李仲慶
(吉林師范大學(xué)數(shù)學(xué)學(xué)院,吉林 四平 136000)
假設(shè)Ω是RN中的有界域, ?Ω是區(qū)域Ω的光滑邊界??紤]如下p-Laplace 方程
(1)
其中,p>1為常數(shù), -Δp是p-Laplace 算子, -Δpu=-div(|▽u|p-2▽u)。關(guān)于問(wèn)題(1), 有下面更進(jìn)一步的假設(shè):
(H) 函數(shù)a(x),f(x)∈L1(Ω), 并且存在Q>0, 使得對(duì)幾乎處處的x∈Ω, 有
|f(x)|≤Qp-1a(x)
(2)
本文研究的問(wèn)題(1)的源項(xiàng)f僅僅在L1, 此時(shí)方程右端項(xiàng)的可積性很低, 可能根本就不存在弱解(往往應(yīng)該從renormalized解或entropy解角度考慮[5-6])。主要原因在于L1(Ω)不一定在W-1,p′(Ω)中。
受文[7]的啟發(fā), 結(jié)合文[8]的思想, 我們給出條件(2)。它實(shí)質(zhì)上表示方程低階項(xiàng)系數(shù)與右端項(xiàng)的關(guān)系, 并促進(jìn)了方程弱解的存在性。
現(xiàn)在給出本文的主要結(jié)果。
▽u|p-2▽u·▽?duì)誨x+
為了清晰起見(jiàn), 我們把證明過(guò)程分成以下3步。
首先給出問(wèn)題(1)所對(duì)應(yīng)的一個(gè)逼近方程
(3)
其中,
(4)
(5)
|fn(x)|≤Qp-1an(x)
(6)
證明記truncation 函數(shù)[10-11]
Tk(s)=max{-k,min{k,s}}
并且
Gk(s)=s-Tk(s)
受文[7]啟發(fā), 選取GQ(un)作為問(wèn)題(3)的一個(gè)檢驗(yàn)函數(shù), 得到
(7)
接下來(lái)的工作是去處理式(7)的(L1)和(L2)項(xiàng)。
(i) 在集合{x∈Ω:|un(x)|>Q}上,un和GQ(un)的符號(hào)相同, 因此
(8)
(ii) 運(yùn)用式(6)可得
(9)
綜合式(7)-(9),得
▽GQ(un)|pdx+
(10)
注意到Gk(s)也可以寫(xiě)成
Gk(s)=(|s|-k)+sign(s)
則式(10)蘊(yùn)含著
[|un|p-1-Qp-1][|un|-Q]dx≤0
從而表明了
meas{x∈Ω:|un(x)|>Q}=0
這樣就得到了: 對(duì)幾乎處處的x∈Ω和所有的n, 有
|un(x)|≤Q
選取un作為問(wèn)題(3)的一個(gè)檢驗(yàn)函數(shù),得到
(11)
去掉上式第二個(gè)非負(fù)積分項(xiàng), 利用un的L∞一致有界性可以得到
▽un|pdx≤Q‖f‖L1(Ω)
(12)
(13)
(14)
(15)
證明受到文 [8] 啟發(fā), 選取un-u作為問(wèn)題(3)的一個(gè)檢驗(yàn)函數(shù), 那么就有
▽un|p-2▽un·(▽un-▽u)dx+
(16)
式(16)可以寫(xiě)成
(17)
其中
Δ(un,u)=(|▽un|p-2▽un-|▽u|p-2▽u)·
(▽un-▽u)
不難發(fā)現(xiàn),式(17)右端3個(gè)積分項(xiàng)為n→∞時(shí)的無(wú)窮小量。這樣就有
參考文獻(xiàn):
[1] 張桂宜. 臨界增長(zhǎng)的Laplace方程的Neumann 邊值問(wèn)題[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版), 1997, 36(2): 32-37.
ZHANG G Y. Neumann problem of Laplace equations involving critical Sobolev exponents [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1997, 36(2): 32-37.
[2] 張桂宜. 臨界增長(zhǎng)p-Laplace方程混合邊值問(wèn)題的多解性[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版), 1996, 35(6): 29-34.
ZHANG G Y. Multiple solutions ofp-Laplace equations involving critical Sobolev exponents for mixed boundary value problem [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1996, 35(6): 29-34.
[3] 趙繼紅, 馮兆永. 具有臨界增長(zhǎng)邊界條件的p-Laplace方程解的存在性[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 49(1):1-4.
ZHAO J H, FENG Z Y. Existence of weak solutions for thep-Laplace equation with critical growth in boundary conditions [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(1): 1-4.
[5] BOCCARDO L, GIACHETTI D, DIAZ J I, et al. Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms [J]. J Differential Equations, 1993, 106(2): 215-237.
[6] BOCCARDO L, GALLOUЁT T, ORSINA L. Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data [J]. Ann Inst H Poincaré Anal Non Linéaire, 1996, 13(5): 539-551.
[7] ARCOYA D, BOCCARDO L. Regularizing effect of the interplay between coefficients in some elliptic equations [J]. J Funct Anal, 2015, 268(5): 1153-1166.
[8] BOCCARDO L, CROCE G. Elliptic partial differential equations: existence and regularity of distributional solutions [M]. Berlin; De Gruyter, 2014.
[9] ZEIDLER E. Nonlinear functional analysis and its applications. II/B: nonlinear monotone operators [M]. New York: Springer-Verlag, 1990.
[10] LI Z Q, YAN B S, GAO W J. Existence of solutions to a parabolicp(x)-Laplace equation with convection term viaL∞estimates [J]. Electron J Differential Equations, 2015, 46: 1-21.
[11] LI Z Q, GAO W J. Existence results to a nonlinearp(x)-Laplace equation with degenerate coercivity and zero-order term: renormalized and entropy solutions [J]. Appl Anal, 2016, 95(2):373-389.
[12] ADAMS R A, FOURNIER J J F. Sobolev spaces [M]. 2nd ed. Amsterdam: Elsevier Academic Press, 2003.