張 柳, 田德安
1.華中科技大學(xué)同濟(jì)醫(yī)學(xué)院,湖北 武漢 430000;2.華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院消化內(nèi)科
肝性腦病(hepatic encephalopathy,HE)是由嚴(yán)重肝病引起的、以代謝紊亂為基礎(chǔ)的中樞神經(jīng)系統(tǒng)功能失調(diào)綜合病征,表現(xiàn)為亞臨床改變到昏迷的各種神經(jīng)或精神異常,分為輕型肝性腦病(mild hepatic encephalopathy,MHE)和顯性肝性腦病(overt hepatic encephalopathy,OHE)[1]。過去幾十年有關(guān)HE的發(fā)病機(jī)理研究中主要有氨中毒學(xué)說、氨基酸失衡學(xué)說、假性神經(jīng)遞質(zhì)學(xué)說、GABA-BZ復(fù)合體學(xué)說、毒物的協(xié)同作用學(xué)說。其中高血氨仍是HE發(fā)生的重要因素。最開始人們普遍認(rèn)為,HE是由肝臟解毒功能下降和/或門靜脈-體循環(huán)分流導(dǎo)致循環(huán)系統(tǒng)毒物入腦引起的腦功能障礙[2]。而近年來研究[3-4]發(fā)現(xiàn),腸道微生物在導(dǎo)致HE發(fā)生的高血氨、炎癥發(fā)生中扮演重要角色。肝硬化狀態(tài)下,腸道黏膜屏障破壞、腸道菌群失調(diào),導(dǎo)致腸道菌群易位、小腸細(xì)菌過度生長(small intestine bacterial overgrowth,SIBO)、代謝產(chǎn)物異常、腸道局部及全身免疫激活、炎癥反應(yīng)等,最終導(dǎo)致循環(huán)系統(tǒng)血氨及炎癥因子水平升高,導(dǎo)致血腦屏障破壞、腦細(xì)胞水腫、代謝異常,引發(fā)HE[5]。因此,具有糾正腸道微生態(tài)失調(diào)功能的益生菌將有望成為治療HE的新方法。
正常人腸道內(nèi)微生物數(shù)量達(dá)1010個(gè),是人體細(xì)胞數(shù)量的10倍[6]。腸道微生物種類和數(shù)量受年齡、性別、種族,甚至分娩方式、懷孕年齡、抗生素應(yīng)用、飲食、衛(wèi)生條件的影響[7-8],由于其多樣、多態(tài)且影響因素多、檢測技術(shù)問題等,研究其對人類病理生理狀態(tài)的影響十分復(fù)雜。近年隨著新的微生物檢測技術(shù)(焦磷酸測序技術(shù))誕生和新的菌群研究為解決這一問題帶來了突破。研究發(fā)現(xiàn),微生物絕非隨機(jī)組合,2011年ARUMUGAM等[9]發(fā)現(xiàn)人類腸道微生物大致分3種菌屬,即擬桿屬、普氏屬、瘤胃球菌屬,正常情況下這3種菌屬在腸道中占優(yōu)勢,且處于穩(wěn)態(tài)。一旦人體發(fā)育成熟,這樣的腸道菌群組合不受年齡、種族、體質(zhì)量指數(shù)、性別的影響,但機(jī)體消化代謝、功能狀態(tài)會(huì)使微生物比例發(fā)生改變[10]。
菌群失調(diào)是指機(jī)體某部位正常菌群間各菌種比例發(fā)生較大幅度改變并超過正常幅度的狀態(tài),臨床常用CDR(腸道有益菌與有害菌的比值)評估菌群失調(diào)的嚴(yán)重程度[11]。研究[12]發(fā)現(xiàn),在肝硬化、HE患者的腸道中存在嚴(yán)重的菌群失調(diào)。門靜脈高壓引起的腸道淤血、水腫、缺氧,一方面影響腸道動(dòng)力學(xué),導(dǎo)致腸道自主清除能力下降,使過路菌接觸、黏附黏膜的概率增加;另一方面破壞黏膜屏障,腸壁局部抵抗力下降,使得各種致病菌大量繁殖,導(dǎo)致SIBO,多種因素綜合作用致使腸腔內(nèi)微生態(tài)環(huán)境遭到嚴(yán)重破壞、菌群比例失調(diào)。研究[13]發(fā)現(xiàn),CDR在不同生理病理狀態(tài)下有顯著性差異,HE組顯著低于肝硬化組和正常對照組,且CDR與血清內(nèi)毒素水平呈負(fù)相關(guān)。BAJAJ等[12-14]多項(xiàng)研究表明,MHE與正常對照組之間存在腸道菌群的差異,前者糞便標(biāo)本擬桿菌、疣微菌科減少,腸桿菌、梭桿菌、韋榮球菌、鏈球菌、葡萄球菌、變形桿菌、梭狀芽胞桿菌、普氏菌科增加,并且另有研究[15]顯示,腸道內(nèi)存在不同程度的SIBO,其發(fā)生率為35%~61%。進(jìn)一步研究發(fā)現(xiàn),細(xì)菌比例失衡與肝功能及認(rèn)知受損無單純的相關(guān)性,CHEN等[13]發(fā)現(xiàn),Child-Turcotte-Pugh (CTP)評分與鏈球菌比例呈正相關(guān),與毛螺旋菌呈負(fù)相關(guān)。終末期肝病模型(MELD)評分與腸桿菌科比例呈正相關(guān),與疣微菌科比例呈負(fù)相關(guān)。此外,SIBO與HE嚴(yán)重程度相關(guān),CTP評分越高的患者SIBO發(fā)生率越高[16-17]。由此說明肝硬化、HE患者腸道確實(shí)存在不同程度的菌群紊亂。目前調(diào)節(jié)腸道菌群的藥物成功治療HE更證實(shí)了該觀點(diǎn)。MARLICZ等[18-19]采用益生菌、合生元、利福昔明治療后發(fā)現(xiàn),腸道菌群比例發(fā)生改變,腸桿菌科豐度減少,乳酸桿菌比例增加,同時(shí)伴隨血氨水平的降低,MHE的逆轉(zhuǎn)、OHE發(fā)生率顯著降低。也有研究[20]表明,肝移植能通過調(diào)節(jié)腸道菌群改善大腦的認(rèn)知功能。因此,我們猜測菌群失調(diào)與HE的發(fā)生之間可能存在關(guān)聯(lián)性。
腸道菌群紊亂如何導(dǎo)致HE的發(fā)生、發(fā)展,涉及到腸道代謝產(chǎn)物的異常、黏膜屏障功能受損、SIBO的背景下引發(fā)高血氨癥、炎癥激活等多個(gè)環(huán)節(jié)。
雖然高血氨癥在HE發(fā)病機(jī)制中占有重要地位,但近年有研究[11,22,30-31]發(fā)現(xiàn),由腸道菌群失調(diào)所致的炎癥在HE中發(fā)揮了作用。在部分認(rèn)知功能嚴(yán)重受損的HE患者中無明顯高氨血癥,但炎癥因子水平顯著升高,包括IL-10、IL-6、IL-2和TNF-α[30],且發(fā)現(xiàn)炎癥能協(xié)同氨加重大腦認(rèn)知功能受損[21,27,31-32]。研究發(fā)現(xiàn),肝硬化時(shí)存在嚴(yán)重的菌群失調(diào)、SIBO,導(dǎo)致毒性物質(zhì)(脂多糖、肽糖和微生物核酸[14])產(chǎn)生增多、排泄減少,大量積聚在腸腔,加之肝硬化時(shí)腸道黏膜屏障受到嚴(yán)重破壞,這些毒性物質(zhì)能與腸道上皮細(xì)胞、肝細(xì)胞上多種模式識(shí)別受體(如TLR2)相互作用[33-34]。這樣的相互作用通過MyD88-NF-κB-依賴通路激活下游的信號(hào)通路,促炎因子增加,同時(shí)下調(diào)TGF-β使抑炎反應(yīng)減弱,引起炎癥瀑布級(jí)聯(lián)反應(yīng)[18],最終導(dǎo)致HE的發(fā)生。炎癥因子導(dǎo)致大腦認(rèn)知功能受損的機(jī)制尚不明確,可能與炎癥因子導(dǎo)致腦血流量改變、血腦屏障的通透性增加、腦細(xì)胞水腫、谷氨酰胺合成減少有關(guān)[5]。
動(dòng)物模型研究證實(shí),微生物失調(diào)是肝硬化發(fā)生大腦炎癥的關(guān)鍵,研究發(fā)現(xiàn),與GF(腸道無微生物)肝硬化組比較,在腸道菌群失調(diào)肝硬化小鼠中有明顯的小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞的激活,小腦IL-1b、MCP-1和皮層IL-1b的mRNA表達(dá)顯著增加,而抗炎因子IL-10的水平下降[35]。多項(xiàng)臨床研究[14,19]也發(fā)現(xiàn)了腸道微生物紊亂與炎癥的發(fā)生存在關(guān)聯(lián)性。腸桿菌科、韋榮球菌和梭桿菌科細(xì)菌、腸球菌、產(chǎn)堿桿菌、紫單胞菌比例增加和疣微菌科比例減少的患者血液炎癥水平更高,且認(rèn)知功能更差。由此可見,腸道菌群異常是導(dǎo)致HE炎癥因子升高的關(guān)鍵。此外,炎癥的存在確實(shí)能導(dǎo)致大腦認(rèn)知功能的損傷,小鼠模型研究發(fā)現(xiàn),腹腔注射脂多糖所導(dǎo)致的炎癥反應(yīng)會(huì)誘導(dǎo)肝硬化前驅(qū)昏迷的出現(xiàn),進(jìn)一步研究發(fā)現(xiàn),肝硬化小鼠存在小膠質(zhì)細(xì)胞的激活和原位促炎細(xì)胞因子TNF-α、IL-1β和IL-6的合成增加[21]。WRIGHT等[36]發(fā)現(xiàn),促炎因子主要是通過導(dǎo)致腦細(xì)胞水腫從而誘發(fā)昏迷。臨床研究[21,37]也發(fā)現(xiàn),炎癥的存在會(huì)加重HE認(rèn)知功能的受損。LOREN AGUSTI等[38-39]的多項(xiàng)動(dòng)物研究采用西地那非、布洛芬等抗炎治療,發(fā)現(xiàn)其通過抑制小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的活化、降低炎癥因子水平后能降低小鼠門靜脈的壓力、改善認(rèn)知功能。同樣BAJAJ等[11,17,40]臨床試驗(yàn)發(fā)現(xiàn),采用益生菌治療能降低內(nèi)毒素血癥和TNF的水平從而改善HE認(rèn)知功能。這些都提示腸道微生物所誘導(dǎo)的炎癥在HE發(fā)病中發(fā)揮作用。
腸道微生物失衡在HE發(fā)病中占據(jù)重要地位,因此調(diào)節(jié)腸道菌群,從而增強(qiáng)黏膜屏障、減少細(xì)菌易位、SIBO、炎癥等是治療HE的新方案。近年益生菌在改善微生態(tài)失衡從而改善HE認(rèn)知功能上備受關(guān)注。DHIMAN等[40]的多項(xiàng)臨床研究表明,與安慰劑對照組相比,益生菌能改善肝功能和大腦認(rèn)知功能,發(fā)現(xiàn)治療后CTP評分、末期肝病評分和數(shù)字測試試驗(yàn)顯著好轉(zhuǎn),在逆轉(zhuǎn)MHE、減少OHE的發(fā)生、降低HE的住院風(fēng)險(xiǎn)上療效顯著[29,40-41]。SAAB等[41-44]比較了益生菌與目前治療HE的推薦用藥如利福昔明、乳果糖的療效,結(jié)果發(fā)現(xiàn)其在降低血氨及炎癥因子水平、改善大腦認(rèn)知功能上療效相仿,并且在增加有益菌群、減少致病性細(xì)菌和長期耐受性上更勝一籌[26,42],但益生菌使用并不能降低HE的死亡率[41]。益生菌在治療HE上療效確切,目前尚無報(bào)道嚴(yán)重不良反應(yīng),安全性得到認(rèn)可。
HE嚴(yán)重威脅人類健康,它是由高血氨、炎癥、代謝毒性物質(zhì)等多種因素綜合作用所導(dǎo)致的大腦認(rèn)知功能損傷。近年發(fā)現(xiàn)腸道微生態(tài)失衡在其發(fā)病中扮演重要角色,腸道菌群失調(diào)、SIBO、腸黏膜受損等誘導(dǎo)高血氨、系統(tǒng)神經(jīng)炎癥,最終引發(fā)HE。而益生菌因其調(diào)節(jié)腸道菌群比例、改善腸道微生態(tài),對HE有確切的治療效果,且不良反應(yīng)小,長期耐受性好,有望成為治療HE的一線藥物。但其劑量劑型、適應(yīng)證等尚無統(tǒng)一推薦標(biāo)準(zhǔn),未來需更多大規(guī)模、多中心臨床試驗(yàn)研究其療效及用法。此外多項(xiàng)研究發(fā)現(xiàn),炎癥在HE發(fā)病中發(fā)揮作用,但目前尚無直接抗炎制劑治療HE的臨床試驗(yàn),未來可在抗炎制劑治療HE上進(jìn)一步研究,有望發(fā)現(xiàn)更多的HE治療方案,使HE患者獲益。
[1] VILSTRUP H, AMODIO P, BAJAJ J. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the american association for the study of liver diseases and the european association for the study of the liver [J]. Hepatology, 2014, 60(2): 715-735. DOI: 10.1002/hep.27210.
[2] BUTTERWORTH R F. Pathophysiology of hepatic encephalopathy: a new look at ammonia [J]. Metab Brain Dis, 2002, 17(4): 221-227.
[3] KARAKAN T. Gut microbiota modulation in cirrhosis: a new frontier in hepatology [J]. Turk J Gastroenterol, 2014, 25(1): 126. DOI: 10.5152/tjg.2014.0007.
[4] BETRAPALLY N S, GILLEVET P M, BAJAJ J S. Gut microbiome and liver disease [J]. Transl Res, 2017, 179: 49-59. DOU: 10.1016/j.trsl.2016.07.005.
[5] DHIMAN R K. Gut microbiota, inflammation and hepatic encephalopathy: a puzzle with a solution in sight [J]. J Clin Exp Hepatol, 2012, 2(3): 207-210. DOI: 10.1016/j.jceh.2012.08.004.
[6] SENDER R, FUCHS S, MILO R. Revised estimates for the number of human and bacteria cells in the body [J]. PLoS Biol, 2016, 14(8): e1002533. DOI: 10.1371/journal.pbio.1002533.
[7] MARQUES T M, WALL R, ROSS R P, et al. Programming infant gut microbiota: influence of dietary and environmental factors [J]. Curr Opin Biotechnol, 2010, 21(2): 149-156. DOI: 10.1016/j. copbio. 2010.03.020.
[8] FOUHY F, ROSS R P, FITZGERALD G F, et al. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps [J]. Gut Microbes, 2012, 3(3): 203-220. DOI: 10.4161/gmic.20169.
[9] ARUMUGAM M, RAES J, PELLETIER E. Enterotypes of the human gut microbiome [J]. Nature, 2011, 473(7346): 174-180. DOI: 10.1038/nature09944.
[10] GHOSHAL U C, SHUKLA R, GHOSHAL U. Small intestinal bacterial overgrowth and irritable bowel syndrome: a bridge between functional organic dichotomy [J]. Gut Liver, 2017, 11(2): 196-208. DOI: 10.5009/gnl16126.
[11] BAJAJ J S, HEUMAN D M, PHILLIP B. Altered profile of human gut microbiome is associated with cirrhosis and its complications [J]. J Hepatol, 2014, 60(5): 940-947. DOI: 10.1016/j.jhep.2013.12.019.
[12] BAJAJ J S, RIDLON J M, HYLEMON P B. Linkage of gut microbiome with cognition in hepatic encephalopathy [J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(1): G168-G175. DOI: 10.1152/ajpgi.00190.2011.
[13] CHEN Y, YANG F, LU H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis [J]. Hepatology, 2011, 54(2): 562-572. DOI: 10.1002/hep.24423.
[14] QIN N, YANG F, LI A, et al. Alterations of the human gut microbiome in liver cirrhosis [J]. Nature, 2014, 513(7516): 59-64. DOI: 10.1038/nature13568.
[15] GUPTA A, DHIMAN R K, KUMARI S. Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy [J]. J Hepatol, 2010, 53(5): 849-855. DOI: 10.1016/j.jhep.2010.05.017.
[17] LUNIA M K, SHARMA B C, SACHDEVA S. Small intestinal bacterial overgrowth and delayed orocecal transit time in patients with cirrhosis and low-grade hepatic encephalopathy [J]. Hepatol Int, 2013, 7(1): 268-273. DOI: 10.1007/s12072-012-9360-9.
[18] MARLICZ W, WUNSCH E, MYDLOWSKA M, et al. The effect of short term treatment with probiotic VSL#3 on various clinical and biochemical parameters in patients with liver cirrhosis[J].J Physiol Pharmacol, 2016, 67(6): 867-877.
[19] 王瑤芬.利福昔民預(yù)防肝性腦病復(fù)發(fā)的Meta分析[J].胃腸病學(xué)和肝病學(xué)雜志,2015,24(9):1133-1136. DOI:10.3969/j.issn. 1006-5709. 2015.09.027.
WANG Y F. The Meta-analysis of rifaximin prevent recurrence of hepatic encephalopathy [J]. Chin J Gastroenterol Hepatol, 2015, 24(9): 1133-1136. DOI: 10.3969/j.issn.1006-5709.2015.09.027.
[20] BAJAJ J S, FAGAN A, SIKAROODI M, et al. Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis [J]. Liver Transpl, 2017, 23(7): 907-914. DOI: 10.1002/lt.24754.
[21] ALDRIDGEA D R, TRANAHA E J, SHAWCROSS D L. Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation [J]. J Clin Exp Hepatol, 2015, 5(Suppl 1): S7-S20. DOI: 10.1016/j.jceh.2014.06.004.
[22] RAHUL R, VIVEK A, RADHA K, et al. Gut microbiota: its role in hepatic encephalopathy [J]. J Clin Exp Hepatol, 2015, 5(Suppl 1): S29-S36. DOI: 10.1016/j.jceh. 2014.12.003.
[23] MARCHESE A, SALERNO A, PESCE A, et al. In vitro activity of rifaximin, metronidazole and vancomycin against Clostridium difficile and the rate of selection of spontaneously resistant mutants against representative anaerobic and aerobic bacteria, including ammonia-producing species [J].Chemotherapy, 2000, 46(4): 253-266. DOI: 10.1159/000007297.
[24] SHEN T C, Albenberg L, Bittinger K, et al. Engineering the gut microbiota to treat hyperammonemia [J]. J CLIN INVEST, 2015, 125(7): 2841-2850. DOI: 10.1172/JCI79214.
[25] BAJAJ J S, HEUMAN D M, HYLEMON P B, et al. Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis [J]. Aliment Pharmacol Ther, 2014, 39(10): 1113-1125. DOI: 10.1111/apt.12695.
[26] VIRAMONTES H?RNER D, AVERY A, STOW R. The effects of probiotics and symbiotics on risk factors for hepatic encephalopathy: a systematic review [J]. J Clin Gastroenterol, 2017, 51(4): 312-323. DOI: 10.1097/MCG.0000000000000789.
[27] LUNIA M K, SHARMA B C, SHARMA P, et al. Probiotics prevent hepatic encephalopathy in patients with cirrhosis:a randomized controlled trial [J]. Clin Gastroenterol Hepatol, 2014, 12(6): 1003-1008.e1. DOI: 10.1016/j.cgh.2013.11.006.
[28] XU J, MA R, CHEN L F, et al. Effects of probiotic therapy on hepatic encephalopathy in patients with liver cirrhosis: an updated meta-analysis of six randomized controlled trials [J]. Hepatobiliary Pancreat Dis Int, 2014,13(4): 354-360. DOI.org/10.1016/S1499-3872(14)60280-0.
[29] ZHAO L N, YU T, LAN S Y, et al. Probiotics can improve the clinical outcomes of hepatic encephalopathy: an update meta-analysis [J]. Clin Res Hepatol Gastroenterol, 2015,39(6): 674-682. DOI: 10.1016/j.clinre.2015.03.008.
[30] SHAWCROSS D L, SHARIFI Y, CANAVAN J B. Infection and systemic inflammation, not ammonia, are associated with Grade 3/4 hepatic encephalopathy, but not mortality in cirrhosis [J]. J Hepatol, 2011, 54(4): 640-649. DOI: 10.1016/j.jhep.2010.07.045.
[31] SHAWCROSS D L. Is it time to target gut dysbiosis and immune dysfunction in the therapy of hepatic encephalopathy [J]. Expert Rev Gastroenterol Hepatol, 2015, 9(5): 539-542. DOI: 10.1586/17474124.2015.1035257.
[32] BOSOI C R, TREMBLAY M, ROSE C F. Induction of systemic oxidative stress leads to brain oedema in portacaval shunted rats [J].Liver Int, 2014, 34(9): 1322-1329. DOI: 10.1111/liv.12414.
[33] 張靜雯,王玉平,周永寧.腸道菌群在非酒精性脂肪性肝病中的作用[J].胃腸病學(xué)和肝病學(xué)雜志, 2017, 26(4): 468-471. DOI:10.3969/j.issn.1006-5709.2017.04.027.
ZHANG J W, WANG Y P, ZHOU Y N. The role of intestinal microflora in nonalcoholic fatty liver disease [J]. Chin J Gastroenterol Hepatol, 2017, 26(4): 468-471. DOI: 10.3969/j.issn.1006-5709.2017.04.027.
[34] 陳小林, 任宏宇.腸道微生物群組與腸道免疫的關(guān)系[J].胃腸病學(xué)和肝病學(xué)雜志, 2014, 23(11): 1245-1248. DOI: 10.3969/j.issn.1006-5709.2014.11.001.
CHEN X L, REN H Y. The relationship between intestinal microorganism group and intestinal immunity [J]. Chin J Gastroenterol Hepatol, 2014, 23(11): 1245-1248. DOI: 10.3969/j.issn.1006-5709.2014.11.001.
[35] KANG D J, BETRAPALLY N S, GHOSH S A, et al. Gut microbiota drive the development of neuroin flammatory response in cirrhosis in mice [J]. Hepatology, 2016, 64(4): 1232-1248. DOI: 10.1002/hep.28696.
[36] WRIGHT G, DAVIES N A. SHAWCROSS D L. Endotoxemia produces coma and brain swelling in bile duct ligated rats [J]. Hepatology, 2007, 45(6): 1517-1526. DOI: 10.1002/hep. 21599.
[37] SEYAN A S, HUGHES R D, SHAWCROSS D L. Changing face of hepatic encephalopathy: role of inflammation and oxidative stress [J]. World J Gastroenterol, 2010, 16(27): 3347-3357. DOI: 10.3748/wjg.v16.i27.3347.
[38] AGUSTI A. Sildenafil reduces neuroinflammation in cerebellum, restores GABAergic tone, and improves motor in-coordination in rats with hepatic encephalopathy [J]. CNS Neurosci Ther, 2017, 23(5): 386-394. DOI: 10.1111/cns.12688.
[39] CAULI O, RODRIGO R, PIEDRAFITA B, et al. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with porto-caval shunts [J]. Hepatology, 2007, 46(2): 514-519. DOI: 10.1002/hep.21734
[40] DHIMAN R K, RANA B, AGRAWAL S, et al.Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial [J]. Gastroenterology, 2014, 147(6): 1327-1337, e3. DOI: 10.1053/j.gastro.2014.08.031.
[41] SAAB S, SURAWEERA D, AU J, et al. Probiotics are helpful in hepatic encephalopathy: a meta-analysis of randomized trials [J]. Liver Int. 2016, 36(7): 986-993. DOI: 10.1111/liv.13005.
[42] SHAVAKHI A, HASHEMI H, EABESH E, et al. Multistrain probiotic and lactulose in the treatment of minimal hepatic encephalopathy [J]. J Res Med Sci, 2014,19(8):703-8
[43] SHARMA K, PATN S, MISRA S, et al. Effect of rifaximin, probiotics, and l-ornithine l-aspartate on minimal hepatic encephalopathy: a randomized controlled trial [J]. Saudi J Gastroenterol, 2014, 20(4): 225-232. DOI: 10.4103/1319-3767.136975.
[44] DING X, ZHANG G F, WANG Y. Letter: probiotics VS. Lactulose for minimal hepatic encephalopathy therapy [J]. Aliment pharmacol Ther, 2014, 39(9): 1000. DOI: 10.1111/apt.122661.