• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    釹負(fù)載二氧化鈦-炭雜化氣凝膠的制備及其光催化性能

    2018-05-02 07:28:29張文雅
    新型炭材料 2018年2期
    關(guān)鍵詞:文雅材料科學(xué)二氧化鈦

    邵 霞, 潘 峰, 鄭 勵(lì), 張 睿, 張文雅

    (1.上海應(yīng)用技術(shù)大學(xué),材料科學(xué)與工程學(xué)院,上海201418;2. 上海應(yīng)用技術(shù)大學(xué),化學(xué)與環(huán)境工程學(xué)院,上海201418)

    1 Introduction

    Due to the potential application in air purification and water treatment, photo-catalytic oxidation techniques have attracted much attention in recent years[1,2]. Photo-catalysts can effectively convert solar energy into chemical energy,which can be used for decomposing toxic organic and inorganic pollutants to purify water and air[3]. Among various photo-catalysts, TiO2has been regarded as one of the most promising one owing to its stability to light irradiation, non-toxicity, low cost and strong oxidizing power[4,5,6]. However, the wide band gap of TiO2(3.2 eV) and high rate of electron-hole recombination limit its efficiency only up to UV light region[7]. Since the UV light only accounts for less than 5% of the solar spectrum[8], development of active photo-catalytic materials under solar light is a subject of extensive current research in this field.

    It is known that TiO2has three crystallographic phases in nature: brookite, anatase and rutile[9]. Anatase TiO2shows the best photo-catalytic activity owing to its valence band characteristics, conduction and crystal structure[10]. In recent years, the main study of anatase TiO2has focused on the improvement of its photo-catalytic performance and optical absorption by cation and/or anion doping[11]. Particularly, lanthanide ions possess the special 4f electron configurations,which can significantly enhance the photo-catalytic activity of TiO2[12].

    For example, TiO2nanoparticles modified by Yb and Er could be used to degrade phenol in aqueous solution under visible light irradiation[13]. Obregon et al.[14]reported that the erbium-doped TiO2, synthesized by the hydrothermal method, showed a high photocatalytic activity in phenol and methylene blue degradation in aqueous phase as well as toluene degradation in the gas phase. In particular, doping Nd has been proved to be an efficient route to alter the photo-activity of TiO2for selected reactions[15]. Du et al.[16]synthesized some porous Nd-doped TiO2monoliths using polystyrene spheres as a template through a facile sol-gel method, and the result showed that Nd doping could suppress the h+/e recombination rate by extending the photo-produced-carrier lifetime. In addition[17], its porous structure can provide a large surface area, leading to an enhanced adsorption and fast transfer of pollutants.

    In this paper, the Nd-doped TiO2-C hybrid aerogels were prepared by a combined sol-gel and impregnation methods. The effects of different amounts of Nd on the structure morphology and the photo-catalytic properties of the samples were investigated , with the aim of guiding the development of synthesis of photo-catalysts and improving their photo-catalytic activities.

    2 Experimental

    2.1 Materials

    All the chemicals used in this paper were of analytical grade. Titanium tetrachloride (TiCl4), resorcinol, formaldehyde and absolute ethyl alcohol were supplied by Sinopharm Chemical Reagent Co Ltd. The salt precursor of neodymium nitrate hydrate (Nd(NO3)3·6H2O) and methylene blue were from Shanghai Zhanyun Chemical Reagent Co., Ltd.

    2.2 Catalyst preparation

    The Nd-doped TiO2-Cphoto-catalysts with different contents of neodymium (Nd) were prepared by the combined sol-gel and impregnation methods with the following procedure[18]. The right amount of formaldehyde was dissolved into the mixed solution of 7.185 g resorcinol and 0.007 g anhydrous sodium carbonate and stirred for 1.5 h to obtain a sol. Then the sol was dispensed into vial, sealed, first stood at room temperature, then placed in a bath for gelation and aging at 70 ℃ for 7 d. Finally, the wet gels were soaked in absolute ethanol for 5 d to replace the water and chloride ion in the wet gels.

    The obtained wet gels were subjected to supercritical drying in a high pressure autoclave at 240 ℃ and 6 MPa for 1 h to get dried RF aerogels using n-hexane as the drying medium with a heating rate of 2 ℃/min. Then the RF aerogels were carbonized in a vertical furnace at 800 ℃ for 3 h with a heating rate of 2 ℃/min under a high purity nitrogen flow to get carbon aerogels .

    Ti and Nd were doped into the carbon aerogels by an impregnation method[19]. A moderate amount of anhydrous ethanol was dropped into 2.375 g titanium tetrachloride at a constant stirring speed. Then, 0, 0.02, 0.04, 0.06, 0.08 and 0.10 g of neodymium nitrate were added to above solution and dissolved to obtain a series of light yellow transparent solutions. Each solution was poured into a certain amount of the carbon aerogels and held for 24 h. Finally, the impregnated carbon aerogels were carbonized at 500 ℃ for 3 h in a nitrogen-protected carbonization furnace to obtain the Nd-doped TiO2-C hybrid aerogels. The obtained six samples were named as TiO2-C-Nd%-1, TiO2-C-Nd%-2, TiO2-C-Nd% -3, TiO2-C-Nd%-4, TiO2-C-Nd%-5 and TiO2-C-Nd%-6 for the amount of neodymium nitrate, 0, 0.02, 0.04, 0.06, 0.08 and 0.10 g, respectively.

    2.3 Characterization

    X-ray diffraction (XRD) patterns of the as-prepared samples were recorded with an Rigaku D/max-Brm X-ray diffractometer using CuKαradiation. Nitrogen adsorption was performed on a V-Sorb 2800TP. The specific surface areas were calculated by the Brunauer-Emmet-Teller (BET) method. The morphology of samples was evaluated by field emission scanning electron microscopy (SEM, Hitachi S-3400N, Japan) with an accelerating voltage of 15 kV and a current of 50 mA. The chemical composition of the samples was determined by an energy dispersive X-ray spectrometer (EDS) attached to the SEM. Transmission electron microscopy (TEM) images were taken over a Tecnai G2 F30 transmission electron microscope. The FTIR analysis of the samples was carried out in the region ~4 000 - 400 cm-1on a FTIR Shimadzu UV-3600 instrument. KBr was used as a mulling agent for preparing the samples. XPS spectra were recorded on an ESCALAB250Xi X-ray photo-electron spectrometer (Thermo Fisher Scientific, USA) using AlKa radiation (1 486.6 eV) and operating at 150 W.

    2.4 Adsorption properties and photo-degradation tests

    The photo-catalytic activities of all samples were evaluated by degradation of methylene blue (MB) under UV-light irradiation. A 500 W mercury lamp was used as the light source, which was hung in the center of the photo-reactor and kept at about 12 cm from 8 glass tubes distributed around the light source. A general photo-catalytic reaction was carried out as following. 30 mg different catalysts were suspended in MB dye solutions (C0= 20 mg/L, 50 mL). The suspensions were stirred in the dark for 60 min to ensure an establishment of adsorption-desorption equilibrium of MB dye. The samples were collected at 20 minutes intervals, and the absorbance change of MB solutions were measured by using an UV-vis spectrometer at 660 nm (λmax). The photo-catalytic activities of the samples were evaluated by the degradation ratio (w) of the samples, according to the following equation.

    (1)

    Wherewwas the degradation ratio, andA0was the initial absorbance of MB at 20 mg/L, andAtwas the absorbance of MB after irradiation for “t” minutes.

    3 Results and discussion

    Fig. 1 shows the XRD patterns of the Nd-doped TiO2-C hybrid aerogels. The diffraction peaks at 2θof 25.2°, 37.5°, 47.8°, 54.3° and 62.5° correspond to (101), (004), (200), (105) and (204)

    of anatase TiO2, respectively[20]. There is no rutile or brookite type TiO2. No peaks of carbon are observed in the XRD patterns, which indicates that the carbon in the samples is present in an amorphous form[21]. Xu et al.[22]indicated that rare earth metal salts could be converted into rare earth metal oxides in the process of calcining, therefore, it could be speculated that Nd3+is dispersed on the surface of TiO2particles in the form of Nd2O3. Moreover, no Nd peaks are found in the XRD patterns, which can be accounted for by the following two reasons. For one reason, the dosage of Nd is too small to be detected with the XRD instrument. For another reason, Nd3+enters into the lattice of TiO2, and forms Ti-O-Nd bond in the process of doping[23]. Moreover, the crystal structure of TiO2does not change from anatase to rutile when the carbonization temperature is as high as 500 ℃. It may be due to the strong cross-linking between TiO2and polymer molecules during the preparation of the hybrid aerogels[24]. Carbon and TiO2in the samples are highly hybridized, which hinders the structural transformation of the crystal.

    Fig. 1 XRD patterns of the samples

    Based on the XRD data of the (101) full width at half maximum values, the average crystallite sizes of the synthesized photo-catalysts are calculated by the Debye-Scherrer equation and the results are shown in the Table 1. It reveals that the crystallite size decreases from 3.93 to 2.04 nm with the increasing of Nd content, which indicates that the Nd doping can inhibit the growth of TiO2crystal particles.

    Table 1 Crystallite sizes of the samples.

    The microstructure and morphology of the prepared samples were observed by the scanning electron microscopy. Fig. 2 shows the SEM images of the Nd-doped TiO2-C hybrid aerogels. Along with the incorporation of rare earth elements Nd, it can be seen that all the prepared samples are irregular granules, and the surface of the samples is not smooth, but the micro-morphology of the sample TiO2-C-Nd%-4 has the best pore structure, which is conducive to increase the surface area and performance.

    Fig. 2 SEM images of the samples

    In order to further understand the structure of the samples, the prepared Nd-doped TiO2-C aerogels were also characterized by TEM. As shown in Fig. 3, the Nd-doped TiO2-C aerogel samples exhibit highly uniform nano crystalline structures with observed particle sizes in 5-10 nm range,and the sample of TiO2-C-Nd%-4 has the most uniform particle size distribution.

    Fig. 3 TEM images of the samples

    In order to investigate if the element Nd has been doped into the samples, EDS analysis is carried out to identify the elemental composition of TiO2-C-Nd%-6. According to the EDS result, there are Ti, O, C and Nd elements, from which Nd is certainly the dopant neodymium nitrate. There is no nitrogen impurity, which indicates that the doped nanoparticles are free of nitrate impurities that come from dopant precursors[25]. In the EDS elemental composition (the inset of Fig. 4), It can be found that the atomic content of Nd in the sample is 0.81%. Therefore, the samples prepared by this method have Nd doped into the TiO2-C aerogels indeed.

    Fig. 4 EDS spectrum of the TiO2-C-Nd%-6 sample.

    UV-visible diffuse reflectance spectra of the samples before calcination are shown in Fig. 5. As can be seen from this figure, the descending absorption intensities of the samples in the ultraviolet band are following: TiO2-C-Nd%-4 > TiO2-C-Nd%-3 > TiO2-C-Nd%-1> TiO2-C-Nd%-6> TiO2-C-Nd%-5> TiO2-C-Nd%-2, indicating that there is an appropriate amount of neodymium that can effectively improve the absorption of the samples. The phenomenon of TiO2-C-Nd%-1 > TiO2-C-Nd%-6 > TiO2-C-Nd%-5 > TiO2-C-Nd%-2 shows that too much or too little Nd content may reduce absorption.

    Fig. 5 UV-visible diffuse reflectance spectra of the samples before calcination.

    To evaluate the surface state of the samples, the samples of TiO2-C-Nd%-1 and TiO2-C-Nd%-3 were characterized by XPS. The high resolution XPS of C 1s in TiO2-C-Nd%-3 is shown in Fig.6(b). The binding energies of C1s are about 284.7, 285.9 and 288.1 eV, which have a bit of deviation as compared with TiO2-C-Nd%-1 (284.2, 285.1 and 288.3 eV). This indicates that the doping amount of the Nd ions affects the internal structure of the crystals.

    In the XPS spectrum of TiO2-C-Nd%-3 (Fig.6(b)), the Ti 2p 3/2 and Ti 2p 1/2 peaks are located at binding energies of 459.4 and 465.2 eV, respectively, which is consistent with the value of Ti4+in the TiO2lattice[26]. O 1sspectrum in Fig.6(b) shows the main peak at 531.2 eV due to the metallic oxides Ti-O bond, which is consistent with binding energy of O2-in the TiO2lattice[26]. The peak appearing at 532.8 eV can be attributed to adsorbed OH-on the surface of TiO2[27].

    Table 2 shows the pore structure parameters of Nd-TiO2-C aerogels with different Nd doping contents. It can be seen that the specific surface area of the prepared samples varies with the increase of the Nd doping amount while the other conditions are kept the same. The descending order of specific surface area is following: TiO2-C-Nd%-4 > TiO2-C-Nd%-5 > TiO2-C-Nd%-6>TiO2-C-Nd%-1 > TiO2-C-Nd%-3>TiO2-C-Nd%-2.

    The N2adsorption-desorption isotherms and the Barrett-Joyner-Halenda (BJH) pore size distributions of the synthetic samples are given in Fig. 7 a and b, respectively. From this figure it can be seen that the isotherms are of type IV curve with a H1 hysteresis loop, which implies that the representative samples exhibit a mesoporous structure with a high degree of pore size uniformity[28]. The nitrogen adsorption-desorption isothermal curves show well-defined adsorption steps. At low relative pressure (p/p0< 0.4), the isotherms exhibit a high adsorption, which indicates the powders are mesoporous. At a middle relative pressure (p/p0= 0.4-0.8), the curves exhibit a H1 hysteresis loop, which can further confirm the powders are mesoporous photocatalysts[29].

    Table 2 Pore structure parameters of the samples.

    Fig. 6 XPS spectra of the survey, Ti 2p, C 1s, and O 1s:

    Fig. 7 Porous properties of the samples:

    The specific surface areas of the TiO2-C-Nd%-4 and TiO2-C-Nd%-5 are 271.1 and 268.9 m2/g, respectively, which is much larger than that of TiO2-C-Nd%-1 (205.9 m2/g). A high specific surface area can improve the adsorption ability of a photo-catalyst, because the photo-catalytic activity strongly depends on the adsorption capacity of organic substance and the interfacial charge transfer can also be improved[30]. From this it can be deduced that the doping of Nd can improve the specific surface area of the nanoparticles, and further improve its photo-catalytic performance. However, the amount of dopant has a most suitable value, when the amount of Nd is too much, the excess of Nd may block the pore holes, resulting in a decrease in specific surface area.

    It can be seen from Fig. 7b that the samples prepared by the experimental scheme have pore size distribution in the micropore and mesopore region. The pore size distribution further confirm that the pore size distributions in the samples vary with the doping amount of Nd, and the amount of Nd doping has the most suitable value.

    Fig. 8 shows the FT-IR spectrum of the TiO2-C-Nd%-3 particles. Absorption at 450-800 cm-1is assigned to the stretching vibrations of Ti-O-Ti, Ti-O, and O-Ti-O bonds[31]. The absorption band at about 1 647 cm-1is attributed to the bending vibration of H-O—H bonds, which is assigned to the chemisorption water[32]. Compared with the FT-IR spectra of the TiO2-C-Nd%-3 adsorbed with MB before and after light irradiation and MB, it is found that TiO2-C-Nd%-3 particles have the strong stretching vibration of O-H absorption peak at 3 388 cm-1and the characteristic absorption peak of CO2at 2 389 cm-1. Obviously, Nd doped TiO2-C aerogel particles have a high ability of absorbing water, which results in more hydroxyls on their surface. Hydroxyls can form hydrogen bonds with water, and therefore the surface property of the samples is significantly enhanced.

    Fig. 8 FT-IR spectra of the TiO2-C-Nd%-3 in MB solution.

    The photo-catalytic activities of the prepared samples were determined by the degradation of MB in solutions. The concentration of the MB solution is 20 mg/L, and 30 mg of catalysts is introduced per 50 mL MB solution. As shown in Fig. 9a, the adsorption curve of MB solution is linear within 60 min before irradiation, indicating that the degradation rate of the sample is very slow during that time. After 20 min of lighton, the adsorption rate is gradually increasing. The changing trend of degradation ratio after the degradation reaction carries out for 80 min is as follow: TiO2-C-Nd%-4>TiO2-C-Nd%-3>TiO2-C-Nd%-5>TiO2-C-Nd%-2>TiO2-C-Nd%-1> TiO2-C-Nd%-6, indicating that the proper amount of Nd doping can improve the performance of the catalysts to a certain extent. Fig. 9b shows the degradation ratios after a light irradiation for 60 min. It is found that TiO2-C-Nd%-4 has the highest degradation ratio, which is ascribed to its largest specific surface area.

    Fig. 9 Photocatalytic activities

    Fig. 10 shows the absorbance curves of ultraviolet photo-catalysis of methylene blue over 40 mg sample at different times. It can be seen from the figure that the absorbance of methylene blue at 660 nm is in the range of 2.8 to 2.9 within 60 min of irradiation, but after UV irradiation for 160 min, the absorbances of the samples decrease sharply, and after light on for 240 min, the absorbances of the samples are almost close to zero, which indicates that the MB is decomposed completely. From Fig. 10b, it can be seen that the sample TiO2-C-Nd%-4 has the best performance, and the absorbance is substantially reduced to zero after 160 min of light exposure. And there are no other miscellaneous peaks appearing in these spectral data, indicating that no other substances except CO2and H2O are formed during the photocatalytic process.

    Fig. 10 The Absorbance curves of ultraviolet photocatalysis of methylene blue over 40 mg samples at different times.

    4 Conclusions

    Nd-doped TiO2-C hybrid aerogels were prepared by a combined sol-gel and impregnation methods. The samples were characterized by SEM, TEM, EDS, FTIR, XRD, nitrogen adsorption and XPS. The photo-catalytic activities of the samples were tested by using MB in solutions as a target substance under UV light irradiation. The main conclusions were as following: (1) Carbon aerogels were first prepared, and the TiO2-C hybrid aerogels with different Nd doping contents were prepared by impregnation. (2) The prepared samples are irregular granular, and the particle size of the samples reduces with the increase of the doping amount of Nd, which indicates that the doping of neodymium inhibits the growth of the particles, and also hinders the crystal type transform from anatase to rutile. At the same time the doped Nd3+is present as a Ti-O-Nd bond in the titanium dioxide lattice. (3) The samples show good photo-catalytic activities for MB degradation in solutions under ultraviolet light. By investigating the degradation of MB in solutions with samples of different ratios of Nd doping, it is found that a moderate amount of Nd3+content could improve the photo-catalytic activity. When the ratio of neodymium nitrate to titanium dioxide as a percentage is 3%-4%, the prepared sample has the best performance. After light irradiation for 180 min, the degradation ratio of MB reaches almost 100%.

    [1] James L G, John D S, Clemens B, et al. Highly efficient formation of visible light tunable TiO2-xNxphotocatalysts and their transformation at the nanoscale[J]. ChemInform, 2006, 35: 1230-1240.

    [2] Baia L, Diamandescu L, Barbu-Tudoran L, et al. Efficient dual functionality of highly porous nanocomposites based on TiO2and noble metal particles[J]. Journal of Alloys & Compounds, 2011, 509: 2672-2678.

    [3] Sharma M, Jain T, Singh S, et al. Photocatalytic degradation of organic dyes under UV-Visible light using capped ZnS nanoparticles[J]. Solar Energy, 2012, 86: 626-633.

    [4] Martha M, Wilson F. Remediation of pesticide contaminated soil using TiO2mediated by solar light[J]. Catalysis Today, 2002, 76: 201-207.

    [5] Ramacharyulu P, Prasad G, Ganesan K, et al. Photocatalytic decontamination of sulfur mustard using titania nanomaterials[J]. Journal of Molecular Catalysis A Chemical, 2012, s353-354: 132-137.

    [6] Sahoo C, Gupta A K. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2under UV and visible light[J]. Journal of Environmental Science and Health, Part A, 2015, 50: 659-668.

    [7] Wahi R K, William W Y, Liu Y P , et al. Photodegradation of congo red catalyzed by nanosized TiO2[J]. Journal of Molecular Catalysis A Chemical, 2005, 242: 48-56.

    [8] Anuja B, Mrinal R P, Anjali A, et al. Surface modified Nd doped TiO2nanoparticles as photocatalysts in UV and solar light irradiation[J]. Solar Energy, 2013, 91: 111-119.

    [9] Singh D P, Ali N. Synthesis of TiO2and CuO nanotubes and nanowires[J]. Science of Advanced Materials, 2010, 2: 295-335.

    [10] Periyat P, Suresh C P, Declan E, et al. Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2[J]. J.Phys.Chem.C, 2008, 112: 7644-7652.

    [11] Yang X, Ma F, Li K, et al. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation[J]. Journal of Hazardous Materials, 2010, 175: 429-38.

    [12] Hoffmann M R, Choi W Y, Bahnemann. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95: 69-96.

    [13] Grabowska E, Reszczyńska J, Zaleska A. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review[J]. Water Research, 2012, 46: 5453-71.

    [14] Obregon S, Kubacka A, Fernandez-Garcia M, et al. High-performance Er3+-TiO2system: Dual up-conversion and electronic role of the lanthanide[J]. Journal of Catalysis, 2013, 299: 298-306.

    [15] de la Cruz Romero D, Torres Torres G, Arévalo J C. et al. Synthesis and characterization of TiO2doping with rare earths by sol-gel method: photocatalytic activity for phenol degradation[J]. Journal of Sol-Gel Science and Technology, 2010, 56: 219-226.

    [16] Du J M, Chen H J , Yang H , et al. A facile sol-gel method for synthesis of porous Nd-doped TiO2monolith with enhanced photocatalytic activity under UV-Vis irradiation[J]. Nanotechnology & Precision Engineering, 2013, 182: 87-94.

    [17] Zhang Q W, Wang J S, Tang Q, et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine[J]. Journal of Materials Chemistry, 2003, 13: 2996-3001.

    [18] Shao X, Lu W C, Zhang R. et al. Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation[J]. Scientific Reports, 2013, 3: 3018.

    [19] Carolina S M, Javier R D, Carlos J L, et al. Low concentration Fe-doped alumina catalysts using sol-gel and impregnation methods: the synthesis, characterization and catalytic performance during the combustion of trichloroethylene[J]. Materials 2014, 7: 2062-2086.

    [20] Pavasupree, Sorapong, et al. Synthesis of titanate, TiO2(B), and anatase TiO2nanofibers from natural rutile sand[J]. Journal of Solid State Chemistry, 2005, 24: 3110-3116.

    [21] Bart R, Karl C G, Sandeep P, et al. Enhanced efficiency and stability of perovskite solar cells through Nd-doping of mesostructured TiO2[J]. Advanced Energy Materials, 2016, 6 : 1501868.

    [22] Xu A W, Gao Y, Liu H Q, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2nanoparticles[J]. Journal of Catalysis, 2002, 207: 151-157.

    [23] Meng Z H, Wan L H, Zhang L J, et al. One-step fabrication of Ce-N-codoped TiO2nano-particle and its enhanced visible light photocatalytic performance and mechanism[J]. Journal of Industrial & Engineering Chemistry, 2014, 20: 4102-4107.

    [24] Zhang X H, Luo L T, Duana Z H, Preparation and application of Ce-doped mesoporous TiO2oxide[J]. Reaction Kinetics, Mechanisms and Catalysis, 2005, 87: 43-50.

    [25] Biswajit C, Bikash B, Amarjyoti C, Ce-Nd codoping effect on the structural and optical properties of TiO2nanoparticles[J]. Materials Science & Engineering B, 2013, 178: 239-247.

    [26] Erdem B, Hunsicker R A, Simmons G W, et al. XPS and FTIR surface characterization of TiO2particles used in polymer encapsulation[J]. Langmuir, 2001. 17: 2664-2669.

    [27] Wu Y M, Zhang J L, Xiao L,et al. Properties of carbon and iron modified TiO2photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light[J]. Applied Surface Science, 2010. 256: 4260-4268.

    [28] Liu J K, An T C, Li G Y, et al. Preparation and characterization of highly active mesoporous TiO2photocatalysts by hydrothermal synthesis under weak acid conditions[J]. Microporous & Mesoporous Materials, 2009, 124: 197-203.

    [29] Shi H X, Zhang T Y, An T C, et al. Enhancement of photocatalytic activity of nano-scale TiO2particles co-doped by rare earth elements and heteropolyacids[J]. Journal of Colloid & Interface Science, 2012, 380: 121-127.

    [30] Pan L, Zou J J, Zhang X, et al. Water-mediated promotion of dye sensitization of TiO2under visible light[J]. Journal of the American Chemical Society, 2011, 133: 10000.

    [31] Mills A, An overview of the methylene blue ISO test for assessing the activities of photocatalytic films[J]. Applied Catalysis B Environmental, 2012, 128: 144-149.

    [32] Du J, Gu X, Wu Q, et al. Hydrophilic and photocatalytic activities of Nd-doped titanium dioxide thin films[J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 2601-2607.

    猜你喜歡
    文雅材料科學(xué)二氧化鈦
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    蹲姿欠文雅 健康益處多
    文雅清虛 淄博文石
    寶藏(2018年12期)2019-01-29 01:50:50
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    亞砷酸鹽提高藻與蚤培養(yǎng)基下納米二氧化鈦的穩(wěn)定性
    鐵摻雜二氧化鈦的結(jié)構(gòu)及其可見或紫外光下對(duì)有機(jī)物催化降解的行為探析
    On the Tragedy of Heathcliff and His Character in Wuthering Heights
    教師·中(2015年7期)2015-08-07 12:05:55
    文筆的文雅
    人間(2015年14期)2015-02-19 01:37:01
    久久久精品国产亚洲av高清涩受| 50天的宝宝边吃奶边哭怎么回事| 一本大道久久a久久精品| 亚洲精品在线美女| 88av欧美| 亚洲五月天丁香| 亚洲成a人片在线一区二区| 欧美最黄视频在线播放免费| 亚洲专区中文字幕在线| 国产一区二区三区综合在线观看| 大香蕉久久成人网| 亚洲情色 制服丝袜| 欧美性长视频在线观看| 成人三级黄色视频| 免费人成视频x8x8入口观看| √禁漫天堂资源中文www| 又黄又粗又硬又大视频| 美女免费视频网站| 男女下面插进去视频免费观看| 国产亚洲欧美98| 一区二区三区国产精品乱码| 免费看a级黄色片| 中文字幕人妻丝袜一区二区| 亚洲成av人片免费观看| 精品一区二区三区av网在线观看| 亚洲精品中文字幕在线视频| 国产精品二区激情视频| 一级作爱视频免费观看| 久久青草综合色| 亚洲三区欧美一区| 天堂√8在线中文| 久久久久九九精品影院| 精品国产乱子伦一区二区三区| 亚洲欧美激情在线| 亚洲视频免费观看视频| 久9热在线精品视频| 久久人人爽av亚洲精品天堂| 欧美一区二区精品小视频在线| 国产精品一区二区三区四区久久 | 午夜福利视频1000在线观看 | 女生性感内裤真人,穿戴方法视频| 给我免费播放毛片高清在线观看| 久久青草综合色| 国产成人欧美| 一个人免费在线观看的高清视频| 国产成人一区二区三区免费视频网站| 91九色精品人成在线观看| 亚洲精品在线观看二区| 久久中文字幕人妻熟女| e午夜精品久久久久久久| 亚洲国产欧美网| 久久久久亚洲av毛片大全| 色综合站精品国产| 十分钟在线观看高清视频www| 香蕉久久夜色| 国内精品久久久久久久电影| 精品高清国产在线一区| 少妇粗大呻吟视频| 成在线人永久免费视频| 欧美一级毛片孕妇| 少妇 在线观看| 午夜福利一区二区在线看| av超薄肉色丝袜交足视频| www.精华液| 国产精品免费视频内射| 99精品欧美一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 高清在线国产一区| 欧美亚洲日本最大视频资源| 午夜福利免费观看在线| 欧美成人免费av一区二区三区| 免费在线观看视频国产中文字幕亚洲| av视频免费观看在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一卡2卡三卡四卡精品乱码亚洲| 欧美精品啪啪一区二区三区| av视频免费观看在线观看| 这个男人来自地球电影免费观看| 午夜免费鲁丝| 女人高潮潮喷娇喘18禁视频| 欧美日韩乱码在线| www.熟女人妻精品国产| 99久久久亚洲精品蜜臀av| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器 | 黑人操中国人逼视频| 人人妻人人澡欧美一区二区 | 一级黄色大片毛片| 亚洲第一青青草原| 精品一区二区三区四区五区乱码| 日韩精品中文字幕看吧| 亚洲成av片中文字幕在线观看| 99在线视频只有这里精品首页| 久久 成人 亚洲| 亚洲伊人色综图| 欧美激情高清一区二区三区| 亚洲精品国产色婷婷电影| 亚洲成人免费电影在线观看| 国产一区二区三区综合在线观看| 少妇的丰满在线观看| 女性被躁到高潮视频| 日本 av在线| 这个男人来自地球电影免费观看| 高潮久久久久久久久久久不卡| 一区二区三区高清视频在线| 免费观看人在逋| 色综合欧美亚洲国产小说| 97人妻天天添夜夜摸| 亚洲视频免费观看视频| 国产成人一区二区三区免费视频网站| 欧美 亚洲 国产 日韩一| 日韩 欧美 亚洲 中文字幕| 日本 欧美在线| 国产日韩一区二区三区精品不卡| 亚洲伊人色综图| 日本a在线网址| 久久伊人香网站| 中文亚洲av片在线观看爽| 天堂√8在线中文| 很黄的视频免费| 99国产精品一区二区三区| 欧美黑人精品巨大| 在线观看免费午夜福利视频| 岛国在线观看网站| 国产一卡二卡三卡精品| 久久这里只有精品19| 亚洲一区二区三区不卡视频| 国产高清激情床上av| 十八禁人妻一区二区| 国产99久久九九免费精品| 日韩欧美国产一区二区入口| 免费看十八禁软件| 脱女人内裤的视频| 亚洲国产看品久久| 在线观看免费日韩欧美大片| 国产成+人综合+亚洲专区| 一a级毛片在线观看| 一区二区三区精品91| 久久 成人 亚洲| 亚洲欧美日韩无卡精品| 给我免费播放毛片高清在线观看| 欧美 亚洲 国产 日韩一| 一级a爱片免费观看的视频| 亚洲aⅴ乱码一区二区在线播放 | 黄色a级毛片大全视频| 男人舔女人的私密视频| 性色av乱码一区二区三区2| 黄色丝袜av网址大全| 色哟哟哟哟哟哟| 嫩草影院精品99| 老司机福利观看| 又紧又爽又黄一区二区| 国内毛片毛片毛片毛片毛片| 亚洲国产精品久久男人天堂| 18禁观看日本| 最近最新免费中文字幕在线| 黑人操中国人逼视频| 日韩精品免费视频一区二区三区| 日本一区二区免费在线视频| 精品不卡国产一区二区三区| 国产av精品麻豆| svipshipincom国产片| 黄色 视频免费看| 成在线人永久免费视频| 国产高清videossex| 女人被躁到高潮嗷嗷叫费观| 日韩av在线大香蕉| 一区二区三区国产精品乱码| 宅男免费午夜| www国产在线视频色| 午夜两性在线视频| 日日干狠狠操夜夜爽| 久久国产精品人妻蜜桃| 亚洲成人精品中文字幕电影| 波多野结衣一区麻豆| av电影中文网址| 女人高潮潮喷娇喘18禁视频| 久久久久久大精品| 国产成人一区二区三区免费视频网站| 成人精品一区二区免费| 一边摸一边做爽爽视频免费| 久热这里只有精品99| 久久人妻熟女aⅴ| 夜夜夜夜夜久久久久| 精品国产乱子伦一区二区三区| 一区二区三区激情视频| 正在播放国产对白刺激| 最好的美女福利视频网| 一区在线观看完整版| 一本大道久久a久久精品| 宅男免费午夜| 亚洲av电影不卡..在线观看| 国产精品久久久久久亚洲av鲁大| 一个人观看的视频www高清免费观看 | 熟妇人妻久久中文字幕3abv| 亚洲熟妇熟女久久| 丰满人妻熟妇乱又伦精品不卡| 999久久久国产精品视频| 国产精品久久久久久人妻精品电影| 精品久久久久久久久久免费视频| 一a级毛片在线观看| 99精品久久久久人妻精品| 国产精品乱码一区二三区的特点 | 成人永久免费在线观看视频| 88av欧美| 丰满人妻熟妇乱又伦精品不卡| 成人国产一区最新在线观看| 亚洲成av人片免费观看| 国产精品98久久久久久宅男小说| 久久久久久久午夜电影| xxx96com| 久久精品aⅴ一区二区三区四区| 中文字幕人妻熟女乱码| 国产亚洲精品综合一区在线观看 | 亚洲avbb在线观看| 97人妻天天添夜夜摸| 亚洲成av片中文字幕在线观看| 少妇的丰满在线观看| 手机成人av网站| 日韩精品免费视频一区二区三区| 国产三级黄色录像| 久9热在线精品视频| 我的亚洲天堂| 男人舔女人的私密视频| 成人免费观看视频高清| 两性夫妻黄色片| xxx96com| 久久久久久人人人人人| 黄片大片在线免费观看| 亚洲一区中文字幕在线| 黄色视频,在线免费观看| 9色porny在线观看| 国产主播在线观看一区二区| 女人精品久久久久毛片| 男人舔女人的私密视频| 好男人在线观看高清免费视频 | 精品国产一区二区三区四区第35| 亚洲欧美激情综合另类| 悠悠久久av| 99国产精品一区二区蜜桃av| 中文字幕av电影在线播放| 黄色女人牲交| 成人三级做爰电影| 波多野结衣av一区二区av| 国产av又大| www日本在线高清视频| 99在线人妻在线中文字幕| 校园春色视频在线观看| 久久人人精品亚洲av| 国产色视频综合| 一边摸一边抽搐一进一出视频| 久久久国产精品麻豆| 最近最新中文字幕大全电影3 | 国产精品二区激情视频| 天堂影院成人在线观看| 男女下面进入的视频免费午夜 | 日韩欧美在线二视频| 神马国产精品三级电影在线观看 | 一级片免费观看大全| 成人欧美大片| 少妇被粗大的猛进出69影院| 91麻豆av在线| 天天躁狠狠躁夜夜躁狠狠躁| 精品无人区乱码1区二区| 亚洲精品在线美女| 一本久久中文字幕| 国产精品国产高清国产av| 久久久久久久午夜电影| 99精品在免费线老司机午夜| 亚洲成av片中文字幕在线观看| 国产精品久久电影中文字幕| 国产成人系列免费观看| 操美女的视频在线观看| 久久人人97超碰香蕉20202| 欧美成人一区二区免费高清观看 | 给我免费播放毛片高清在线观看| 亚洲欧美日韩另类电影网站| 亚洲黑人精品在线| 亚洲va日本ⅴa欧美va伊人久久| 国产三级黄色录像| 亚洲 欧美一区二区三区| 国产一卡二卡三卡精品| 日韩欧美在线二视频| 久久久国产欧美日韩av| av片东京热男人的天堂| 伊人久久大香线蕉亚洲五| 久久九九热精品免费| 国产精品一区二区精品视频观看| 国产成人精品无人区| 国产成人精品久久二区二区免费| 19禁男女啪啪无遮挡网站| 91大片在线观看| avwww免费| 国产区一区二久久| 女人高潮潮喷娇喘18禁视频| 性少妇av在线| av中文乱码字幕在线| av福利片在线| 99久久久亚洲精品蜜臀av| 这个男人来自地球电影免费观看| 少妇 在线观看| 欧美成人性av电影在线观看| 欧美国产精品va在线观看不卡| 久久精品人人爽人人爽视色| 久久国产亚洲av麻豆专区| 精品人妻在线不人妻| 99久久综合精品五月天人人| 波多野结衣av一区二区av| 美女 人体艺术 gogo| 黄色 视频免费看| 久久久久九九精品影院| 日韩中文字幕欧美一区二区| 欧美成人一区二区免费高清观看 | 久久久久国内视频| 国产精品一区二区精品视频观看| 亚洲五月天丁香| 欧美激情久久久久久爽电影 | 国产精品乱码一区二三区的特点 | 国产视频一区二区在线看| 最近最新中文字幕大全免费视频| 在线十欧美十亚洲十日本专区| 叶爱在线成人免费视频播放| 国产成+人综合+亚洲专区| 露出奶头的视频| 久久国产亚洲av麻豆专区| 亚洲av成人av| 久久久久久久久免费视频了| 天堂动漫精品| 欧美最黄视频在线播放免费| 国产一区二区在线av高清观看| 精品一区二区三区av网在线观看| 日本精品一区二区三区蜜桃| 精品一区二区三区av网在线观看| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久| 午夜福利欧美成人| 亚洲avbb在线观看| av视频免费观看在线观看| 精品久久久久久成人av| 欧美黑人精品巨大| 国产片内射在线| 一区二区日韩欧美中文字幕| 亚洲国产中文字幕在线视频| 精品高清国产在线一区| 久久久久久国产a免费观看| 免费在线观看日本一区| 在线天堂中文资源库| 怎么达到女性高潮| 19禁男女啪啪无遮挡网站| 免费在线观看日本一区| 琪琪午夜伦伦电影理论片6080| 国产精品电影一区二区三区| 亚洲av日韩精品久久久久久密| 欧美一级a爱片免费观看看 | 国产免费av片在线观看野外av| 亚洲国产中文字幕在线视频| 他把我摸到了高潮在线观看| 两个人看的免费小视频| 亚洲熟妇中文字幕五十中出| 怎么达到女性高潮| 久久久久久久午夜电影| 国产亚洲精品av在线| 亚洲性夜色夜夜综合| 在线国产一区二区在线| 久久久久久大精品| 国产熟女xx| 国产av精品麻豆| 国产亚洲精品综合一区在线观看 | 亚洲成av片中文字幕在线观看| 亚洲情色 制服丝袜| 色综合亚洲欧美另类图片| 美女扒开内裤让男人捅视频| 欧美黑人精品巨大| 午夜久久久久精精品| 亚洲精品久久成人aⅴ小说| 亚洲av电影不卡..在线观看| 国产精品久久久人人做人人爽| 国产av一区在线观看免费| 少妇被粗大的猛进出69影院| 黑人欧美特级aaaaaa片| 亚洲av成人av| 色播在线永久视频| 性色av乱码一区二区三区2| 99国产精品一区二区三区| 国产高清有码在线观看视频 | 法律面前人人平等表现在哪些方面| 国产不卡一卡二| 亚洲精品国产一区二区精华液| 国产高清激情床上av| www.精华液| 巨乳人妻的诱惑在线观看| 久久草成人影院| 亚洲第一av免费看| 久久伊人香网站| 国产蜜桃级精品一区二区三区| 欧美中文日本在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美精品永久| 国产蜜桃级精品一区二区三区| 国产精品一区二区在线不卡| 亚洲男人天堂网一区| 亚洲情色 制服丝袜| 国产精品久久久人人做人人爽| 国产片内射在线| 91麻豆精品激情在线观看国产| 制服人妻中文乱码| 亚洲成人国产一区在线观看| 精品国内亚洲2022精品成人| 露出奶头的视频| 午夜福利影视在线免费观看| 满18在线观看网站| 午夜激情av网站| 亚洲黑人精品在线| 动漫黄色视频在线观看| 日本一区二区免费在线视频| 无遮挡黄片免费观看| 成人亚洲精品av一区二区| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 99热只有精品国产| 亚洲 欧美一区二区三区| 亚洲无线在线观看| 搞女人的毛片| 18美女黄网站色大片免费观看| 一区二区三区激情视频| 国产麻豆成人av免费视频| 精品人妻1区二区| 精品欧美一区二区三区在线| 亚洲视频免费观看视频| 一级毛片精品| 黄频高清免费视频| 黑人巨大精品欧美一区二区mp4| 久久午夜亚洲精品久久| 欧美国产日韩亚洲一区| 99re在线观看精品视频| 欧美一级毛片孕妇| 久久天堂一区二区三区四区| 日日摸夜夜添夜夜添小说| 91成年电影在线观看| 亚洲专区字幕在线| 国产精品 国内视频| 精品国产亚洲在线| 操出白浆在线播放| 国产在线观看jvid| 最新美女视频免费是黄的| 变态另类丝袜制服| 熟妇人妻久久中文字幕3abv| 久久久久久久久久久久大奶| 999精品在线视频| 精品一区二区三区四区五区乱码| 日韩 欧美 亚洲 中文字幕| 日韩欧美国产在线观看| 变态另类丝袜制服| 超碰成人久久| 高清毛片免费观看视频网站| 99久久久亚洲精品蜜臀av| 两人在一起打扑克的视频| 亚洲第一av免费看| 久久热在线av| 亚洲人成77777在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 嫩草影院精品99| 亚洲午夜精品一区,二区,三区| www.www免费av| ponron亚洲| 国产单亲对白刺激| 国产私拍福利视频在线观看| 一级毛片精品| 满18在线观看网站| 不卡一级毛片| 性欧美人与动物交配| 久久精品国产亚洲av香蕉五月| 啦啦啦观看免费观看视频高清 | 一级a爱视频在线免费观看| 波多野结衣一区麻豆| 亚洲精品一区av在线观看| 午夜福利成人在线免费观看| 91精品三级在线观看| 丝袜美足系列| 一个人观看的视频www高清免费观看 | 亚洲欧美精品综合一区二区三区| 亚洲一码二码三码区别大吗| 岛国在线观看网站| 免费女性裸体啪啪无遮挡网站| 超碰成人久久| 日日干狠狠操夜夜爽| 国产伦一二天堂av在线观看| videosex国产| 精品国产乱子伦一区二区三区| 88av欧美| 制服人妻中文乱码| 久久婷婷人人爽人人干人人爱 | 欧美黑人精品巨大| 国产激情久久老熟女| 亚洲国产看品久久| 熟女少妇亚洲综合色aaa.| 99re在线观看精品视频| 女人被狂操c到高潮| 精品久久久久久,| 女人被狂操c到高潮| 亚洲欧美日韩无卡精品| 欧美中文日本在线观看视频| 亚洲欧美日韩无卡精品| 成年女人毛片免费观看观看9| 亚洲国产精品999在线| 可以免费在线观看a视频的电影网站| 涩涩av久久男人的天堂| 亚洲精品国产一区二区精华液| 亚洲精品美女久久久久99蜜臀| 成人永久免费在线观看视频| 在线观看午夜福利视频| 亚洲伊人色综图| 高清在线国产一区| or卡值多少钱| 黑人巨大精品欧美一区二区mp4| 国产成人av教育| 日韩 欧美 亚洲 中文字幕| 怎么达到女性高潮| 高清黄色对白视频在线免费看| 国产视频一区二区在线看| 亚洲人成伊人成综合网2020| 精品国产美女av久久久久小说| 99国产精品99久久久久| 亚洲精华国产精华精| 18禁观看日本| 久久伊人香网站| 久久久国产精品麻豆| 三级毛片av免费| 亚洲片人在线观看| 日日爽夜夜爽网站| 老鸭窝网址在线观看| 一区二区三区高清视频在线| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦 在线观看视频| 色老头精品视频在线观看| 99香蕉大伊视频| 国产精品香港三级国产av潘金莲| 久久 成人 亚洲| 亚洲国产欧美一区二区综合| 亚洲av成人不卡在线观看播放网| 丰满人妻熟妇乱又伦精品不卡| 久久精品人人爽人人爽视色| 一级黄色大片毛片| 桃色一区二区三区在线观看| 18禁国产床啪视频网站| 无限看片的www在线观看| 欧美成狂野欧美在线观看| 国产av在哪里看| 久久影院123| 国产精品精品国产色婷婷| 日韩中文字幕欧美一区二区| 国产成人欧美在线观看| 亚洲久久久国产精品| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美精品济南到| 丁香欧美五月| 精品国内亚洲2022精品成人| 夜夜爽天天搞| 婷婷精品国产亚洲av在线| 中文字幕最新亚洲高清| 91av网站免费观看| 亚洲精品中文字幕在线视频| 亚洲av电影不卡..在线观看| 视频区欧美日本亚洲| 久热爱精品视频在线9| 精品一区二区三区四区五区乱码| 1024香蕉在线观看| 一本综合久久免费| 一区在线观看完整版| 午夜a级毛片| 日日夜夜操网爽| 日韩av在线大香蕉| 久久欧美精品欧美久久欧美| 制服人妻中文乱码| 亚洲欧美一区二区三区黑人| 999久久久国产精品视频| 黄色丝袜av网址大全| 久久中文字幕一级| 12—13女人毛片做爰片一| 日本三级黄在线观看| 久久中文字幕人妻熟女| 老汉色∧v一级毛片| 欧美中文综合在线视频| 极品教师在线免费播放| 欧美日韩黄片免| 午夜福利成人在线免费观看| 午夜福利免费观看在线| 亚洲电影在线观看av| 大码成人一级视频| 成人免费观看视频高清| 中文亚洲av片在线观看爽| 精品欧美一区二区三区在线| 久久久久久久午夜电影| 一区二区三区激情视频| 午夜福利成人在线免费观看| 亚洲av电影在线进入| 精品少妇一区二区三区视频日本电影| 欧美中文日本在线观看视频| 国产一区二区激情短视频| 欧美成人午夜精品| 99久久综合精品五月天人人| 亚洲无线在线观看| 国产午夜福利久久久久久| 老司机福利观看| 一个人免费在线观看的高清视频| 久久久久久免费高清国产稀缺| 亚洲avbb在线观看| 久久中文字幕人妻熟女| 久久久久久人人人人人| 亚洲天堂国产精品一区在线| 男女之事视频高清在线观看| 嫩草影视91久久| 九色国产91popny在线|