金 盛,沈莉?yàn)t,賀正冰
(1.浙江大學(xué)建筑工程學(xué)院,杭州310058;2.北京交通大學(xué)交通系統(tǒng)科學(xué)與工程研究院,北京100044)
伴隨著城鎮(zhèn)化和機(jī)動化的快速發(fā)展,城市交通擁堵問題已經(jīng)由節(jié)點(diǎn)、干線擴(kuò)展至整個(gè)路網(wǎng),因此研究區(qū)域路網(wǎng)的交通狀態(tài)就顯得尤為迫切.區(qū)域交通狀態(tài)是進(jìn)行區(qū)域交通流建模與管控的重要基礎(chǔ).為了研究以城市道路網(wǎng)為整體的交通流特性,Geroliminis等[1-2]最早定義了路網(wǎng)宏觀基本圖的概念(Macroscopic Fundamental Diagram,MFD),認(rèn)為MFD可描述為路網(wǎng)中在運(yùn)車輛數(shù)和通行能力的關(guān)系,并證明了城市路網(wǎng)MFD的存在.在交通不均勻性對MFD在交通狀態(tài)判別影響的研究方面,Knoop等[3]提出了廣義宏觀基本圖(Generalized Macroscopic Fundamental Diagram,GMFD)描述路網(wǎng)交通狀態(tài),將路網(wǎng)通行能力、平均車輛數(shù)和密度分布聯(lián)系起來.在基于不同數(shù)據(jù)源下的MFD構(gòu)建研究方面,Gayah等[4]利用手機(jī)數(shù)據(jù)和宏觀基本圖估計(jì)路網(wǎng)密度;Ambühl[5]利用線圈數(shù)據(jù)和浮動車的數(shù)據(jù)融合模型構(gòu)建MFD,利用與臨界密度的關(guān)系,評價(jià)融合模型相對單一數(shù)據(jù)降低了MFD的誤差.
國內(nèi)也有很多學(xué)者陸續(xù)開展了MFD及其在區(qū)域狀態(tài)判別和管制方面研究工作.王福建等[6]利用MFD將路網(wǎng)交通狀態(tài)分級,并提出了針對性的路網(wǎng)管控策略.張遜遜等[7]基于MFD實(shí)現(xiàn)路網(wǎng)多子區(qū)的協(xié)調(diào)控制.姬楊蓓蓓[8]采用仿真試驗(yàn)的方法驗(yàn)證了MFD在高速公路、城市主干道和城市道路中的存在性,并論證了路網(wǎng)中關(guān)鍵路段對MFD的影響,認(rèn)為路網(wǎng)中只要主要道路布設(shè)有檢測器就能得到較好的路網(wǎng)MFD.賀正冰等[9-10]利用斷面檢測器數(shù)據(jù)繪制了北京快速環(huán)路的宏觀基本圖,分析了其“8”字型特征并給出了成因.盧守峰等[11]提出基于流量和出租車GPS數(shù)據(jù)構(gòu)建MFD的方法,并發(fā)現(xiàn)路網(wǎng)中密度的分布不均勻是導(dǎo)致路網(wǎng)通行能力不高的原因.
MFD可以較直觀表征路網(wǎng)的交通流特性,有利于更好地對區(qū)域交通進(jìn)行管控,所以構(gòu)建準(zhǔn)確的MFD具有重要的理論和實(shí)際意義.現(xiàn)有的研究大多基于仿真數(shù)據(jù)、斷面檢測器或浮動車數(shù)據(jù),在構(gòu)建城市道路路網(wǎng)MFD時(shí)僅考慮了路段長度的影響,實(shí)際中還與路段車道數(shù)相關(guān),本文在計(jì)算路網(wǎng)加權(quán)流量和密度時(shí),同時(shí)考慮了路段長度與車道數(shù)的影響.針對我國城市道路檢測器布設(shè)現(xiàn)狀,提出了基于微波數(shù)據(jù)和車牌識別數(shù)據(jù)的城市道路宏觀基本圖構(gòu)建模型,并提出與路網(wǎng)通行能力、臨界密度關(guān)系的MFD差異性評價(jià)指標(biāo),稱為狀態(tài)比.最后,論文以青島市實(shí)際數(shù)據(jù)對模型進(jìn)行了驗(yàn)證.
為了構(gòu)建符合實(shí)際情況的路網(wǎng)MFD,需要充分的數(shù)據(jù)來估計(jì)路網(wǎng)流量和密度.根據(jù)MFD理論,采用式(1)進(jìn)行MFD的計(jì)算[2].
式中:qw、kw分別為路網(wǎng)加權(quán)流量(veh/h)和路網(wǎng)加權(quán)密度(veh/km);qu、ku分別為路網(wǎng)無權(quán)重流量(veh/h)和密度(veh/km);qi、ki和oi分別為路段i的流量(veh/h),密度(veh/km)和占有率;li為路段i的長度(km);S為平均有效車身長度(km).
本文中采用加權(quán)流量和密度構(gòu)建路網(wǎng)MFD.不同交通檢測器得到數(shù)據(jù)類型不同,其計(jì)算方法介紹如下.
利用微波檢測器數(shù)據(jù)(Remote Traffic Microwave Sensor Data,RTMSD)估計(jì)路網(wǎng)MFD,RTMSD類型為斷面單車道的交通流數(shù)據(jù),在計(jì)算時(shí)需將其整合為斷面的數(shù)據(jù),以流量加權(quán),計(jì)算公式為
利用車牌識別數(shù)據(jù)(License Plate Recognition Data,LPRD)可以得到車輛進(jìn)入路段和駛離路段的行程時(shí)間.其計(jì)算公式為
根據(jù)式(4)得到車牌識別數(shù)據(jù)下的路段i流量qi與密度ki為
式中:N為統(tǒng)計(jì)間隔內(nèi)過檢測器的車輛數(shù);Nma為能夠匹配到行程時(shí)間的車輛數(shù);T為統(tǒng)計(jì)間隔時(shí)長.
不同路段在路網(wǎng)的重要性不同,對路網(wǎng)交通影響程度也不同,簡單理解為路段長度與車道數(shù)不同的路段在路網(wǎng)中的地位不同,路段長度越長,車道數(shù)越多,可承載的車輛數(shù)也多,其對路網(wǎng)通行能力貢獻(xiàn)度也就越大,許菲菲等[12]也證明了路網(wǎng)的關(guān)鍵路段一般為路段較長和車道數(shù)較多的路段,對MFD影響較大.所以計(jì)算路網(wǎng)加權(quán)流量(veh/(h?ln))與加權(quán)密度時(shí),權(quán)重取路段長度li和車道數(shù)的乘積.
式中:m為路網(wǎng)內(nèi)能檢測到交通流數(shù)據(jù)的路段數(shù),在實(shí)際路網(wǎng)中并不是所有路段都有檢測器,所以一般m小于路網(wǎng)的總路段數(shù),但路網(wǎng)主要道路布設(shè)有檢測器就能得到較好的路網(wǎng)MFD.
通過式(6)計(jì)算可以得到關(guān)于路網(wǎng)加權(quán)流量和加權(quán)密度的散點(diǎn)圖,為得到路網(wǎng)的臨界密度、通行能力、阻塞密度等交通特征值,一般需對上述得到的散點(diǎn)圖進(jìn)行擬合,Knoop等[4]提到MFD可以用很多函數(shù)擬合,基于前人的研究,本文假設(shè)MFD的形狀為二次項(xiàng)的.MFD分布曲線采用兩次多項(xiàng)式擬合需滿足如下條件:
(1)MFD以臨界密度為界可分為兩部分,左邊表示非擁堵狀態(tài),右邊表示擁擠狀態(tài),所以曲線應(yīng)存在極值且為正;
(2)MFD中密度為零時(shí)流量為零,因此擬合方程常數(shù)項(xiàng)為零.
根據(jù)上述條件,MFD曲線一般方程為
式中:a,b為擬合方程系數(shù).
路網(wǎng)交通狀態(tài)演化從非擁堵到擁堵的狀態(tài)點(diǎn)為臨界點(diǎn)(qc),kc),即MFD曲線極值點(diǎn),根據(jù)式(8)求得qc,kc.
首先假設(shè)RTMSD和LPRD構(gòu)建的MFD都為準(zhǔn)確的路網(wǎng)MFD,進(jìn)行兩者差異性比較.我們認(rèn)為MFD中絕對值與實(shí)現(xiàn)網(wǎng)絡(luò)交通分析、管理與控制等不相關(guān),當(dāng)兩個(gè)路網(wǎng)可能具有相似的通行能力或臨界密度時(shí),由于交通不均勻性或不同交通行為(如路網(wǎng)達(dá)到擁塞時(shí)間不同),所采取的管控措施也不同.所以只考慮絕對值差異,可能會沒有實(shí)際意義,反而可能導(dǎo)致結(jié)果無效或非常不準(zhǔn)確.因此,提出采用狀態(tài)比(Traffic State Ratio,R)來評估MFD,即任意時(shí)刻路網(wǎng)交通參數(shù)和臨界狀態(tài)的距離比,如圖1所示.某一時(shí)間間隔的交通狀態(tài)比可表示路網(wǎng)接近或遠(yuǎn)離擁堵的距離.根據(jù)該方法,完全一樣的MFD在每個(gè)數(shù)據(jù)采樣間隔可以得到完全相同狀態(tài)比.
圖1 任意時(shí)刻狀態(tài)與最佳狀態(tài)距離示意圖Fig.1 Illustration of distance between traffic state and optimal state
c阻塞密度kj及通行能力qc,我們將狀態(tài)比R分為非擁堵比run和擁堵比rco,則狀態(tài)比計(jì)算公式如式(9)所示.其中,run,rco∈ (0,1),兩者越接近0,代表路網(wǎng)狀態(tài)越接近最佳狀態(tài);兩者越接近1,run表示路網(wǎng)內(nèi)在運(yùn)車輛數(shù)越少,越接近自由流狀態(tài),rco表示路網(wǎng)交通狀態(tài)越差.
所以MFD的差異性可理解為狀態(tài)比的差異,則定義Δ為不同數(shù)據(jù)源下MFD的差異,Δ越大,MFD差異性越大,反之越小.
LPRD和RTMSD都能檢測獲得路網(wǎng)中的交通流參數(shù).但是由于不同類型交通檢測器數(shù)據(jù)獲取方式的不同,檢測值會存在較大的差異性.因此,本文提出了基于多源數(shù)據(jù)融合下的MFD構(gòu)建方法.該融合算法是基于如下假設(shè):在Δ值較小的情況下,不同類數(shù)據(jù)源雖然在MFD形狀上不同,但反映路網(wǎng)交通狀態(tài)的變化特性是一致時(shí),將不同類型數(shù)據(jù)進(jìn)行融合構(gòu)建MFD并不會改變其對路網(wǎng)交通狀態(tài)的判別.
Buisson等[13]研究發(fā)現(xiàn)斷面檢測器的位置對宏觀基本圖的形狀有重要關(guān)系,當(dāng)檢測器的位置遍布信號上游、下游及路段中間時(shí),構(gòu)建的宏觀基本圖能較好地反應(yīng)區(qū)域交通狀態(tài),RTMSD為斷面檢數(shù)據(jù),在構(gòu)建MFD時(shí)假設(shè)檢測器斷面與路段其他斷面是同質(zhì)均勻的.LPRD為路段區(qū)間數(shù)據(jù),反應(yīng)進(jìn)入路段到離開路段整個(gè)過程,可以反映包括進(jìn)口道在內(nèi)的整個(gè)路段的交通狀態(tài),可以理解成在路段各斷面狀態(tài)的綜合體現(xiàn).所以基于以下原則建立融合模型:
(1)對于任意路段,若有車牌識別檢測器,則利用LPRD計(jì)算路段流量和密度;否則,采用RTMSD進(jìn)行計(jì)算.
(2)利用式(6)計(jì)算路網(wǎng)加權(quán)流量和密度,將路網(wǎng)分成2個(gè)子集.
(i)LPRD子集,有LPRD路段集合;
(ii)RTMSD子集,有RTMSD路段集合.
(3)對于兩者的權(quán)重為α和1-α,,其中,mLPRD為路網(wǎng)中有車牌識別系統(tǒng)的路段,m為路網(wǎng)內(nèi)布有檢測器的路段總數(shù),li為路段i的長度.
每個(gè)數(shù)據(jù)采樣間隔t的路網(wǎng)加權(quán)流量和密度為
選取青島市市南區(qū)3.5 km×2 km區(qū)域作為本文研究對象,區(qū)域共有67個(gè)路段,其中有RTMSD的路段52個(gè),有LPRD路段46個(gè),如圖2所示.本文中的路段是指相鄰交叉口間區(qū)段,1條道路可能包含多個(gè)路段.此外,考慮到很多路段在早晚高峰不同方向的交通狀態(tài)差別較大,所以當(dāng)路段為雙向時(shí),在本模型中記為2條路段.在構(gòu)建MFD時(shí)需要得到不同交通狀態(tài)下的交通流數(shù)據(jù),所采用的車牌識別數(shù)據(jù)和微波數(shù)據(jù)為2016年9月1~23日工作日全天的數(shù)據(jù),統(tǒng)計(jì)間隔為5 min.在數(shù)據(jù)缺失時(shí)采用上一時(shí)段數(shù)據(jù)平滑方法進(jìn)行補(bǔ)全,計(jì)算公式為
式中:x(t)代表第t個(gè)統(tǒng)計(jì)間隔的交通流數(shù)據(jù).
利用RTMSD和LPRD,根據(jù)式(2)~式(6)計(jì)算得到的路網(wǎng)加權(quán)流量和密度如圖3和圖4所示,不難看出兩者的趨勢基本相同,表示路網(wǎng)交通狀態(tài)變化的趨勢一致.密度和流量出現(xiàn)峰值的時(shí)間不同,是因?yàn)榱髁窟_(dá)到最大時(shí)對應(yīng)為臨界密度并非最大密度,是路網(wǎng)出現(xiàn)的最大值.
圖2 研究區(qū)域的路網(wǎng)示意圖Fig.2 Illustration of the research network
圖3 路網(wǎng)加權(quán)密度圖Fig.3 Network weighted density diagram
圖4 路網(wǎng)加權(quán)流量圖Fig.4 Network weighted flow diagram
基于上述規(guī)律,分別得到2種不同數(shù)據(jù)源下區(qū)域流量和密度散點(diǎn)圖如圖5和圖6所示,再根據(jù)式(7)擬合得到2種數(shù)據(jù)源下的MFD,其中圖6中出現(xiàn)散點(diǎn)均為9月22日的數(shù)據(jù)點(diǎn),是因?yàn)檫@一天某些路段在14:00-17:00存在路段數(shù)據(jù)缺失的原因造成的.RTMSD在95%置信區(qū)間下擬合結(jié)果為,其 中 擬 合 優(yōu) 度R2=0.890 4;LPRD在95%置信區(qū)間下擬合結(jié)果為,其 中 擬 合 優(yōu) 度R2=0.847 4.R2>0.5都成立,認(rèn)為擬合函數(shù)可接受.利用式(8)計(jì)算得到:分別為22.8 veh/(km?ln)、502.22 veh/(h?ln)、27.4 veh/(km?ln)和287.76 veh/(h?ln).
從圖5和圖6中,可以看出同一區(qū)域根據(jù)不同數(shù)據(jù)源得到的MFD形狀不同,路網(wǎng)通行能力和臨界密度等特征值也不同,這是因?yàn)閿?shù)據(jù)源不同,所反映的特征區(qū)間不同,RTMSD主要以微波斷面附近交通狀態(tài)為特征狀態(tài)代表整個(gè)路段狀態(tài);LPRD以上下游車牌識別系統(tǒng)圍成路段為特征狀態(tài),基本包括整個(gè)路段.在城市道路中,同一路段上,同一時(shí)刻下由于受到交通信號的影響,靠近進(jìn)口道停車線的車輛車頭間距和飽和流量均會略小于路段的,所以2個(gè)MFD中表現(xiàn)出LPRD的kc較大,qc較小.
根據(jù)式(9)和式(10),計(jì)算2種數(shù)據(jù)源下的狀態(tài)比R和差異值Δ.由圖7可知2種數(shù)據(jù)下的密度比相近,且變化趨勢一致,|Δ|的平均值為0.056,極大值為0.14,認(rèn)為2種數(shù)據(jù)源下對路網(wǎng)狀態(tài)判別一致,在路網(wǎng)存在2種數(shù)據(jù)源時(shí)可以融合計(jì)算.
選取路網(wǎng)的主要道路中2種檢測器都覆蓋較為全面,為了簡化并驗(yàn)證融合模型的準(zhǔn)確性,從實(shí)驗(yàn)路網(wǎng)中隨機(jī)分為路段總長度相同的2個(gè)子集,其中一子集為布設(shè)微波檢測器的路段,另一子集為布設(shè)車牌識別系統(tǒng)的路段,根據(jù)融合算法,此時(shí)α=0.5,即
圖5 RTMSD的MFDFig.5 The MFD constructed by RTMSD
圖6 LPRD的MFDFig.6 The MFD constructed by LPRD
圖7 狀態(tài)比圖Fig.7 Traffic state ratio diagram
通過式(2)、式(5)、式(6)及式(13)得到MFD如圖 8 所示,擬合結(jié)果為其中擬合優(yōu)度R2=0.957 6,根據(jù)式(8)得:和分別為22.657 veh/(km?ln),399.434 veh/(h?ln).
圖8 融合模型下的MFD圖Fig.8 The MFD constructed by fusion data
根據(jù)式(9)和式(10),計(jì)算單一數(shù)據(jù)源下MFD和融合模型下MFD的差異性指標(biāo).本文差異值計(jì)算時(shí)分別以LPRD和RTMSD下狀態(tài)比為基準(zhǔn),分別如圖9,圖10,表1和表2所示.從圖9和表1中看出,|Δ|的均值和極大值都是融合模型下最小,說明融合模型構(gòu)建的MFD與LPRD構(gòu)建的MFD最相近.從圖10和表2中同樣看出,融合模型構(gòu)建的MFD的|Δ|均值和極大值均小于單一數(shù)據(jù)源下覆蓋部分路網(wǎng)的.說明數(shù)據(jù)融合下構(gòu)建的路網(wǎng)MFD較單一數(shù)據(jù)源降低了誤差.另從圖9,圖10,表1和表2發(fā)現(xiàn),若利用融合模型中任一子集數(shù)據(jù)構(gòu)建的路網(wǎng)MFD表征整個(gè)路網(wǎng)MFD,雖誤差較檢測器覆蓋兩子集的單一數(shù)據(jù)源模型和多源數(shù)據(jù)融合模型增大,但誤差基本在0.2之內(nèi),即在檢測器隨機(jī)減少50%時(shí)誤差仍在20%以內(nèi),說明在構(gòu)建路網(wǎng)MFD時(shí)對檢測器覆蓋率要求并不嚴(yán)格.
圖9 以LPRD為基準(zhǔn)的差異性指標(biāo)圖Fig.9 The difference diagram base on LPRD
圖10 以RTMSD為基準(zhǔn)的差異性指標(biāo)圖Fig.10 The difference diagram base on RTMSD
表1 以LPRD為基準(zhǔn)的各數(shù)據(jù)源下MFD的差異值Table 1 The MFDs’difference among each data source base on LPRD
表2 以RTMSD為基準(zhǔn)的各數(shù)據(jù)源下MFD的差異值Table 2 The MFDs’difference among each data source base on RTMSD
本文考慮到不同道路特性對MFD的影響,在構(gòu)建路網(wǎng)MFD時(shí)采用路網(wǎng)路段長度和車道數(shù)加權(quán)進(jìn)行密度和流量的計(jì)算.由于目前我國城市道路中交通流檢測器仍以斷面檢測器為主,僅有部分道路布設(shè)了車牌識別系統(tǒng).因此,研究不同類型數(shù)據(jù)源下的路網(wǎng)宏觀基本圖具有重要的理論與現(xiàn)實(shí)意義.本文基于利用傳統(tǒng)微波斷面數(shù)據(jù)和LPRD數(shù)據(jù)構(gòu)建同一路網(wǎng)的MFD,采用狀態(tài)比來比較兩者差異并提出融合模型,具體結(jié)論如下:
(1)采用不同類型交通數(shù)據(jù)源所構(gòu)建的MFD形狀不同,特征值也不同.
(2)引入狀態(tài)比的概念來評估MFD的差異性,認(rèn)為每一個(gè)時(shí)段R越接近,MFD也越接近.研究發(fā)現(xiàn)同一路網(wǎng)不同數(shù)據(jù)源下的R接近,即當(dāng)路網(wǎng)存在不同數(shù)據(jù)源的2個(gè)子集時(shí),也可融合繪制路網(wǎng)MFD.
(3)融合模型得到的MFD比單一數(shù)據(jù)源下路網(wǎng)MFD估計(jì)誤差小.
參考文獻(xiàn):
[1]GEROLIMINISN,DAGANZO CF.Macroscopic modeling of traffic in cities[C].Transportation Research Board 86th Annual Meeting,2007.
[2]GEROLIMINIS N,DAGANZO C F.Existence of urbanscale macroscopic fundamental diagrams:Some experimental findings[J].Transportation Research Part B Methodological,2008,42(9):759-770.
[3]KNOOPV L,HOOGENDOOM S P.Empirics of a Generalized macroscopic fundamentaldiagram for urban freewas[J].Transportation Research Record,2013,2391(1):133-141.
[4]GAYAH V V,DIXIT V V.Using mobile probe data and the macroscopic fundamentaldiagram to estimate network densities[J].Transportation Research Record Journal of the Transportation Research Board,2013(2390):76-86.
[5]AMBüHL L,MENENDEZ M.Data fusion algorithm for macroscopic fundamental diagram estimation[J].Transportation Research Part C Emerging Technologies,2016(71):184-197.
[6]王福建,韋薇,王殿海,等.基于宏觀基本圖的城市路網(wǎng)交通狀態(tài)判別與監(jiān)控[C].北京:電子工業(yè)出版社,2012.[WANG F J,WEI W,WANG D H,et al.Traffic state identification and monitoring of urban network based on macroscopic fundamental diagrams[C].Beijing:Electronic Industry Press,2012.]
[7]張遜遜,許宏科,閆茂德.基于MFD的城市區(qū)域路網(wǎng)多子區(qū)協(xié)調(diào)控制策略[J].交通運(yùn)輸系統(tǒng)工程與信息,2017,17(1):98-105.[ZHANG X X,XU H K,YAN M D.Coordinated control strategy for multi-subarea based on MFD in urban zonal road networks[J].Journal of Transportation Systems Engineering and Information Technology,2017,17(1):98-105.]
[8]姬楊蓓蓓,WINNIE D.阿姆斯特丹城市道路線圈檢測器布設(shè)方法研究[J].重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,29(5):754-757.[JI Y B B,WINNIE D.Study on the layout method of urban road loop detector in Amsterdam[J].Journal of Chongqing Jiaotong University(Natural Science Edition),2010,29(5):754-757.]
[9]賀正冰,關(guān)偉,樊玲玲,等.北京市快速環(huán)路宏觀基本圖特征研究[J].交通運(yùn)輸系統(tǒng)工程與信息,2014,14(2):199-205.[HE Z B,GUAN W,FAN L L,et al.Characteristics of macroscopic fundamental diagram for Beijing urban ring freeways[J].Journal of Transportation Systems Engineering and Information Technology,2014,14(2):199-205.]
[10]HE Z B,HE S,GUAN W.A figure-eight hysteresis pattern in macroscopic fundamental diagrams and its microscopic causes[J].Transportation Letters,2015,7(3):133-142.
[11]盧守峰,王杰,劉改紅,等.基于流量和出租車GPS數(shù)據(jù)的城市道路網(wǎng)絡(luò)宏觀基本圖[J].公路交通科技,2014,31(9):138-144.[LU S F,WANG J,LIU G H,et al.Macroscopic fundamental diagrams based on traffic flow and taxi GPS data[J].Highway Traffic Technology,2014,31(9):138-144.]
[12]許菲菲,何兆成,沙志仁.交通管理措施對路網(wǎng)宏觀基本圖的影響分析[J].交通運(yùn)輸系統(tǒng)工程與信息,2013,13(2):185-190.[XU F F,HE Z C,SHA Z R.Analysis of the impact of traffic management measures on macroscopic fundamental diagram[J].Journal of Transportation Systems Engineering and Information Technology,2013,13(2):185-190.]
[13]BUISSON C,LADIER C.Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams[J].Transportation Research Record Journal of the Transportation Research Board,2009,137(2124):127-136.