方慧 劉琪
[摘要] 近年研究認為,氧化應激的直接和間接參與也是導致牙周組織破壞的關鍵因素。活性氧(ROS)是機體氧化應激的產(chǎn)物,它已成為近年牙周炎發(fā)病機制的研究熱點。生理水平的ROS能作為第二信使參與調(diào)控細胞內(nèi)環(huán)境穩(wěn)態(tài)、信號轉導、凋亡等生理活動,而過量ROS則發(fā)揮細胞毒性,對蛋白質(zhì)、脂質(zhì)、DNA造成氧化損傷,干擾細胞生長和細胞周期進程,并誘導牙齦成纖維細胞凋亡。ROS的這些作用共同對牙周組織造成了不可逆轉的直接損傷。此外,ROS還能通過激活炎性因子、核因子κB(NF-κB)、c-Jun氨基末端激酶(JNKs)及自噬改變牙周微環(huán)境而對牙周組織造成間接的嚴重破壞。本文概述了目前ROS的過量生成及其所激活的相關信號通路與牙周炎的關系,為進一步探索ROS與牙周炎發(fā)生發(fā)展的相關性提供依據(jù)。
[關鍵詞] 牙周炎;活性氧;炎性因子;核因子κB;c-Jun氨基末端激酶;自噬
[中圖分類號] R781.4 [文獻標識碼] A [文章編號] 1673-7210(2018)02(b)-0022-05
[Abstract] Recent studies suggest that the direct and indirect participation of oxidative stress is also a key factor in the destruction of periodontal tissue. Reactive oxygen species (ROS) is a product of oxidative stress in the body. It has become a hot research topic in the pathogenesis of periodontitis in recent years. Physiological levels of ROS can participate in physiological activities such as homeostasis, signal transduction and apoptosis in cells as second messengers. Excessive ROS play a cytotoxic role, causing oxidative damage to proteins , lipids and DNA, interfering with cell growth and cell cycle progression , and induce gingival fibroblast apoptosis. These effects of ROS together cause irreversible and direct damage to the periodontal tissue. In addition, ROS can also indirectly cause serious damage to periodontal tissues by activating inflammatory factors, nuclear factor κB (NF-κB), c-Jun N-terminal kinases and autophagy. This article summarizes the relationship between the excessive production of ROS and its activated signal transduction pathway and periodontitis, so as to provide evidence for further exploration of the correlation between ROS and periodontitis.
[Key words] Periodontitis; Reactive oxygen species; Inflammatory factors; Nuclear factor-κB; C-Jun N-terminal kinases; Autophagy
牙周炎是一種常見的慢性感染性疾病,其特征是通過牙周病原菌的相互作用和宿主免疫反應導致牙周支持組織完整性遭到不可逆性破壞的炎性疾病。過去關于牙周炎的研究側重于具有高蛋白酶和免疫抑制特征的宿主細菌的重要性,如牙齦卟啉單胞菌(Porphyromonas gingivalis,P.g),而近年研究認為,僅牙周病原菌對牙周的致病性是不夠的,還涉及其他各類復雜的生物因子、信號分子和通路。大多數(shù)牙周組織的損傷是白細胞、補體和ROS參與的宿主固有免疫反應的聯(lián)合效應。一般而言,生理水平的ROS具有抗菌、宿主防御和免疫調(diào)節(jié)作用,但過量的ROS則具細胞毒性,能對細胞的蛋白質(zhì)、脂質(zhì)和DNA造成氧化損傷[1],干擾人牙齦成纖維細胞生長和細胞周期的進展[2],誘導牙齦成纖維細胞凋亡等[3],直接或間接誘導牙周組織損傷。本文概述了目前ROS的過量生成及其所激活的相關信號通路與牙周炎的關系,為進一步探索ROS與牙周炎發(fā)病及其進展的相關性提供依據(jù)。
1 ROS的來源及其與牙周炎的關系
1.1 ROS的來源
機體的大部分組織能連續(xù)產(chǎn)生ROS以參與細胞的正常生理代謝。ROS是氧自由基和參與氧自由基生成的其他非自由基氧衍生物的統(tǒng)稱,它們都是壽命短而活性高的氧化產(chǎn)物。狹義的ROS主要包括過氧化物(O2—·)、過氧化氫(H2O2)、羥自由基(·OH)和單線態(tài)氧(1O2),廣義上還包括活性氮(RNS),即一氧化氮(NO)、二氧化氮(NO2)和過氧亞硝基自由基(ONOO·)等。這些物質(zhì)都是通過內(nèi)質(zhì)網(wǎng)(ER),線粒體電子傳遞鏈(Mito-ETC),過氧化物酶,如NADPH氧化酶(NOX)、黃嘌呤氧化酶(XO)、環(huán)氧合酶(COX)、脂氧合酶(LOX)等酶內(nèi)源性生成的,而Mito-ETC通常被認為是ROS生成的主要途徑[4]。在此過程中,電子給體(如NADH)通過氧化還原反應將電子傳遞給電子受體(如O2)合成三磷酸腺苷(ATP)。此期間電子可能泄漏至O2而生成ETC的副產(chǎn)品O2—·,隨后通過超氧化物歧化酶1(SOD1/CuZn-SOD)在線粒體膜間隙或超氧化物歧化酶2(SOD2/MnSOD)在基質(zhì)中歧化O2—·生成H2O2,而谷胱甘肽過氧化物酶(GPX)或過氧化氫酶(CAT)能將H2O2還原成H2O,但在芬頓(Fenton)和Haber-Weiss反應中H2O2可部分降解為·OH[5]。
雖然機體為了維護氧化還原平衡也會形成大量抗氧化劑,如SOD、CAT、GPX、谷胱甘肽(GSH)、谷氧還蛋白和硫氧還蛋白體系等[6],但ROS過量產(chǎn)生、抗氧化劑水平降低或抗氧化酶受抑制所誘導的氧化應激,能誘發(fā)一系列炎癥疾病,如癌癥、心血管疾病、糖尿病以及近年來證據(jù)日漸增多的牙周炎[7]。
1.2 ROS與牙周炎的關系
研究認為,過量生成的ROS及機體抗氧化防御系統(tǒng)失衡是導致細胞毒作用和加劇牙周組織破壞的原罪[8]。臨床研究顯示,牙周炎患者的血漿和血清總抗氧化劑(TAOC)及特異性抗氧化劑如SOD、CAT和GPX水平均較對照組顯著降低[9]。與對照組相比,慢性牙周炎患者齦溝液中抗氧化劑谷胱甘肽(GSH)的濃度較低,在潔治和根面平整術后其水平顯著升高[10]。唾液是公認的牙周炎標志物池[11],其中的氧化劑和抗氧化劑水平能在一定程度上反應牙周局部的氧化應激狀態(tài)。臨床研究顯示,與對照組相比,牙周炎患者唾液中TAOC水平顯著降低,氧化損傷標志物水平明顯高于對照組,并與社區(qū)牙周治療需要指數(shù)(CPITN)呈負相關,但唾液總抗氧化能力(TAC)與牙周炎狀態(tài)呈正相關[12]。此外,牙周炎患者的血清、唾液和齦溝液(GCF)中均發(fā)現(xiàn)較對照組更高的ROS代謝物和總氧化劑(TOS),且唾液和血清氧化應激水平、丙二醛(MDA)水平也顯著升高,TAC卻降低[13]。這預示著牙周炎患者并發(fā)全身和局部炎性疾病的風險急劇增加。ROS濃度較低時,能刺激體外培養(yǎng)的人牙周膜成纖維細胞(HPDLFs)增殖和分化;當其濃度較高時,則兼具殺傷病原體和對周圍組織的細胞毒作用,導致牙周組織破壞加劇[14]。Cavalla等[15]的研究顯示,ROS能增加明膠溶解性基質(zhì)金屬蛋白酶(MMPs)的活性,刺激人牙周膜成纖維細胞(HPDLFs)分泌細胞因子(IL-1β、IL-6等),從而加劇牙周組織破壞。此外,ROS能下調(diào)成骨細胞分化和刺激破骨細胞發(fā)生,促進骨丟失[16]。
2 過量ROS促進牙周炎發(fā)生發(fā)展的機制
2.1 活化炎性介質(zhì)
炎性小體(inflammasomes)是位于細胞胞質(zhì)內(nèi)的多蛋白復合物,作為對細胞感染、應激或組織損傷的應答,炎性小體被組裝為炎性復合體(inflammasome complex)而被激活,促進炎性反應并參與宿主防御和疾病的病理過程,它能感知表示細胞內(nèi)穩(wěn)態(tài)喪失的產(chǎn)物和內(nèi)源性信號,在牙周炎和幾種全身性疾病中都很活躍[17]。細胞因子IL-1家族的加工是由細胞內(nèi)固有免疫應答系統(tǒng)調(diào)節(jié),稱為域蛋白(NLRP3/NALP3)炎性復合體,它是一種代謝危險傳感器,是目前最完整的炎性復合體,由NLRP3支架、銜接蛋白凋亡相關斑點狀蛋白(ASC)和半胱天冬酶(caspase)-1組成[18]。在靜息細胞中,硫氧還蛋白相互作用蛋白(TXNIP)與硫氧還蛋白(TRX)相結合,當細胞內(nèi)ROS增加即可氧化TRX,促使TXNIP從TRX釋放而與NLRP3炎性體結合并將其激活,抑制ROS的活性則可抑制這種結合,從而使NLRP3炎性體失活[19]。這說明ROS的生成是NLRP3炎性體激活的必需上游事件,它能“點燃”激活NLRP3炎癥體及導致相應病理過程的效應分子。隨后,現(xiàn)有和/或新合成的NLRP3炎性體激活caspase,主要是caspase-1,后者通過特異性切割無活性的pro-IL-1β和pro-IL-18,將二者轉化為具有生物活性的IL-1β和IL-18,并介導它們的成熟和釋放,從而啟動宿主固有免疫應答[20]。研究發(fā)現(xiàn),與對照組相比,牙周炎患者牙齦組織中的NLRP3水平顯著升高,IL-1β水平也相應增加;而使用ROS清除劑抑制ROS活性后,即可阻止NLRP3炎性體活化和降低IL-1β水平[19]。在牙周炎患者的齦溝液和牙齦組織中,NLRP3炎性體的含量和活性均增加,從而導致caspase-1的活化及IL-1β的分泌增加[21]。牙齦上皮細胞(gingival epithelial cells)中ROS的過量產(chǎn)生激活了NLRP3炎癥體和caspase-1,從而促進IL-1β的分泌[21]。牙周組織受感染、應激或損傷的細胞不斷生成ROS,通過激活NLRP3炎性體而導致促炎細胞因子TNF-α、IL-1β和IL-6等的持續(xù)分泌和積累,從而引起炎癥性噴發(fā),加劇牙周組織的破壞[19]。綜上所述,NLRP3炎性體可作為炎癥信號的平臺,通過NLRP3—caspase-1—細胞因子通路參與牙周組織的固有免疫反應引發(fā)和/或加劇牙周炎,導致牙周組織的不可逆性破壞。
2.2 激活NF-κB通路
雖然牙周炎是微生物菌斑引發(fā)的慢性炎癥性疾病,但遺傳和牙周局部微環(huán)境都有助于牙周炎的發(fā)生發(fā)展。轉錄因子是基因特異性因子,常作為遺傳和環(huán)境因素之間的聯(lián)系。NF-κB是第一個被證實響應ROS的轉錄因子,當細胞內(nèi)ROS被清除后,NF-κB的活性即被消除[22],而其被激活后則能協(xié)調(diào)多種炎癥因子的表達。臨床研究顯示,與對照組相比,NF-κB在牙周炎受試者中高度活化,活化的NF-κB能增強促炎細胞因子(如IL-6、IL-1β、TNF-α)和趨化因子(如IL-8)分泌,從而觸發(fā)炎性反應和破骨細胞分化,導致牙周組織破壞[23]。這些炎性細胞因子除了能促進牙周局部的炎性反應,也能調(diào)控NF-κB配體的受體激活劑(RANKL)和骨保護素(OPG)的表達,而RANKL和OPG被認為是骨代謝的主要調(diào)節(jié)劑,所以二者也被認為是牙周炎時牙槽骨破壞機制的關鍵[24]。研究證實,牙周炎使牙周組織中RANKL過表達能促進牙槽骨吸收,而保護牙槽骨免遭吸收的OPG水平則顯著降低,從而間接促進牙槽骨吸收[25]。受損牙周細胞生成的過量ROS激活NF-κB后,通過介導IL-6、IL-1β等一眾細胞因子過表達而調(diào)控RANK/RANKL/OPG通路上調(diào)破骨細胞活性,導致牙根嚴重吸收、牙槽骨高度逐步喪失、牙齒過早剝落以及牙周動態(tài)平衡和牙槽骨重構紊亂,并且還可通過RANK非依賴途徑誘導牙槽骨丟失[24]。趨化因子IL-8對中性粒細胞(PMNs)有明顯的靶向特異性,能在炎癥部位募集并激活PMNs,活化的PMNs通過釋放酶原顆粒和ROS能有效降解牙周結締組織成分,同時,內(nèi)皮細胞也被大量持續(xù)滲出的PMNs聚集而遭繼發(fā)性損害[26]。因此,IL-8能協(xié)同IL-6和IL-1β等細胞因子破壞牙周組織。另外,研究證實[27],NF-κB作為NALP3炎性體形成的次級信號分子,能啟動NLRP3炎癥體。Yoshida等[28]的研究證實,在牙周炎時,NF-κB通過調(diào)節(jié)NLRP3炎癥體的表達來調(diào)節(jié)牙周炎癥。
2.3 激活JNK通路
被稱為應激活化蛋白激酶(SAPKs)的JNKs可被多種胞外刺激激活(生長因子、細胞活素類、氧化應激等),誘導不同細胞系發(fā)生凋亡。近年研究表明,牙周炎時過量ROS能激活JNK信號通路。研究發(fā)現(xiàn),尼古丁可誘導人牙齦成纖維細胞(HGFs)產(chǎn)生過量ROS,并接受較短時間刺激后即可檢測到水平較高的磷酸化JNK,其濃度隨時間的延長逐步降低;隨后,線粒體發(fā)生結構和功能的變化而釋放細胞色素C(Cyt-c),激活caspase-3和caspase-9級聯(lián)反應誘導HGFs凋亡[29]。另外,ROS激活JNK通路也可誘導炎性細胞因子的生成和釋放。P.g能在牙齦上皮細胞誘導產(chǎn)生過量ROS后激活JNK通路,并在活化的JNKs介導下上調(diào)IL-1β和IL-6的表達,造成上皮細胞損傷而加劇牙齦炎癥,抑制ROS的生成即可抑制JNK通路活化,從而阻止炎性細胞因子釋放[30]。但是,上述情況都需要ROS持續(xù)激活JNK通路。Nakano等[31]的研究認為,ROS可以利用兩種不同的機制來調(diào)控JNK的持續(xù)活化:ROS通過激活MAPKKK導致JNK活化和/或滅活,從而誘導JNK去磷酸化的ROS抑制MAP激酶磷酸酶(MKPs)。另外,他們也推測caspase級聯(lián)反應的激活也能反過來激活JNK通路。
2.4 啟動自噬
自噬(autophagy)是進化上保守的細胞內(nèi)降解系統(tǒng)將損傷或多余的細胞材料如受損的細胞器、變性的蛋白質(zhì)和細菌等遞送至溶酶體,為新的合成或能源產(chǎn)生而將各材料降解[32]。近年研究證實,線粒體ROS是調(diào)節(jié)自噬的重要信號分子。過量生成的ROS可通過靶向自噬相關基因(Atgs)和/或上游信號通路如雷帕霉素復合物1(mTORC1)、Beclin1和Atg12-Atg5復合物等的哺乳動物靶標來調(diào)節(jié)自噬活性[33]。就目前的研究發(fā)現(xiàn)而言,ROS至少可通過四種不同機制調(diào)節(jié)自噬[33]:①激活JNKs后磷酸化Bcl-2,導致Beclin 1解離和自噬誘導;②激活PI3K-AKT通路導致mTOR活化,使其發(fā)揮自噬誘導抑制劑的作用;③依賴AMPK抑制TORC1活性,利于激活自噬;④激活Atg12-Atg5復合物促進自噬延長。
新興證據(jù)表明,牙周炎患者牙周細胞線粒體產(chǎn)生的過量ROS可激活牙周組織的自噬作用。用LPS處理HGFs后發(fā)現(xiàn),Atg12和微管相關蛋白I輕鏈3(MAP-LC3)的蛋白及轉錄基因的表達均增加,并與牙周炎患者外周血單核細胞線粒體產(chǎn)生的ROS呈正相關,當線粒體產(chǎn)生的ROS減少,自噬也隨之減少[34]。這表明自噬參與牙周炎癥的調(diào)控,自噬對牙周炎有雙重作用,能促進細胞死亡或抑制感染細胞凋亡[35]。首先,自噬可能是牙周炎時細胞死亡的一種模式。由牙周厭氧菌生成和釋放,隨后被齦下成熟菌斑高度濃縮的丁鹽酸在牙齦上皮細胞啟動自噬而導致細胞死亡[36]。其次,自噬可能阻斷凋亡誘導的細胞死亡并保持細胞在牙周炎癥微環(huán)境中的生存能力。研究發(fā)現(xiàn),當自噬被抑制時,牙周炎患者外周血單核細胞凋亡增加,細胞活力下降[34]。用自噬的抑制劑3-甲基腺嘌呤(3-MeA)作用于LPS處理過的HGFs,發(fā)現(xiàn)自噬受抑制,隨后出現(xiàn)細胞活力下降且細胞凋亡百分率增加[35]。牙周炎患者的牙周組織和牙周膜干細胞(PDLSCs)的體外實驗也表明,牙周炎時自噬的激活可能保護細胞免于凋亡[37]。上述都說明自噬在牙周炎時對細胞有一定的保護作用,并且自噬和凋亡在牙周炎中是共存的,推測這是牙周炎時自噬和凋亡的信號串擾所致,而究其根本可能是二者的上游調(diào)節(jié)因子之間相互作用的結果。因此,細胞凋亡與自噬之間的復雜關系可能是牙周炎發(fā)病機制的重要因素之一。再次,牙周病原菌也能調(diào)節(jié)牙周組織的自噬作用。P.g可利用自噬增強其滲透并定植于宿主牙周組織,內(nèi)化后P.g可誘導自噬,抑制感染宿主細胞凋亡,導致牙周微環(huán)境有利于其復制和逃避宿主防御系統(tǒng)[38]。Cho等[39]的研究還報道了P.g的細胞內(nèi)侵襲在感染細胞中誘導自噬,并通過G1細胞周期停滯來抑制細胞增殖。此外,據(jù)報道P.g位于早期內(nèi)涵體內(nèi),大約一半的內(nèi)化生物體被分選到裂解室,包括自噬體[40],而相當數(shù)量的特定內(nèi)涵體內(nèi)剩余的細胞內(nèi)病原體可以調(diào)節(jié)受感染細胞的細菌出口,導致它們能進一步滲透至牙周組織[41]??傊?,自噬能通過介導P.g的存活、復制和傳播影響牙周炎的發(fā)病和進展。綜上所述,自噬可能通過以下機制參與牙周炎的發(fā)生發(fā)展:①調(diào)節(jié)免疫信號,導致炎性疾病和牙周組織損傷;②保護牙周細胞免于凋亡;③調(diào)節(jié)牙周病原菌的入侵。
3 小結和展望
大量研究證據(jù)表明,生理水平的ROS可以作為激活對牙周組織有益的應激反應的信號分子,但過量的ROS和/或抗氧化缺陷則會導致牙周組織的氧化損傷和功能障礙。本文梳理了目前已證實的幾種ROS對牙周炎發(fā)病和促進疾病發(fā)展的機制,一來旨在從這一角度對牙周炎的發(fā)病機制和病程進展有個總體認識,二來希望能對未來關于這一方面的研究有所助益。未來我們還需深究局部和系統(tǒng)性氧化還原狀態(tài)在牙周炎的作用機制,并利用這些研究成果研發(fā)新藥或嘗試用于臨床治療,以確定針對氧化應激的特異性干預是否有益于臨床療效。
[參考文獻]
[1] Wells PG,Mccallum GP,Chen CS,et al. Oxidative stress in developmental origins of disease:teratogenesis,neurodevelopmental deficits,and cancer [J]. Toxicol Sci,2009,108(1):4-18.
[2] Chang MC,Tsai YL,Chen YW,et al. Butyrate induces reactive oxygen species production and affects cell cycle progression in human gingival fibroblasts [J]. J Periodontal Res,2013,48(1):66-73.
[3] Yu JY,Lee SY,Son YO,et al. Continuous presence of H2O2 induces mitochondrial-mediated, MAPK- and caspase-independent growth inhibition and cytotoxicity in human gingival fibroblasts [J]. Toxicol In Vitro,2012,26(4):561-570.
[4] Filomeni G,De Zio D,Cecconi F. Oxidative stress and autophagy:the clash between damage and metabolic needs [J]. Cell Death Differ,2015,22(3):377-388.
[5] Valko M, Jomova K, Rhodes CJ,et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease [J]. Arch Toxicol,2016,90(1):1-37.
[6] Netto LE,Antunes F. The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction [J]. Mol Cells,2016,39(1):65-71.
[7] Sandalio LM,Romero-Puertas MC. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks [J]. Ann Bot,2015,116(4):475-485.
[8] Nibali L,Donos N. Periodontitis and redox status: a review [J]. Curr Pharm Des,2013,19(15):2687-2697.
[9] Patil VS,Patil VP,Gokhale N,et al. Chronic Periodontitis in Type 2 Diabetes Mellitus:Oxidative Stress as a Common Factor in Periodontal Tissue Injury [J]. J Clin Diagn Res,2016,10(4):BC12-BC16.
[10] Palwankar P,Rana M,Arora K,et al. Evaluation of non-surgical therapy on glutathione levels in chronic periodontitis [J]. Eur J Dent,2015,9(3):415-422.
[11] Zhang CZ,Cheng XQ,Li JY,et al. Saliva in the diagnosis of diseases [J]. Int J Oral Sci,2016,8(3):133-137.
[12] Baser U,Gamsiz-isik H,Cifcibasi E,et al. Plasma and salivary total antioxidant capacity in healthy controls compared with aggressive and chronic periodontitis patients [J]. Saudi Med J,2015,36(7):856-861.
[13] Punj A,Shenoy S,Kumari NS,et al. Estimation of Antioxidant Levels in Saliva and Serum of Chronic Periodontitis Patients with and without Ischemic Heart Disease [J]. Int J Dent,2017,2017(6):1-9.
[14] Akhtar MJ,Ahamed M,Alhadlaq HA,et al. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials:Potential implications in ROS associated degenerative disorders [J]. Biochim Biophys Acta,2017,1861(4):802-813.
[15] Cavalla F,Osorio C,Paredes R,et al. Matrix metalloproteinases regulate extracellular levels of SDF-1/CXCL12,IL-6 and VEGF in hydrogen peroxide-stimulated human periodontal ligament fibroblasts [J]. Cytokine,2015,73(1):114-121.
[16] Klotz LO,Sanchez-Ramos C,Prieto-Arroyo I,et al. Redox regulation of FoxO transcription factors [J]. Redox Biol,2015,6(2):51-72.
[17] Levy M,Thaiss CA,Katz MN,et al. Inflammasomes and the microbiota--partners in the preservation of mucosal homeostasis [J]. Semin Immunopathol,2015,37(1):39-46.
[18] Schroder K,Tschopp J. The inflammasomes [J]. Cell,2010, 140(6):821-832.
[19] Huang X,Yang X,Ni J,et al. Hyperglucose contributes to periodontitis:involvement of the NLRP3 pathway by engaging the innate immunity of oral gingival epithelium [J]. J Periodontol,2015,86(2):327-335.
[20] von Moltke JV,Ayres JS,Kofoed EM,et al. Recognition of bacteria by inflammasomes [J]. Annu Rev of Immunol,2013,31(31):73-106.
[21] Park E,Na HS,Song YR,et al. Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection [J]. Infect Immun,2014,82(1):112-123.
[22] Nikhil K,Sharan S,Roy P. A pterostilbene derivative suppresses osteoclastogenesis by regulating RANKL-mediated NFκB and MAPK signaling in RAW264.7 cells [J]. Pharmacol Rep,2015,67(6):1264-1272.
[23] Ozcan E,Saygun NI,Ilikci R,et al. Increased visfatin expression is associated with nuclear factor-kappa B and phosphatidylinositol 3-kinase in periodontal inflammation [J]. Clin Oral Investig,2017,21(4):1113-1121.
[24] Meyle J,Chapple I. Molecular aspects of the pathogenesis of periodontitis [J]. Periodontol,2015,69(1):7-17.
[25] Czupkallo L,Rahnama M,Kielbowicz D et al. Bone metabolism and RANKL/RANK/OPG trail in periodontal disease [J]. Curr Issues in Pharm Med Sci,2016,29(4):171-175.
[26] Ni XB,Jia C,Yu HD,et al. Comprehensive analysis of interleukin-8 gene polymorphisms and periodontitis susceptibility [J]. Oncotarget,2017,8(30):48 996-49 004.
[27] Bauernfeind FG,Horvath G,Stutz A,et al. Cutting edge:NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression [J]. J Immunol,2009,183(2):787-791.
[28] Yoshida K,Okamura H,Hiroshima Y,et al. PKR induces the expression of NLRP3 by regulating the NF-kappaB pathway in Porphyromonas gingivalis-infected osteoblasts [J]. Exp Cell Res,2017,354(1):57-64.
[29] Kang SW,Park HJ,Ban JY,et al. Effect of nicotine on apoptosis in human gingival fibroblast [J]. Arch Oral Biol,2011,56(10):1091-1097.
[30] Li X,Wang X,Zheng M,et al. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts [J]. Exp Cell Res,2016,347(1):212-221.
[31] Nakano H,Nakajima A,Sakonkomazawa S,et al. Reactive oxygen species mediate crosstalk between NF-kappaB and JNK [J]. Cell Death Differ,2006,13(5):730-737.
[32] Filomeni G,De ZD,Cecconi F. Oxidative stress and autophagy:the clash between damage and metabolic needs [J]. Cell Death Differ,2015,22(3):377-388.
[33] Tan YQ,Zhang J,Zhou G. Autophagy and its implication in human oral diseases [J]. Autophagy,2017,13(2):225-236.
[34] Kim MS,Yun JW,Park JH,et al. Autophagy Has a Beneficial Role in Relieving Cigarette Smoke-Induced Apoptotic Death in Human Gingival Fibroblasts [J]. Int J Med Sci,2016,13(5):357-364.
[35] Song B, Zhou T,Yang WL,et al. Programmed cell death in periodontitis:recent advances and future perspectives [J]. Oral Dis,2017,23(5):609-619.
[36] Ebe N,Harayokoyama M,Iwasaki K,et al. Pocket epithelium in the pathological setting for HMGB1 release [J]. J Dent Res,2011,90(2):235-240.
[37] An Y,Liu W,Xue P,et al. Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment [J]. J Clin Periodontol,2016,43(7):618-625.
[38] Rodrigues PH,Blanger M,Jr DW,et al. Porphyromonas gingivalis and the autophagic pathway:an innate immune interaction? [J]. Front Biosci,2008,13(4):178-187.
[39] Cho TJ,Wee SW,Woo VH,et al. Porphyromonas gingivalis-induced autophagy suppresses cell proliferation through G1 arrest in oral cancer cells [J]. Arch Oral Biol,2014, 59(4):370-378.
[40] Takeuchi H,F(xiàn)uruta N,Amano A. Cell entry and exit by periodontal pathogen via recycling pathway [J]. Commun Integr Biol,2011,4(5):587-589.
[41] Takeuchi H,F(xiàn)uruta N,Morisaki I,et al. Exit of intracellular Porphyromonas gingivalis from gingival epithelial cells is mediated by endocytic recycling pathway [J]. Cell Microbiol,2011,13(5):677-691.