• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    炭纖維作為EM生物膜載體優(yōu)化除污效果的應(yīng)用研究

    2018-05-02 07:55:43安永真王春華王曉旭梁節(jié)英
    新型炭材料 2018年2期
    關(guān)鍵詞:炭纖維北京化工大學(xué)生物膜

    安永真, 王春華, 苗 朋, 王曉旭, 梁節(jié)英, 劉 杰

    (北京化工大學(xué) 常州先進(jìn)材料研究院 碳纖維工程與技術(shù)研究中心, 江蘇 常州213000)

    1 Introduction

    Effective microorganisms (EM), a culture of approximately 80 coexisting beneficial microorganisms predominantly consisting of photosynthetic bacteria, lactic acid bacteria, yeast, fermenting fungi and actinomycetes et al, was developed by Japanese horticulturist Teuro Higa from the University of Ryukyus in Japan[1]. EMs adapt well to the surrounding environment and have a large number of applications including livestock, agriculture, gardening landscaping, composting, cleaning septic tanks, bioremediation, algal control and household uses[2-5]. However, EM (a water-soluble liquid) was commonly used individually and this direct application easily leads to bacterial loss and inferior removal of nitrogen and phosphorus[6-9]. Therefore, the effective use of EM for organic degradation is a challenging issue.

    The carrier of the biofilm limits the growth and the reproduction of microbial populations in biofilm systems[10]. Among all the biofilm carriers, carbon fiber (CF) receives extensive attention and has been widely used in water treatment owing to its superior biocompatibility. Activated sludge is typically used as the source of microorganism. But it has the drawbacks of taking a long time to cultivate in the first period and the difficulty of controlling the microbial proportion[11,12]. Previous studies have shown that dosing advantageous or efficient bacteria can increase the processing power of the original treatment systems[13,14]. The aims of this work ate to study the decontamination performance of biofilm systems based on polyester (PET), polyvinyl alcohol (PVA), CF and electrochemically-treated CF as EM biofilm carriers, to explore the system sensitivity to the surrounding environment using the carrier with the best performance and to quantify the optimized system operation parameters to provide a theoretical basis for further practical applications of CF and EM.

    2 Experimental

    EM used in this study was provided by Cogent Oasis Biotechnology Ltd. (Beijing, China). EM was in a dormant state and activated for 2-3 days at 28±2℃ before application. The EM was considered to be successfully activated as the pH value was achieved 4.0 and it had a sweet sour smell[15]. PET and PVA were supplied by Teijin Ltd. (Osaka, Japan). CF (12 K, tensile strength of 500 kgf/mm2and tensile modulus, of 29×103kgf/mm2) used in this study was produced by a laboratory scale carbon fiber production line (FNS Electric Furnace Ltd, Beijing), which was a PAN-based carbon fiber. The electrochemical treatment of CF was carried out continuously in a laboratory equipment with an anode oxidation method using 10 wt% NH4HCO3aqueous solution as the electrolyte[16].

    Cylindrical plexiglass reactors (a diameter of 0.24 m , a height of 0.50 m and a total volume of 0.02 m3) with an aeration tank underneath were used for culturing biofilm. The artificial synthetic wastewater containing glucose, K2HPO4, KH2PO4, (NH4)2SO4, MgSO4, FeSO4·7H2O, ZnSO4·7H2O, CaCl2and MnSO4·H2O were measured by a DR 2800 Spectrophotometer (Hach Company, Germany) to obtain quality indexes of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP). The composition of influent water is shown in Table 1.

    Table 1 Composition of influent water.

    All the carriers were used to culture biofilm simultaneously using the rejuvenated EM. The influence of different carriers on EM biofilms during the start-up period was determined by measuring the concentration change of COD. In the stable period, the decontamination performance of EM biofilm systems based on different carriers were studied using the concentrations of COD, TN and TP. The biofilm system with the best decontamination performance was chosen to test its resistivity to the surrounding environment, and its potential for practical application was explored through studying the effects of dissolved oxygen concentration, pH and temperature on its performance.

    3 Results and discussion

    Influence of EM biofilm systems on wastewater decontamination. The COD of four different carrier systems recorded after 8h of the start-up period is shown in Fig. 1. It is revealed that the removal rate of COD in wastewater systems based on different carriers rise quite quickly from the 10thday to the 14thday. Along with changing the influent wastewater every day, wastewater treatment effects get better by microorganisms of all biofilms. Microorganisms are immobilized on carriers and formed biofilms, which prevent the loss of mobile microorganisms. For EM biofilm based on CFs (with/without electrochemical treatment), 50% removal of COD is achieved on the 10thday and the removal rate can reach 95% (its stable period) in only 14 days. On the other hand, the removal rate of COD with the other two EM biofilm systems tends to be stable after 18-20 days. The interaction of CF and EM can greatly save the start time, which can be attributed to the preferred carrier selection of EM, and the desired biocompatibility and high specific surface area of CF. Meanwhile, the electrochemical treatment can increase the hydrophilicity and the oxygen/nitrogen content of the CF surface, which can further facilitate the microbial attachment and reproduction[16].

    Fig. 1 The influence of different carriers on COD removal rate in the start-up period.

    When the bacteria entered their stationary phase and the systems became stable, the concentration of COD, TN and TP of each EM biofilm wastewater system under different hydraulic retention times were measured five times, and the average values of all the parameters including the influent/effluent concentration and the removal rate calculated are shown in Fig. 2.

    Fig. 2 Variation of the removal rates of (a) COD, (b) TN and (c) TP.

    In the first 3 h, the removal rates of COD, TN and TP of EM biofilm systems based on CFs could achieve 95%, 80% and 84%, respectively, which correspond to a 10%-40% increase compared to the other two biofilm systems based on PET and PVA. The results indicate that biofilm systems based on CFs have better performance compared to the ones on PET and PVA in wastewater treatment. In addition, after 4 h hydraulic retention, all the effluent indexes of EM biofilm based on CFs comply with the standard A for urban sewage discharge. Besides, the EM biofilm system based on the electrochemically-treated CF demonstrates relatively better performance than the one based on the untreated CF. This is probably due to the fact that the carrier surface property can affect the decontamination performance of microbial communities[16]. The removal rates of COD, TN and TP of the -EM biofilm system based on the electrochemically-treated CF are 97.1%, 92.5% and 96.0%, respectively after 3 h-5 h. Further prolongation of the hydraulic retention time does not change the wastewater quality indexes, which can be ascribed to the reduced volume load of biofilm reactor. It has been shown that the reduced volume load can result in a lack of microbial metabolic substrates, causing the decrease of microbial growth and endogenous respiration[17].

    The system sensitivity to the surrounding environment with the best carrier. Oxygen concentration is an important factor affecting the processing efficiency in the biological treatment process[18]. In order to determine the optimal concentration of dissolved oxygen range to ensure the maximum environmental and economic benefits, we adjust the length of aeration and the aerated period to maintain a constant concentration of dissolved oxygen at different ranges. As shown in Fig. 3a, the COD removal rate could reach more than 80% when the dissolved oxygen concentration is greater than 3 mg/L. The removal rate increases with the dissolved oxygen concentration, and levels off at the oxygen concentration range of 4 -8.5 mg/L. A further increase in the concentration of dissolved oxygen leads to a slightly low COD removal rate. Meanwhile, the removal rate of TN reaches nearly 90% at low dissolved oxygen concentrations and then it decreases at high concentrations. The removal rate of TN can be achieved via transforming nitrite-N and nitrate-N into nitrogen with the aid of denitrifying bacteria under anaerobic conditions[19]. Hence, a high concentration of dissolved oxygen is not in favor of the TN removal. However, the TP removal rate increases significantly as the dissolved oxygen concentration increases to 9.5 mg/L (Fig. 3a). Improvement of the TP removal efficiency is often accompanied with the decrease of TN removal rate. Thus, the dissolved oxygen concentration is the key to an accurate measurement[20]. In this test, the dissolved oxygen concentration is maintained between 4 and 9 mg/L.

    It was reported that pH value had a great impact on the rate of denitrification and the microbial absorption capacity to substances[21]. Thus, it is necessary to adjust the pH value of the system to 6.5-7.0 at the beginning of the experiment to provide a suitable environment for the denitrifying bacteria. Fig. 3b shows that the highest decontamination performance is achieved at pH 3-9, which indicates that the EM biofilm system based on electrochemically-treated CF has a strong acid and basic resistance. This may provide the favorable growth and reproduction environment for a wide variety of microorganisms contained in the EM biofilms. Obviously, these microorganisms play a significant role in the wastewater treatment. Although the range of environmental pH value varies significantly, the intracellular pH of microorganisms is generally neutral and this stable intracellular pH can maintain the structural stability of biologically active molecules and provide the optimum environment for the enzymes[22]. The system effluent pH value after treatment is between 6 and 8 with a 3-9 pH value of the influent water (Table 2), indicating that the EM biofilm can regulate the pH value of wastewater. The system has a stronger acid resistance than alkali resistance, which may be ascribed to the isoelectric points of amino acids in microbial cells[23]. As a result, the environment pH value range of the EM biofilm system based on electrochemically-treated CF is broadened, which will greatly simplify the pre-treatment process in practical application and lower the overall operation cost.

    Fig. 3 The removal rates of each index (COD, TN and TP) under different conditions (dissolved oxygen concentration, pH and temperature).

    Table 2 The pH values of influent and effluent water.

    Temperature is another important parameter affecting the growth of microorganisms. In Fig. 3c, it can be found that the preferred temperature range is 15 -30 ℃, and this temperature range is wider than other general biofilm systems. The treatment efficiency at 5 ℃ is still very poor even after the hydraulic residence time (Fig. 4a) is extended. The main reason may be that low temperature inhibits the activity of a large number of microorganisms and makes microbial metabolism significantly reduced[19]. The treatment effect at 10 and 15 ℃ shows an upward turn (Fig. 4b, 4c).

    Fig. 4 The removal rates of each index (COD, TN and TP) at (a) 5, (b) 10 and (c) 15 ℃.

    It is possible that the activity of some microorganisms is curbed at 10 and 15 ℃ and the EM system requires more time to achieve a better performance. The biological films fall off from the carrier at 35 ℃ with increasing the hydraulic residence time and the desquamated parts may affect the water quality in turn. In practical engineering applications, a relatively prolonged hydraulic residence time can be taken at low temperature conditions (e.g. in winter time). But if it is not possible to avoid too high or too low temperature, probably biofilms used for wastewater treatment will not be the best choice.

    4 Conclusions

    The use of carrier can efficiently prevent the loss of mobile microorganisms. The biofilm system with CF as EM biofilm carrier can shorten the start period to as few as 2 weeks, which enables the system reach stable fast and increases the total processing efficiency. Electrochemically-treated CF shows an enhanced performance as EM carrier, and the corresponding biofilms can achieve 97.1%, 92.5% and 96.0% removal rates of COD, TN and TP, respectively. This performance is 5%-67% higher than the other two polymer-based carrier systems.The EM biofilm based on the electrochemically-treated CF has a strong resistivity to the changing surrounding environment, which is more beneficial for wastewater treatment applications.

    [1] Narendrakumar G, Kumar J A. Evaluation of effective microorganism (EM) for treatment of domestic sewage [J]. Journal of Experimental Sciences, 2011, 2(7): 30-32.

    [2] Sigstad E E, Schabes F I, Tejerina F. A calorimetric analysis of soil treated with effective microorganisms [J]. Thermochimica Acta, 2013, 569: 139-143.

    [3] Javaid A, Bajwa R. Effect of effective microorganism application on crop growth, yield, and nutrition in vigna radiate (L.) wilczek in different soil amendment systems [J]. Communications in Soil Science and Plant Analysis, 2011, 42(17): 2112-2121.

    [4] Jiang H B, Cai J, et al. Mechanism and application of effective microorganisms (EM) in aquaculture [J]. Water Purification Technology, 2014, 33(6): 28-32.

    [5] Li C H, Shi Y. The influences of EM microbial organic fertilizer on soil microbial biomass carbon and urease activity in phyllostachys heterocycla plantation [J]. China Forestry Science and Technology, 2013, 27(6): 56-58.

    [6] Xu J J, Shao X H. Influence of EM dosage and amount of aeration on purification of aquaculture wastewater [J]. Water Resources Protection, 2013, 29(5): 69-72.

    [7] Ehab M R, Mohamed M. The effect of effective microorganisms (EM) on EBPR in modified contact stabilization system [J]. HBRC Journal, 2014, 1-9.

    [8] Emad A S. Prospect of effective microorganism technology in wastes treatment in Egypt [J]. Asian Pacific Journal of Tropical Biomedicine, 2011, 1(3): 243-248.

    [9] Lv L, Yin C H, Xu Q Q. Cyanobacterial bloom control by environmental effective microorganisms [J]. Environmental Science & Technology, 2010, 8(33): 1-5.

    [10] Matsumoto S, Ohtaki A, Hori K. Carbon fiber as an excellent support material for wastewater treatment biofilm [J]. Environmental Science & Technology, 2012, 46: 10175-10181.

    [11] Smith K M, Fowler G D, Pullket S, et al. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications [J]. Water Research, 2009, 43: 2569-2594.

    [12] Ma Z K, Liu J. Application of carbon fiber as biofilm carriers in denitrification [J]. China Environmental Science, 2003, 23(3): 247-250.

    [13] Bouchez T, Patureau D, Dabert P, et al. Ecological study of a bioaugmentation failure [J]. Environmental Microbiology, 2000, 2(2): 179-190.

    [14] Alves C F, Melo L F, Vieira M J. Influence of medium composition on the characteristics of a denitrifying biofilm formed by alcaligenes denitrificans in a fluidised bed reactor [J]. Process Biochem, 2002, 37(8): 837-845.

    [15] Ting A S Y, Rahman N H A, et al. Investigating metal removal potential by effective microorganisms (EM) in alginate-immobilized and free-cell forms [J]. Bioresource Technology, 2013, 147: 636-639.

    [16] Liu J, Bai Y X, Tian Y L. Effect of the process of electrochemical modification on the surface structure and properties of PAN-based carbon fibers [J]. Acta Materiae Compositae Sinica, 2012, 29(2): 16-25.

    [17] Castilla C M, Toledo I B, Ferro-Garcia M A. Influence of support surface properties on activity of bacteria immobilised on activated carbons for water denitrification [J]. Carbon, 2003, 41: 1743-1749.

    [18] Renner L D, Weibel D B. Physicochemical regulation of biofilm formation [J]. MRS Bulletin, 2011, 36(5): 347-355.

    [19] Zhou Q Y, Gao T Y. Microbiology of Environmental Engineering[M]. Beijing: Higher Education Press, 2000: 210-212.

    [20] Qi H Y, Wang W B, Zheng Y. Mechanism of biofilm formation and analysis of influencing factors [J]. Microbiology China, 2013, 40(4): 677-685.

    [21] Liu Y, Zhao Q L, Zheng X H. Biofilm Wastewater Treatment Technology[M], Beijing: China Architecture & Building Press, 2000: 22-23.

    [22] Sun S P, Hatton T A, Chung T S. Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin [J]. Environmental Science & Technology, 2011, 45(5): 4003-4009.

    [23] Flemming H C, Wingender J. The biofilm matrix [J]. Nature Reviews Microbiology, 2010, 8(9): 623-633.

    猜你喜歡
    炭纖維北京化工大學(xué)生物膜
    Co@CoO/竹炭纖維的制備及其對(duì)廢水中鹽酸四環(huán)素去除性能
    論炭纖維復(fù)合材料在智能建筑結(jié)構(gòu)中的應(yīng)用
    幽門(mén)螺桿菌生物膜的研究進(jìn)展
    生物膜胞外聚合物研究進(jìn)展
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    熱處理對(duì)PAN基炭纖維微觀結(jié)構(gòu)和力學(xué)性能的影響
    國(guó)產(chǎn)聚丙烯腈基炭纖維皮芯微區(qū)結(jié)構(gòu)差異的拉曼光譜表征
    精品不卡国产一区二区三区| 啦啦啦韩国在线观看视频| 日本熟妇午夜| 国内久久婷婷六月综合欲色啪| 免费在线观看成人毛片| 日本欧美国产在线视频| 最后的刺客免费高清国语| 色播亚洲综合网| 亚洲欧美日韩卡通动漫| 久久久精品94久久精品| 床上黄色一级片| 黑人高潮一二区| 亚州av有码| 搡女人真爽免费视频火全软件| 波多野结衣高清无吗| 国产午夜福利久久久久久| 成人亚洲欧美一区二区av| 亚洲国产精品合色在线| 三级男女做爰猛烈吃奶摸视频| 国产黄片美女视频| 免费无遮挡裸体视频| 人人妻人人澡人人爽人人夜夜 | 看片在线看免费视频| 啦啦啦韩国在线观看视频| 麻豆一二三区av精品| 亚洲,欧美,日韩| 国产精品电影一区二区三区| 老女人水多毛片| 观看免费一级毛片| 女人被狂操c到高潮| 少妇熟女欧美另类| 麻豆精品久久久久久蜜桃| 亚洲精品456在线播放app| 欧美成人精品欧美一级黄| 国产成人精品一,二区 | 只有这里有精品99| 村上凉子中文字幕在线| 一进一出抽搐gif免费好疼| www.av在线官网国产| 成人高潮视频无遮挡免费网站| 女同久久另类99精品国产91| 国产一级毛片七仙女欲春2| 国产一级毛片七仙女欲春2| 波多野结衣高清无吗| 亚洲乱码一区二区免费版| 欧美bdsm另类| 亚洲精品色激情综合| 亚洲欧洲日产国产| 美女xxoo啪啪120秒动态图| 两个人视频免费观看高清| 久久久久网色| 中出人妻视频一区二区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲第一电影网av| 国产色婷婷99| 亚洲av成人精品一区久久| 久久久a久久爽久久v久久| 国产日韩欧美在线精品| 国产精品不卡视频一区二区| 亚洲在久久综合| .国产精品久久| 亚洲av中文字字幕乱码综合| 国产精品蜜桃在线观看 | 国产成人freesex在线| 婷婷亚洲欧美| 精品熟女少妇av免费看| 久久热精品热| 国产熟女欧美一区二区| 波野结衣二区三区在线| 亚洲人成网站在线播放欧美日韩| 日本黄大片高清| 在线观看av片永久免费下载| 亚洲成人中文字幕在线播放| 久久99热这里只有精品18| 波多野结衣高清作品| 一级二级三级毛片免费看| 18禁在线无遮挡免费观看视频| 国产精品久久久久久精品电影小说 | 插阴视频在线观看视频| 亚洲va在线va天堂va国产| 日韩 亚洲 欧美在线| 亚洲精品456在线播放app| 精品久久久久久成人av| 一级毛片aaaaaa免费看小| 久久久久免费精品人妻一区二区| 亚洲,欧美,日韩| 欧美日韩一区二区视频在线观看视频在线 | 蜜桃久久精品国产亚洲av| 黄色欧美视频在线观看| 99久久精品一区二区三区| 国产精品乱码一区二三区的特点| 成人亚洲欧美一区二区av| 国产爱豆传媒在线观看| 亚洲无线观看免费| 日本成人三级电影网站| 自拍偷自拍亚洲精品老妇| 国产高清视频在线观看网站| 日本免费a在线| 久久午夜亚洲精品久久| 男人狂女人下面高潮的视频| 国产精品电影一区二区三区| 内射极品少妇av片p| 99久久九九国产精品国产免费| 成年女人看的毛片在线观看| 亚洲欧美精品专区久久| 日日撸夜夜添| 九九热线精品视视频播放| 日本爱情动作片www.在线观看| 男插女下体视频免费在线播放| 最近2019中文字幕mv第一页| 晚上一个人看的免费电影| 成人av在线播放网站| 一级av片app| 国产色爽女视频免费观看| 欧美人与善性xxx| 日本-黄色视频高清免费观看| 亚洲国产精品sss在线观看| 丰满的人妻完整版| 久久人人爽人人爽人人片va| 嫩草影院新地址| 麻豆成人午夜福利视频| 欧美另类亚洲清纯唯美| 免费观看精品视频网站| 人人妻人人澡人人爽人人夜夜 | 91av网一区二区| 少妇丰满av| 91久久精品国产一区二区三区| 精品国产三级普通话版| 99久久精品热视频| 国产男人的电影天堂91| 综合色av麻豆| 亚洲欧美日韩卡通动漫| 能在线免费观看的黄片| 尤物成人国产欧美一区二区三区| 亚洲欧美成人精品一区二区| 国产精品久久久久久久电影| 久久欧美精品欧美久久欧美| 成人三级黄色视频| 亚州av有码| 亚洲欧美日韩卡通动漫| 99久久精品国产国产毛片| 在现免费观看毛片| 内地一区二区视频在线| 久久这里有精品视频免费| 欧美激情久久久久久爽电影| 精品一区二区三区人妻视频| 91aial.com中文字幕在线观看| 亚洲av.av天堂| 亚洲av第一区精品v没综合| 久99久视频精品免费| 成人鲁丝片一二三区免费| 能在线免费观看的黄片| 别揉我奶头 嗯啊视频| 人人妻人人看人人澡| av福利片在线观看| 两个人的视频大全免费| 久久精品久久久久久噜噜老黄 | 亚洲国产欧洲综合997久久,| 天美传媒精品一区二区| 久久精品国产99精品国产亚洲性色| 大又大粗又爽又黄少妇毛片口| 国产高清三级在线| 国产伦一二天堂av在线观看| 99久久久亚洲精品蜜臀av| avwww免费| 成人漫画全彩无遮挡| 在现免费观看毛片| 日本在线视频免费播放| 国产成人一区二区在线| 悠悠久久av| 中文字幕精品亚洲无线码一区| 夜夜夜夜夜久久久久| 国产成人a区在线观看| 伦理电影大哥的女人| 亚洲真实伦在线观看| 国产一区亚洲一区在线观看| 日本av手机在线免费观看| 日本欧美国产在线视频| 内地一区二区视频在线| 日韩在线高清观看一区二区三区| 国产一级毛片七仙女欲春2| 久久精品国产自在天天线| 听说在线观看完整版免费高清| 1024手机看黄色片| 老师上课跳d突然被开到最大视频| 日韩成人伦理影院| 91久久精品电影网| 日日撸夜夜添| 夜夜爽天天搞| 久久99热6这里只有精品| 看片在线看免费视频| 人妻夜夜爽99麻豆av| 菩萨蛮人人尽说江南好唐韦庄 | 国国产精品蜜臀av免费| 久99久视频精品免费| 亚洲在线观看片| 91久久精品电影网| 高清日韩中文字幕在线| 亚洲高清免费不卡视频| 91精品国产九色| 精品少妇黑人巨大在线播放 | 精华霜和精华液先用哪个| 中国国产av一级| 国产日本99.免费观看| 国产欧美日韩精品一区二区| 国内少妇人妻偷人精品xxx网站| 一边亲一边摸免费视频| 亚洲av免费高清在线观看| 天堂网av新在线| 国产一级毛片七仙女欲春2| 在线免费观看的www视频| 给我免费播放毛片高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 伦理电影大哥的女人| 99久久精品热视频| 亚洲高清免费不卡视频| 又爽又黄a免费视频| 在线观看免费视频日本深夜| 国内揄拍国产精品人妻在线| 精品免费久久久久久久清纯| 乱系列少妇在线播放| 亚洲欧美日韩高清在线视频| 伦理电影大哥的女人| 亚洲成人中文字幕在线播放| 欧美性感艳星| 美女 人体艺术 gogo| 精品久久久噜噜| 人妻制服诱惑在线中文字幕| 91aial.com中文字幕在线观看| 综合色av麻豆| 亚洲av免费高清在线观看| 99久久成人亚洲精品观看| 欧美激情久久久久久爽电影| 国产av在哪里看| 少妇裸体淫交视频免费看高清| 亚洲精品久久国产高清桃花| 精品人妻熟女av久视频| 亚洲三级黄色毛片| 三级国产精品欧美在线观看| 欧美精品国产亚洲| 男人和女人高潮做爰伦理| 国内久久婷婷六月综合欲色啪| 老熟妇乱子伦视频在线观看| 免费电影在线观看免费观看| 国产一区二区三区在线臀色熟女| 欧美成人a在线观看| 免费看av在线观看网站| av在线亚洲专区| 欧美又色又爽又黄视频| 国产一区二区激情短视频| 亚洲四区av| 国产精品麻豆人妻色哟哟久久 | 国产中年淑女户外野战色| 小蜜桃在线观看免费完整版高清| 久久热精品热| 国产一区二区亚洲精品在线观看| 亚洲欧美中文字幕日韩二区| 成人一区二区视频在线观看| 免费观看在线日韩| 国产成年人精品一区二区| 久久久色成人| 国产欧美日韩精品一区二区| 黄色一级大片看看| 免费观看a级毛片全部| 深爱激情五月婷婷| 亚洲精品456在线播放app| 搞女人的毛片| 自拍偷自拍亚洲精品老妇| 嫩草影院新地址| 精品日产1卡2卡| 国产黄片美女视频| 久久精品国产亚洲av香蕉五月| 男女视频在线观看网站免费| 国产精品久久电影中文字幕| 黄色一级大片看看| 看非洲黑人一级黄片| 男女视频在线观看网站免费| 又爽又黄a免费视频| 不卡一级毛片| 长腿黑丝高跟| 国产人妻一区二区三区在| 精品久久久久久久人妻蜜臀av| 日韩精品青青久久久久久| av在线天堂中文字幕| 国产69精品久久久久777片| 亚洲最大成人中文| 久久精品久久久久久噜噜老黄 | 18禁裸乳无遮挡免费网站照片| 真实男女啪啪啪动态图| 天堂中文最新版在线下载 | 麻豆国产av国片精品| av在线老鸭窝| av在线蜜桃| 国产精品三级大全| 精品无人区乱码1区二区| 亚洲,欧美,日韩| 热99在线观看视频| 亚洲高清免费不卡视频| 在线播放国产精品三级| 国产亚洲精品久久久久久毛片| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器| 日韩一区二区视频免费看| 又粗又爽又猛毛片免费看| a级毛片a级免费在线| 国产中年淑女户外野战色| 尾随美女入室| 看非洲黑人一级黄片| 好男人视频免费观看在线| 国产综合懂色| 成人特级黄色片久久久久久久| 国产一区二区在线av高清观看| 最近2019中文字幕mv第一页| 久久精品国产亚洲av涩爱 | 日本三级黄在线观看| 久久精品91蜜桃| 国产精品精品国产色婷婷| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 麻豆国产97在线/欧美| 成年免费大片在线观看| 日韩国内少妇激情av| 亚州av有码| 国产精品一二三区在线看| 国产白丝娇喘喷水9色精品| 国产精品久久久久久精品电影| 18禁裸乳无遮挡免费网站照片| 日韩一区二区视频免费看| 亚洲欧美精品专区久久| 国产成人影院久久av| 天堂av国产一区二区熟女人妻| 男女下面进入的视频免费午夜| 能在线免费观看的黄片| 岛国毛片在线播放| 亚洲国产欧洲综合997久久,| 成年免费大片在线观看| 一级黄色大片毛片| 舔av片在线| 99久久成人亚洲精品观看| 国产精品综合久久久久久久免费| 一级毛片久久久久久久久女| 蜜桃久久精品国产亚洲av| 亚洲一区二区三区色噜噜| 狂野欧美激情性xxxx在线观看| 中文字幕制服av| 小说图片视频综合网站| 国产一区二区亚洲精品在线观看| 又爽又黄无遮挡网站| 夫妻性生交免费视频一级片| 国产成人福利小说| 99热这里只有精品一区| 永久网站在线| 色综合站精品国产| 中出人妻视频一区二区| 亚洲电影在线观看av| 免费观看人在逋| 乱码一卡2卡4卡精品| 亚洲精品自拍成人| 日日摸夜夜添夜夜爱| 大又大粗又爽又黄少妇毛片口| 18禁黄网站禁片免费观看直播| 99久国产av精品国产电影| 成人永久免费在线观看视频| 免费av毛片视频| 少妇人妻精品综合一区二区 | av在线观看视频网站免费| 国产精品久久久久久av不卡| 日韩大尺度精品在线看网址| 精品人妻偷拍中文字幕| 成人午夜高清在线视频| 亚洲人成网站高清观看| 国产午夜精品久久久久久一区二区三区| 能在线免费看毛片的网站| 中文字幕久久专区| 日韩欧美精品v在线| 毛片女人毛片| 国产免费男女视频| 亚洲18禁久久av| 麻豆av噜噜一区二区三区| 国产熟女欧美一区二区| 黄色视频,在线免费观看| 成熟少妇高潮喷水视频| 欧美日韩一区二区视频在线观看视频在线 | 啦啦啦啦在线视频资源| 美女脱内裤让男人舔精品视频 | av女优亚洲男人天堂| 亚洲国产精品合色在线| 我的女老师完整版在线观看| 青春草国产在线视频 | 亚洲av免费在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲成人av在线免费| 丰满乱子伦码专区| 亚洲av不卡在线观看| 亚洲成人久久性| 久久韩国三级中文字幕| 一级毛片aaaaaa免费看小| 自拍偷自拍亚洲精品老妇| 亚洲欧美清纯卡通| 久久久久久久久中文| 亚洲av.av天堂| 精品无人区乱码1区二区| 天堂中文最新版在线下载 | 亚洲内射少妇av| 精品日产1卡2卡| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 国产极品天堂在线| 一本久久精品| 成人高潮视频无遮挡免费网站| 中文精品一卡2卡3卡4更新| 欧美高清性xxxxhd video| 亚洲精品日韩在线中文字幕 | 国产精品99久久久久久久久| 国产一区亚洲一区在线观看| 晚上一个人看的免费电影| 午夜福利高清视频| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 免费电影在线观看免费观看| 久久久国产成人精品二区| 九九在线视频观看精品| 国产黄a三级三级三级人| 欧美另类亚洲清纯唯美| 国产乱人视频| videossex国产| 久久久久免费精品人妻一区二区| 久久久成人免费电影| 久久久国产成人精品二区| 亚洲一区二区三区色噜噜| 嫩草影院入口| 蜜桃久久精品国产亚洲av| 99国产极品粉嫩在线观看| 国产淫片久久久久久久久| .国产精品久久| 一级二级三级毛片免费看| 色5月婷婷丁香| 在线观看免费视频日本深夜| 久久久精品欧美日韩精品| 亚洲av成人精品一区久久| 日韩精品青青久久久久久| 国产精华一区二区三区| 伊人久久精品亚洲午夜| 久久久久久大精品| 又黄又爽又刺激的免费视频.| 久久99蜜桃精品久久| 亚洲国产精品成人久久小说 | а√天堂www在线а√下载| 99精品在免费线老司机午夜| 日韩制服骚丝袜av| 国产精品伦人一区二区| 日韩人妻高清精品专区| 男人的好看免费观看在线视频| 日韩国内少妇激情av| 精品久久国产蜜桃| 亚洲天堂国产精品一区在线| 久久精品国产自在天天线| 美女高潮的动态| 国产乱人视频| 免费观看的影片在线观看| 欧美最新免费一区二区三区| 一级毛片久久久久久久久女| 日韩一区二区视频免费看| 亚洲一级一片aⅴ在线观看| 免费黄网站久久成人精品| 亚洲精品日韩在线中文字幕 | 女同久久另类99精品国产91| 超碰av人人做人人爽久久| 成人午夜精彩视频在线观看| 亚洲av免费在线观看| 日本一本二区三区精品| 九九久久精品国产亚洲av麻豆| 免费看日本二区| av在线观看视频网站免费| 精品欧美国产一区二区三| 亚洲人成网站在线播放欧美日韩| 丝袜美腿在线中文| 久久精品国产亚洲av涩爱 | 美女被艹到高潮喷水动态| 免费av毛片视频| 亚洲国产精品久久男人天堂| 精华霜和精华液先用哪个| 欧美3d第一页| 亚洲精品久久久久久婷婷小说 | 我要看日韩黄色一级片| 国产激情偷乱视频一区二区| 亚洲av成人av| 亚洲在线自拍视频| 日日撸夜夜添| 久久精品国产亚洲av天美| 日本色播在线视频| 一级黄片播放器| 国产三级中文精品| 最近2019中文字幕mv第一页| 欧美三级亚洲精品| 在线观看午夜福利视频| 国语自产精品视频在线第100页| 搡老妇女老女人老熟妇| 伦精品一区二区三区| 18禁在线播放成人免费| 少妇的逼水好多| 国产一区二区激情短视频| 免费人成在线观看视频色| 亚洲熟妇中文字幕五十中出| 国产 一区 欧美 日韩| 亚洲av男天堂| 久久精品国产鲁丝片午夜精品| 搡女人真爽免费视频火全软件| 九九爱精品视频在线观看| 男人舔女人下体高潮全视频| 亚洲国产色片| 悠悠久久av| 久久九九热精品免费| 欧美三级亚洲精品| 一本久久中文字幕| 国产熟女欧美一区二区| 中国美女看黄片| av福利片在线观看| 一区二区三区免费毛片| 亚洲av二区三区四区| 嫩草影院入口| 一级黄色大片毛片| 99riav亚洲国产免费| 婷婷精品国产亚洲av| av卡一久久| 看十八女毛片水多多多| 99久久无色码亚洲精品果冻| 免费无遮挡裸体视频| 成人午夜高清在线视频| 国产免费男女视频| 日韩成人av中文字幕在线观看| 久久久久久久久久成人| 搡老妇女老女人老熟妇| 日韩,欧美,国产一区二区三区 | 69av精品久久久久久| 日本熟妇午夜| 岛国在线免费视频观看| 黄色一级大片看看| а√天堂www在线а√下载| 天天一区二区日本电影三级| 嫩草影院新地址| 亚洲国产精品合色在线| 狠狠狠狠99中文字幕| 少妇高潮的动态图| 精品久久久久久久末码| 伦理电影大哥的女人| 午夜福利在线观看吧| 99视频精品全部免费 在线| 能在线免费看毛片的网站| 亚洲国产高清在线一区二区三| 99久久精品国产国产毛片| 成人毛片60女人毛片免费| 久久久国产成人免费| 亚洲精品乱码久久久久久按摩| 欧美色欧美亚洲另类二区| 亚洲乱码一区二区免费版| 99久国产av精品| 国产成人91sexporn| 亚洲av成人精品一区久久| 亚洲内射少妇av| 在线播放国产精品三级| 亚州av有码| 99热精品在线国产| 淫秽高清视频在线观看| 亚洲性久久影院| 最近中文字幕高清免费大全6| 国产精品一区二区三区四区免费观看| 亚洲五月天丁香| 夜夜看夜夜爽夜夜摸| 国内精品宾馆在线| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲网站| 久久国产乱子免费精品| 欧美成人免费av一区二区三区| 亚洲美女视频黄频| 老女人水多毛片| 国产高清视频在线观看网站| 直男gayav资源| 色噜噜av男人的天堂激情| 成人二区视频| 成人毛片a级毛片在线播放| 嫩草影院入口| 97超碰精品成人国产| 亚洲18禁久久av| 99久久人妻综合| 精品人妻视频免费看| 边亲边吃奶的免费视频| 国产视频首页在线观看| 一本精品99久久精品77| 欧美bdsm另类| 成年av动漫网址| 国产精品一及| 国产欧美日韩精品一区二区| or卡值多少钱| 日本熟妇午夜| 久久6这里有精品| .国产精品久久| 毛片女人毛片| 大型黄色视频在线免费观看| 成人二区视频| 99热网站在线观看| 成人欧美大片| 最近视频中文字幕2019在线8| 免费看光身美女| 能在线免费看毛片的网站| 男的添女的下面高潮视频| 久久草成人影院| 97超视频在线观看视频| 91精品一卡2卡3卡4卡| 日本爱情动作片www.在线观看| av天堂中文字幕网| 男人和女人高潮做爰伦理| 亚洲精品自拍成人| 久久久国产成人精品二区|