影视久久| 水蜜桃什么品种好| 免费av观看视频| 哪个播放器可以免费观看大片| 丝袜美腿在线中文| av专区在线播放| 2022亚洲国产成人精品| 毛片一级片免费看久久久久| 成年女人在线观看亚洲视频 | 久久精品国产a三级三级三级| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人一区二区免费高清观看| 人妻 亚洲 视频| 2021天堂中文幕一二区在线观| 少妇裸体淫交视频免费看高清| 亚洲久久久久久中文字幕| 在线天堂最新版资源| 久久久国产一区二区| 亚洲精品第二区| 人人妻人人爽人人添夜夜欢视频 | 国产精品一区二区三区四区免费观看| 午夜激情久久久久久久| 亚洲精品456在线播放app| 成年版毛片免费区| 男女国产视频网站| 亚洲天堂国产精品一区在线| 亚洲av欧美aⅴ国产| 在线观看国产h片| 女的被弄到高潮叫床怎么办| 国产高潮美女av| 舔av片在线| 熟妇人妻不卡中文字幕| 国产永久视频网站| 国产综合精华液| 久久精品国产鲁丝片午夜精品| 制服丝袜香蕉在线| 国产高清有码在线观看视频| 天堂网av新在线| 汤姆久久久久久久影院中文字幕| 国模一区二区三区四区视频| 国产精品不卡视频一区二区| 我的女老师完整版在线观看| 免费黄色在线免费观看| 欧美日韩综合久久久久久| 色哟哟·www| 免费看日本二区| 精品国产一区二区三区久久久樱花 | 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 成人国产av品久久久| 亚洲欧美日韩东京热| 亚洲av成人精品一二三区| 色婷婷久久久亚洲欧美| 久久亚洲国产成人精品v| 日韩精品有码人妻一区| 国产精品99久久99久久久不卡 | 男女啪啪激烈高潮av片| 欧美bdsm另类| 毛片一级片免费看久久久久| 尤物成人国产欧美一区二区三区| 三级经典国产精品| 国产黄频视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 校园人妻丝袜中文字幕| 最近2019中文字幕mv第一页| 国产精品麻豆人妻色哟哟久久| 黄色一级大片看看| 只有这里有精品99| 色哟哟·www| 五月天丁香电影| 涩涩av久久男人的天堂| 九草在线视频观看| 亚洲真实伦在线观看| 九色成人免费人妻av| 国产亚洲精品久久久com| tube8黄色片| 在线天堂最新版资源| 欧美bdsm另类| 18禁在线播放成人免费| 亚洲欧美中文字幕日韩二区| 熟女av电影| 99精国产麻豆久久婷婷| 免费播放大片免费观看视频在线观看| 亚洲精品色激情综合| 亚洲综合精品二区| 在线亚洲精品国产二区图片欧美 | 精品人妻偷拍中文字幕| 国产成年人精品一区二区| 精品久久久精品久久久| 中文字幕亚洲精品专区| 中国三级夫妇交换| 亚洲最大成人手机在线| 最近最新中文字幕大全电影3| 99久久九九国产精品国产免费| 亚洲欧洲国产日韩| 午夜老司机福利剧场| av线在线观看网站| 欧美激情久久久久久爽电影| 99热国产这里只有精品6| 丝袜美腿在线中文| 亚洲人成网站在线播| 国产欧美亚洲国产| 少妇被粗大猛烈的视频| 在线观看免费高清a一片| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 成人国产麻豆网| 嫩草影院入口| 国产综合懂色| 制服丝袜香蕉在线| 高清av免费在线| 国产精品久久久久久久久免| 中文字幕av成人在线电影| 一个人观看的视频www高清免费观看| 久久精品熟女亚洲av麻豆精品| 99热国产这里只有精品6| 国产精品99久久99久久久不卡 | 视频中文字幕在线观看| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频 | 18禁裸乳无遮挡动漫免费视频 | 97超视频在线观看视频| 精品99又大又爽又粗少妇毛片| 中文字幕av成人在线电影| 一区二区三区免费毛片| 黄色一级大片看看| 校园人妻丝袜中文字幕| 中文资源天堂在线| 夫妻午夜视频| 欧美一级a爱片免费观看看| 欧美bdsm另类| 超碰97精品在线观看| 国产免费一级a男人的天堂| 久久6这里有精品| 国产精品国产av在线观看| 日韩制服骚丝袜av| 国产91av在线免费观看| 国产一区二区三区av在线| 亚洲av免费高清在线观看| 五月开心婷婷网| 国产精品爽爽va在线观看网站| av在线app专区| 中文欧美无线码| 国产精品嫩草影院av在线观看| 免费大片黄手机在线观看| 777米奇影视久久| 九九爱精品视频在线观看| 亚洲精品久久久久久婷婷小说| 亚洲综合精品二区| 久久久久久久久久人人人人人人| 在线观看免费高清a一片| 日韩成人伦理影院| 国产亚洲最大av| 国产成人a区在线观看| 日韩精品有码人妻一区| 婷婷色av中文字幕| 国产精品国产三级专区第一集| 热99国产精品久久久久久7| 九草在线视频观看| 嫩草影院新地址| 另类亚洲欧美激情| 一本色道久久久久久精品综合| 久久久久久久国产电影| 亚洲精品视频女| 色哟哟·www| 国产 一区精品| 久久人人爽人人爽人人片va| 欧美zozozo另类| 91精品国产九色| 国产精品国产av在线观看| 欧美精品一区二区大全| 毛片一级片免费看久久久久| 精品酒店卫生间| av在线天堂中文字幕| 一级毛片 在线播放| 麻豆精品久久久久久蜜桃| av在线蜜桃| 亚洲精品影视一区二区三区av| 人人妻人人爽人人添夜夜欢视频 | 伦理电影大哥的女人| 国产综合精华液| 赤兔流量卡办理| 国产精品国产三级国产av玫瑰| 99热这里只有精品一区| 看非洲黑人一级黄片| 亚洲精品成人av观看孕妇| 国产高潮美女av| 性插视频无遮挡在线免费观看| 尾随美女入室| 噜噜噜噜噜久久久久久91| 免费人成在线观看视频色| 亚洲欧美成人综合另类久久久| 久久国内精品自在自线图片| 国产色爽女视频免费观看| .国产精品久久| 国产成人91sexporn| 国精品久久久久久国模美| 欧美成人午夜免费资源| 麻豆久久精品国产亚洲av| 视频区图区小说| 婷婷色综合www| 亚洲,欧美,日韩| 2018国产大陆天天弄谢| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 熟妇人妻不卡中文字幕| 草草在线视频免费看| 欧美 日韩 精品 国产| 国产精品偷伦视频观看了| 久久久久国产精品人妻一区二区| 亚洲一区二区三区欧美精品 | 精品人妻视频免费看| 最近2019中文字幕mv第一页| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩另类电影网站 | 亚洲精品日韩av片在线观看| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 国产一级毛片在线| 黄片wwwwww| 成人二区视频| 欧美日韩精品成人综合77777| 美女高潮的动态| freevideosex欧美| 建设人人有责人人尽责人人享有的 | 成人高潮视频无遮挡免费网站| 中国国产av一级| 亚洲丝袜综合中文字幕| 激情五月婷婷亚洲| 成人一区二区视频在线观看| 高清av免费在线| 天堂网av新在线| 五月玫瑰六月丁香| 可以在线观看毛片的网站| 国产av不卡久久| 男女那种视频在线观看| 亚洲天堂av无毛| 精品一区二区三区视频在线| 不卡视频在线观看欧美| 免费播放大片免费观看视频在线观看| 免费观看的影片在线观看| 久久精品熟女亚洲av麻豆精品| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 精品国产露脸久久av麻豆| 嫩草影院入口| 97超碰精品成人国产| 男女下面进入的视频免费午夜| 成人无遮挡网站| 精品亚洲乱码少妇综合久久| 亚洲av日韩在线播放| 久久久久久久精品精品| 99热6这里只有精品| 网址你懂的国产日韩在线| 69人妻影院| 日韩,欧美,国产一区二区三区| 亚洲av一区综合| 高清视频免费观看一区二区| 国产av国产精品国产| 免费大片黄手机在线观看| 免费观看无遮挡的男女| av天堂中文字幕网| 国产亚洲精品久久久com| 日本-黄色视频高清免费观看| 禁无遮挡网站| 国产免费一级a男人的天堂| 成年人午夜在线观看视频| 永久免费av网站大全| 丝袜脚勾引网站| 日韩一本色道免费dvd| 欧美xxxx性猛交bbbb| 亚洲成色77777| 国产精品国产三级专区第一集| 免费看a级黄色片| 国产免费视频播放在线视频| 成人欧美大片| 国产 一区精品| 国产成人aa在线观看| 国产av码专区亚洲av| 嫩草影院新地址| 美女被艹到高潮喷水动态| 国产精品成人在线| 亚洲精品久久午夜乱码| 国产色爽女视频免费观看| 亚洲精品,欧美精品| 老司机影院成人| 国产免费一级a男人的天堂| 午夜爱爱视频在线播放| 一区二区三区精品91| 久久精品久久久久久久性| 精品人妻视频免费看| 亚洲av不卡在线观看| 免费播放大片免费观看视频在线观看| 在线观看人妻少妇| 精品久久国产蜜桃| 亚洲性久久影院| 一区二区三区四区激情视频| 国产高清不卡午夜福利| 久久久久网色| 欧美亚洲 丝袜 人妻 在线| 婷婷色av中文字幕| 日韩不卡一区二区三区视频在线| 免费黄频网站在线观看国产| 国产国拍精品亚洲av在线观看| 蜜桃久久精品国产亚洲av| 只有这里有精品99| 免费看光身美女| 少妇人妻久久综合中文| 51国产日韩欧美| 日本免费在线观看一区| 色视频在线一区二区三区| 亚洲精品一区蜜桃| 97人妻精品一区二区三区麻豆| 熟女人妻精品中文字幕| 在线看a的网站| 久久精品夜色国产| 哪个播放器可以免费观看大片| 高清毛片免费看| 国产精品一及| 日韩一区二区视频免费看| 我要看日韩黄色一级片| 伦理电影大哥的女人| 国产在视频线精品| 久久精品人妻少妇| 欧美日韩亚洲高清精品| 国产精品国产三级国产av玫瑰| 久久精品熟女亚洲av麻豆精品| 激情 狠狠 欧美| 国产欧美亚洲国产| 免费观看的影片在线观看| 午夜福利高清视频| 超碰97精品在线观看| 搡女人真爽免费视频火全软件| 男女那种视频在线观看| 日韩强制内射视频| 国产精品.久久久| 亚洲精品国产av成人精品| 欧美精品人与动牲交sv欧美| 国产精品伦人一区二区| 免费电影在线观看免费观看| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| 精品熟女少妇av免费看| 久久人人爽人人片av| 黄片wwwwww| 久久久a久久爽久久v久久| 久久久久久国产a免费观看| 国产伦精品一区二区三区视频9| 91精品伊人久久大香线蕉| 尾随美女入室| 美女内射精品一级片tv| 国产女主播在线喷水免费视频网站| 97精品久久久久久久久久精品| 亚洲欧美精品专区久久| av黄色大香蕉| 男女国产视频网站| 色综合色国产| 成年人午夜在线观看视频| 国产精品偷伦视频观看了| 免费黄网站久久成人精品| 国产一区亚洲一区在线观看| 中文资源天堂在线| 久久午夜福利片| 成人毛片60女人毛片免费| 国产亚洲91精品色在线| 小蜜桃在线观看免费完整版高清| 国产黄片视频在线免费观看| 亚洲电影在线观看av| 最近的中文字幕免费完整| eeuss影院久久| 欧美极品一区二区三区四区| 日韩伦理黄色片| 久久久久性生活片| 国产免费福利视频在线观看| 毛片一级片免费看久久久久| www.av在线官网国产| 国产精品精品国产色婷婷| 久久精品熟女亚洲av麻豆精品| 色吧在线观看| 99久久人妻综合| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 久久99精品国语久久久| 久久久久性生活片| 日产精品乱码卡一卡2卡三| 午夜爱爱视频在线播放| 亚洲精品aⅴ在线观看| 超碰97精品在线观看| 亚洲av.av天堂| 人人妻人人看人人澡| 久久97久久精品| 亚洲国产高清在线一区二区三| 久久人人爽人人片av| 草草在线视频免费看| 国产伦精品一区二区三区四那| 久久6这里有精品| 国产精品一区二区性色av| 99热这里只有是精品在线观看| 97人妻精品一区二区三区麻豆| 欧美日韩亚洲高清精品| 日韩精品有码人妻一区| 青春草国产在线视频| 国产乱人视频| 中文乱码字字幕精品一区二区三区| 熟女电影av网| 91久久精品国产一区二区成人| 国产精品一区二区性色av| 一级av片app| 国产成年人精品一区二区| 高清视频免费观看一区二区| 午夜福利视频1000在线观看| av播播在线观看一区| 老女人水多毛片| 欧美性感艳星| av.在线天堂| 色视频www国产| 丰满人妻一区二区三区视频av| 中国美白少妇内射xxxbb| 午夜老司机福利剧场| 国产亚洲5aaaaa淫片| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院精品99| 美女脱内裤让男人舔精品视频| 日韩一区二区三区影片| 成人国产av品久久久| 久久精品人妻少妇| 欧美成人午夜免费资源| 91久久精品国产一区二区三区| 久久女婷五月综合色啪小说 | 成年女人看的毛片在线观看| 又爽又黄无遮挡网站| xxx大片免费视频| 不卡视频在线观看欧美| 麻豆成人午夜福利视频| 又大又黄又爽视频免费| 国产精品国产av在线观看| 久久午夜福利片| 国产精品国产三级专区第一集| av黄色大香蕉| 超碰av人人做人人爽久久| 欧美三级亚洲精品| 极品教师在线视频| 麻豆国产97在线/欧美| 亚洲av二区三区四区| 久久人人爽人人片av| 我的女老师完整版在线观看| 欧美人与善性xxx| 国产亚洲av嫩草精品影院| 亚洲欧美日韩无卡精品| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品成人综合色| 亚洲精品亚洲一区二区| 中文在线观看免费www的网站| 亚洲av电影在线观看一区二区三区 | 久久ye,这里只有精品| 国产男女超爽视频在线观看| 免费在线观看成人毛片| 日韩三级伦理在线观看| 久久鲁丝午夜福利片| 日韩 亚洲 欧美在线| 少妇人妻久久综合中文| 亚洲,欧美,日韩| 麻豆成人午夜福利视频| 亚洲怡红院男人天堂| 国产伦理片在线播放av一区| 色婷婷久久久亚洲欧美| 国内揄拍国产精品人妻在线| 97超碰精品成人国产| 毛片女人毛片| 又大又黄又爽视频免费| 国产精品不卡视频一区二区| 一本一本综合久久| 视频区图区小说| 日韩成人伦理影院| 老司机影院成人| 日本wwww免费看| 尾随美女入室| 国产老妇伦熟女老妇高清| 草草在线视频免费看| 亚洲性久久影院| 国产精品久久久久久精品电影小说 | 亚洲国产欧美在线一区| 白带黄色成豆腐渣| 国产精品一二三区在线看| 又粗又硬又长又爽又黄的视频| 亚洲经典国产精华液单| 色视频www国产| 一边亲一边摸免费视频| 亚洲av二区三区四区| 国产精品99久久99久久久不卡 | 美女xxoo啪啪120秒动态图| 看免费成人av毛片| 天天躁日日操中文字幕| 永久网站在线| 国产亚洲一区二区精品| 五月伊人婷婷丁香|