• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Remarks on ‘A new non-specificity measure in evidence theory based on belief intervals”

    2018-04-19 08:29:16JoaquABELLA
    CHINESE JOURNAL OF AERONAUTICS 2018年3期

    Joaqu?′n ABELLA′N

    Department of Computer Science and Artificial Intelligence,University of Granada,Granada 18071,Spain

    1.Introduction

    Normally,information is expressed via a degree of imprecision.To express our knowledge,we usually use a range of possible values.For example,to express our knowledge in a numerical way,we give a value of belief ‘betweenaandb”(a≤b)for a determinate event.There exist many mathematical models to represent and manipulate information expressed in that way.Usually those models are based on imprecise probabilities(see Walley 1).

    One of the most used models based on imprecise probabilities is the Theory of Evidence(TE),also known as Dempster-Shafer’s theory,2,3which was presented as an extension of the classical Probability Theory(PT).In the TE,available information is expressed via a concept called basic belief assignment(bba)on a universe called frame of discernment,which is similar to a probability distribution in the PT.This theory has been widely used in many areas.Some of the most recent and different applications can be seen in Refs.4–13

    Many works have been presented in the 90s analyzing uncertainty-based information that a bba can represent.14In the TE,more types of uncertainty have been found than those in the PT.Hence,Yager15makes the distinction between two types of uncertainty,which are called discord(randomness or con flict)and non-specificity,respectively.The first one is related with the entropy and the second one with the imprecision.

    Shannon’s entropy16in the PT verifies an important set of desirable properties.A similar set of properties was established in the TE for a measure of uncertainty.17,14To quantify the non-specificity part,only the generalized Hartley measure18verifies an important set of properties.In recent years,other attempts to measure uncertainty in the TE,in a whole way(quantifying both discord and non-specificity)or separately,have appeared.19–23Due to the importance of these measures to be used in applications,their possible drawbacks must be found.24,25That is the principal motivation of the presented paper.

    The non-specificity part of uncertainty is associated with cases where information is focused on sets with cardinality greater than one.Then,the non-specificity measures are based on the way to quantify the imprecision in a bba.This type of uncertainty does not appear in the PT,and it can be considered as the principal difference between the PT and other theories that generalize it.The majority of these theories are based on imprecise probabilities.1,26

    In the TE,con flict uncertainty appears when focal sets(elements with a positive value of bba)do not share elements,i.e.,they have empty intersections.We can find real situations where there is no con flict and all the uncertainty is a nonspecificity type(see Refs.24,27),when all the focal sets share at least one element and some of them have cardinality over 1.If we find contrary situations,i.e.,uncertainty of only a conflict type,we would be in grounds of the PT and then the classic Shannon’s entropy is the best alternative to use to quantify the uncertainty.Hence,a correct quantification of the nonspecificity uncertainty is important when we choose the TE to represent the information because it is the principal characteristic that distinguishes this theory from the PT.

    Very recently,Yang et al.21presented a new measure of non-specificity in the TE.This measure is based on beliefs intervals that a bba represents the single elements of a finite set.The authors simplified the expression of that measure in a function very easy to apply.They showed that this new measure verifies a similar set of properties to those of the generalized Hartley measure:range,monotonicity,symmetry,additivity,and subadditivity.Unfortunately,those two last properties,additivity and subadditivity,are not really verified by the new measure.

    The additivity and subadditivity properties are related to the conservation of information.They are coherent properties when we work with different Frames of Discernment(FDs).The first one states that we cannot loss or win information when we combine available information from two different non-interactive(independent)FDs,i.e.,the in formation(uncertainty)that comes from these two sources cannot vary if we want to use them in a combined FD.The subadditivity property states that if we have information on an FD and this FD can be separated on two interactive(dependent)FDs,the original information cannot be increased,i.e.,the uncertainty on the original FD cannot be greater than the sum of the associated uncertainty on each individual FD.

    In this paper,we show that the original paper of Yang et al.21has errors in the proofs about the additivity and subadditivity properties.The problems of the mathematical proofs of the authors,about these properties,were that they did not take into account some considerations about the cardinal of the focal sets.Moreover,we use examples to show that the new measure does not really verify those properties.

    The paper is organized as follows.Section 2 reviews briefly the necessary background about the TE,uncertainty measures,and the definitions of the properties treated here.Section 3 is devoted to study the additivity and subadditivity of the measure based on belief intervals.Section 4 is dedicated to conclusions.

    2.Brief background

    2.1.Theory of evidence

    The TE2,3is a type of mathematical theory based on imprecise probabilities(see Walley1).Its principal characteristics and principal concepts can be described as follows.

    LetXbe a finite set(also called frame of discernment in the TE),considered as a set of possible situations,|X|=n,?(X)the power set ofX,andxany element inX.The TE is based on the concept of basic belief assignment(bba),also called mass assignment.A bba is a mappingm:?(X)→ [0,1],so that∑A setAso thatm(A)>0 is called a focal element(The focal elements can be noted asA∈?(X)orA?X,withm(A)>0.An empty set is never considered here because alwaysm(?)=0 ofm).

    LetXandYbe finite sets.Consider the product space of possible situationsX×Yand m a bba onX×Y.The marginal bba onX,m↓X(and similarly onY,m↓Y),is defined as follows(the expressions of the marginal bba’s from Eq.(21)in the paper of Yang et al.21have an erratum:The set ‘R’must be‘S’.):

    whereRXis the set projection ofRonX.

    There are two functions associated with each basic probability assignment,a belief function,Bel,and a plausibility function,Pl:

    They can be seen as the belief bounds ofA(lower and upper beliefs of setA,respectively).

    We may note that belief and plausibility are interrelated for allA∈ ?(X),by Bel(A)=1-Pl(AC),whereACdenotes the set complement ofA.Furthermore,Bel(A)≤ Pl(A).Hence,the interval[Bel(A),Pl(A)]is called the belief interval for setA.

    2.2.Measures of uncertainty in DST

    Shannon 16 presented a measure of entropy on the probability theory defined as follows:

    wherepis a probability distribution onX,a finite set,andp(x)is the probability of valuex.Here,log2is normally used to measure the value in bits.S(p)measures the only type of uncertainty presented in the probability theory,and it verifies a large set of desirable properties.7,16

    There exist two types of uncertainty in the evidence theory15: ‘one associated with cases where the information is focused on sets with empty intersections;and one associated with cases where the information is focused on sets with cardinality greater than one”.The first concept is known as discord(also as randomness or conflict),and the second one is known as non-specificity.

    In the 90s,there were many attempts to quantify the degree of discord in the evidence theory.14However,because of the aims of the paper,we will focus on non-specificity.

    The most known measures of non-specificity are the one of Yager15and the one of Dubois and Prade18.

    The measure of specificity of Yager15has the following expression:

    It was presented to quantify the degree of lack of imprecision,i.e.,the non-specificity degree can be calculated as 1-S(m).Unfortunately,it does not verify all the required properties for such a measure.17

    Dubois and Prade18introduced the following function based on the Hartley measure,28that was defined in the classical set theory.It represents a measure of non-specificity associated with a bba,which is expressed as follows:

    I(m)attains its minimum value(zero)whenmis a probability distribution.Its maximum value(log2(|X|))is obtained for a bba,m,withm(X)=1 andm(A)=0,?A?X.In the literature,we can check thatIis the only measure of nonspecificity that verifies all the required properties for such a type of measure.

    2.3.Additivity and subadditivity of non-specificity measures in the TE

    The additivity and subadditivity properties for a Measure of Uncertainty(MU)can be defined as follows24:

    Additivity.‘Letmbe a bba on the spaceX×Yandm↓Xandm↓Yits marginal bbas onXandYrespectively so that these marginal bbas are not interactive(m(A×B)=m↓X(A)m↓Y(B),withA?X,B?Y;m(C)=0 ifC≠A×B).Then an MU verifies the additivity property iff it satis fies the following equality:

    Subadditivity.‘Letmbe a bba on the spaceX×Yandm↓Xandm↓Yits marginal bbas onXandYrespectively.Then an MU verifies the subadditivity property iff it satis fies the following inequality:

    They represent important properties that a measure of nonspecificity must verify in the TE.17

    3.A measure of non-specificity based on belief intervals

    Very recently,Yang et al.21presented a non-specificity measure in the TE based on belief intervals.This measure takes into account the maximum difference between the beliefs of each possible state of a finite setX.If we consider a bbamon a finite setXwith states{x1,x2,...,xn},the new measure is defined using the values Pl({xi})-Bel({xi}),i∈{1,2,...,n}.

    The new measure is the average of those values about the belief intervals,and can be expressed as follows:

    Its definition has a coherent sense in the way of the definition of the non-specificity concept.This concept is focused on the degree of imprecision of a bba.Then,it is related to the values of the belief intervals used in the definition of the new measure.

    The authors have shown that NEBIcan be reduced(The expressions of the summations from Eq.(15)in the paper of Yang et al.21are somehow confusing.For example,to express the value of Pl({θi}),they usedfor Pl({θn}),we could interpret that the summation does not include any term,becausethereisnoj>n.Itshould beexpressed aswhich represents the correct value in a less confusing way)to the following expression:

    3.1.Properties

    In the paper of Yang et al.21,it has been proven that the new measure verifies the properties of range,monotonicity,and symmetry that are not discussed here.However,it is also shown that it verifies the multiplicativity and submultiplicativity properties that are equivalent to the additivity and subadditivity properties(they are their counter-part measures17)These properties can be described in a similar way to that for the additivity and subadditivity properties.

    Multiplicativity.‘Letmbe a bba on the spaceX×Yandm↓Xandm↓Yits marginal bbas onXandYrespectively so that these marginalbbas are notinteractive (m(A×B)=m↓X(A)m↓Y(B),withA?X,B?Y;m(C)=0 ifC≠A×B).Then NEBIverifies the multiplicativity property iff it satis fies the following equality:

    Submultiplicativity.(In the paper of Yang et al.21,the expression about this property is not correct.We have a bbamonX× Y and wetryto provethatNEBI(m)≤NEBI(m↓X)·NEBI(m↓Y),using the marginal bbas.It is not correct to use NEBI(m↓X×m↓Y),because it is possible thatm≠m↓X×m↓Y.For example,taking the values of the bbamin Example 2,we get that the bbam′=m↓X×m↓Yhas the valuesm′({z21,z22,z31,z32})=0.4 andm′(X×Y)=0.6,that are different from those ofm.)

    ‘Letmbe a bba on the spaceX×Yandm↓Xandm↓Yits marginal bbas onXandYrespectively.Then a MU verifies the submultiplicativity property iff it satisfies the following inequality:

    At this point,we want to remark the words in the paper of Yang et al.21about the importance of these properties:‘Note that the physical meaning of submultiplicativity is in essential the conservation of information,i.e.,the amount of uncer-tainty in a joint bba is no greater than the total amount of uncertainty of its corresponding marginal bbas.The equation holds if and only if the corresponding marginal bbas are independent,i.e.,there is not correlated part.”

    Now,we consider the following example.

    Example 1.With the above notation,letX×Ybe the product space of setsX={x1,x2,x3}andY={y1,y2},andm1andm2the following bbas onXandY,respectively:

    Hence,we can build the following bbam=m1×m2onX×Y,and consequently the marginal bbas are not interactive.Thenmhas the following masses:

    wherezij=(xi,yj).

    The values of uncertainty via the NEBImeasure are

    Then NEBI(m)≠NEBI(m1)˙s NEBI(m2),and the multiplicativity property is not satis fied by NEBI.

    The above Example 1 serves to us to prove that NEBIalso does not verify the submultiplicativity property.We only need to consider the same bbamonX×Yand then its marginal bbas arem1andm2onXandY,respectively,in that example.We have

    which implies that the submultiplicativity property is not verified for NEBI.

    From the above results,the new measure does not verify the multiplicativity and submultiplicativity properties,but we find in the paper of Yang et al.21that the authors proved that this measure does verify both properties.We think that the principal error in their proofs is related to the cardinal of the sets.For example,ifA?XandB?Y, thenA×B?X×Yand it is possible to find the focal sets of each bba so that|A×B|>1 and|A|=1,|B|>1,as happen in Example 1.

    To analyze the proof about multiplicativity,we apply the values of Example 1 on the penultimate step in Eq.(23)in the paper of Yang et al.21.We can see the following situation,detailing the calculus(To simplify,setsAare in space X,and setsBin spaceY)from Example 1:

    It is easy to see that

    Hence,the penultimate step in Eq.(23)in the paper of Yang et al.21is not correct.

    As we see,focal elements with cardinal 1 in setX,i.e.,sets that do not produce any imprecision,can be components of sets in the product spaceX×Ythat produce imprecision.This has not been considered in the proof of the multiplicativity in the paper of Yang et al.21.

    Now,we analyze the proof of the submultiplicativity property and find that the last step cannot be correct in some situations.That last step expresses the following equality(moreover,in Ref.21,the expression NEBI(m↓X×m↓Y)should be NEBI(m),using the correct definition of the property26):

    However,this equality is not always correct.Again,if we consider the values of Example 1,the left term of the above equality is NEBI(m)and contains the following addend:

    Now,consideringR={z31,z32},we have thatRX={x3}and|RX|=1.Hence,that addend cannot be in the right part of the equality.We conclude that the equality is not correct in this case.

    We could think that this measure could be supermultiplicative,i.e.,with the above notation,it always verifies that

    but with the following example,we see that it is also not so.

    Example 2.LetX×Ybe the product space of setsX={x1,x2,x3}andY={y1,y2},andmthe following bba onX×Y:

    wherezij=(xi,yj).

    Now,the marginal bbas onXandYhave the following values:

    The values of uncertainty via the NEBImeasure are

    Hence,NEBI(m)< NEBI(m↓X)·NEBI(m↓Y),and the supermultiplicativity property is not satis fied by NEBI.

    Examples 1 and 2 represent a very con flictive situation for this new measure.If we have a complex problem in the TE and we can reduce the complexity using projections on 2 less complex sets,via the marginal bbas,we see that in some situations,the information(uncertainty)available can be decreased,while in other situations,it can be increased.This is a very bad behavior for this measure.

    4.Conclusions

    (1)In this paper,we have analyzed the properties of additivity and subadditivity of a new measure of nonspecificity.We have detected some errors in the original proofs presented to show that the measure verifies such properties.It has also been shown that the measure presents incoherent results when a decomposition is done using the same functional projections:in some situations,that decomposition presents an increase in information,butin others,itpresentsa decreaseof information.These results must be known.In addition,we have detected some other misprints and inaccuracies in the original paper where the new measure was presented.

    (2)Here,we do not discuss the possible utility that could have that measure,but with the results presented here,the use of this measure could not be appropriate in some situations,decreasing its importance to be used in applications.

    (3)In the original paper where the measure has been presented,21we can find applications where the measure can give coherent results(Examples 1–4).In those applications,the concepts of interactive or non-interactive frames of discernment are not used.Hence,a use of belief intervals can be useful in some situations,but the definition of a total coherent measure based on this tool is still an open question.As we mentioned in the paper,belief intervals are related to the value of nonspecificity of a bba,but the problem is the way to use them.

    (4)So far,the generalized Hartley measure and the ones presented in Ref.27are the only measures that have a theoretical coherent behavior under our point of view.These measures could serve the aims of the paper that we have analyzed here.It will be a matter of our future work,where we also try to find utility to the use of belief intervals for this type of measures.

    Acknowledgements

    We would like to thank E.Bosséfor his help in drawing up this work.This work was supported by the Spanish ‘Ministerio de Econom?′a y Competitividad” and by ‘Fondo Europeo de Desarrollo Regional”(FEDER)(No.TEC2015-69496-R).

    1.Walley P.Statistical reasoning with imprecise probabilities.New York:Chapman and Hall;1991.

    2.Dempster AP.Upper and lower probabilities induced by a multivaluated mapping.Ann Math Stat 1967;38(2):325–39.

    3.Shafer G.A mathematical theory of evidence.Princeton:Princeton University Press;1976.

    4.Liu Z,Pan Q,Dezert J,Mercier G.Credal classification rule for uncertain data based on belief functions.Pattern Recogn 2014;47(4):2532–41.

    5.Su X,Mahadevan S,Xu P,Deng Y.Dependence assessment in human reliability analysis using evidence theory and AHP.Risk Anal 2015;35(7):1296–316.

    6.Tang J,Wu Z,Yang C.Epistemic uncertainty quantification in utter analysis using evidence theory.Chin J Aeronaut 2015;28(1):164–71.

    7.Li D,Wang H,Wang R,Xiong Y.Professional competence evaluation of information management undergraduates based on rough set and DS evidence theory.Int J Database Theory Appl 2016;9(5):111–20.

    8.Yang K,Liu S,Li X,Wang XA.DS evidence theory based trust detection scheme in wireless sensor networks.Int J Technol Human Interact 2016;12(2):48–59.

    9.Han D,Liu W,Dezert J,Yang Y.A novel approach to preextracting support vectors based on the theory of belief functions.Knowl-Based Syst 2016;110:210–23.

    10.Wang Q,Li W,Wu Y,Pei Y,Xing M,Yang D.A comparative study on the landslide susceptibility mapping using evidential belief function and weights of evidence models.J Earth Syst Sci 2016;125(3):645–62.

    11.Farah MB,Mercier D,Delmotte F,Lefevre E.Methods using belief functions to manage imperfect information concerning events on the road in VANETs.Transport Res Part C:Emerg Technol 2016;67:299–320.

    12.Denoeux T,Sriboonchitta S,Kanjanatarakul O.Evidential clustering of large dissimilarity data.Knowl-Based Syst 2016;106(15):179–95.

    13.Liu Z,Pan Q,Dezert J,Mercier G.Hybrid classification system for uncertain data.IEEE Trans Syst Man Cybern:Syst 2016;PP(99):1–8.

    14.Klir GJ,Wierman MJ.Uncertainty-based information.Berlin:Phisica-Verlag HD;1998.

    15.Yager RR.Entropy and specificity in a mathematical theory of evidence.Int J Gen Syst 1983;219(4):291–310.

    16.Shannon CE.A mathematical theory of communication.Bell Syst Tech J 1948;27(4):379–423.

    17.Dubois D,Prade H.Properties of measures of information in evidenceand possibility theories.FuzzySetsSyst1987;24(2):161–82.

    18.Dubois D,Prade H.A note on measure of specificity for fuzzy sets.Int J Gen Syst 2007;10(4):279–83.

    19.Shahpari A,Seyedin SA.Using mutual aggregate uncertainty measures in a threat assessment problem constructed by Dempster-Shafer network.IEEE Trans Syst Man Cybern:Syst 2015;45(6):877–86.

    20.Deng Y.Deng entropy.Chaos Solut Fract 2016;91:549–53.

    21.Yang Y,Han DQ,Dezert J.A new non-specificity measure in evidence theory based on belief intervals.Chin J Aeronaut 2016;29(3):704–13.

    22.Yang Y,Han DQ.A new distance-based total uncertainty measure in the theory of belief functions. Knowl-Based Syst 2016;94:114–23.

    23.Wang J,Hu Y,Xiao F,Deng X,Deng Y.A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence:an application in medical diagnosis.Artif Intell Med 2016;69:1–11.

    24.Abella′n J,BosséE.Drawbacks of uncertainty measures based on the pignistic transformation.IEEE Trans Syst Man Cybern:Syst 2016;PP(9):1–7.

    25.Abella′n J.Analyzing properties of Deng entropy in the theory of evidence.Chaos Solut Fract 2017;95:195–9.

    26.Klir GJ.Uncertainty and information:foundations of generalized in formation theory.Hoboken,NJ:John Wiley;2016.

    27.Abella′n J.Combining non-specificity measures in Dempster-Shafer theory of evidence.Int J Gen Syst 2011;40(6):611–22.

    28.Hartley RVL.Transmission of information.Bell Syst Tech J 1928;7:535–63.

    成人精品一区二区免费| 国产乱人伦免费视频| 在线天堂最新版资源| 成人国产一区最新在线观看| 日本精品一区二区三区蜜桃| 久久久久国内视频| 国产v大片淫在线免费观看| 免费观看精品视频网站| 色哟哟哟哟哟哟| 精华霜和精华液先用哪个| 欧美性猛交黑人性爽| 久久九九热精品免费| 精品午夜福利视频在线观看一区| 午夜福利免费观看在线| 欧美xxxx性猛交bbbb| 国产色爽女视频免费观看| 欧美不卡视频在线免费观看| 国产野战对白在线观看| 超碰av人人做人人爽久久| 可以在线观看的亚洲视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品合色在线| 少妇丰满av| 超碰av人人做人人爽久久| 亚洲人成伊人成综合网2020| 亚洲中文日韩欧美视频| 一区二区三区高清视频在线| 床上黄色一级片| 午夜福利视频1000在线观看| 国产 一区 欧美 日韩| 国产精品一区二区三区四区免费观看 | 亚洲av不卡在线观看| 韩国av一区二区三区四区| 午夜福利高清视频| or卡值多少钱| 男人狂女人下面高潮的视频| 欧美绝顶高潮抽搐喷水| 亚洲国产精品sss在线观看| 一个人免费在线观看的高清视频| 久久久久性生活片| 欧美绝顶高潮抽搐喷水| 国内揄拍国产精品人妻在线| 午夜免费激情av| 色尼玛亚洲综合影院| 国产毛片a区久久久久| 精品人妻视频免费看| 乱人视频在线观看| 美女高潮的动态| 搡老熟女国产l中国老女人| 久久精品人妻少妇| av在线天堂中文字幕| 精品无人区乱码1区二区| 亚洲av中文字字幕乱码综合| av在线观看视频网站免费| 午夜福利免费观看在线| 久久草成人影院| 国产伦一二天堂av在线观看| 男女下面进入的视频免费午夜| 日日干狠狠操夜夜爽| 国产成人欧美在线观看| 特级一级黄色大片| 亚洲成人中文字幕在线播放| a在线观看视频网站| www.熟女人妻精品国产| 欧美最新免费一区二区三区 | 夜夜夜夜夜久久久久| 欧美高清成人免费视频www| 91午夜精品亚洲一区二区三区 | 日韩高清综合在线| 精品久久久久久久久久久久久| 日本成人三级电影网站| 99热只有精品国产| 亚洲人与动物交配视频| 天天一区二区日本电影三级| 97人妻精品一区二区三区麻豆| 一个人免费在线观看电影| 国产真实乱freesex| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 欧美性猛交黑人性爽| 国内精品久久久久久久电影| 99国产精品一区二区三区| 精品人妻视频免费看| 久久6这里有精品| 欧美极品一区二区三区四区| 国产老妇女一区| 高清日韩中文字幕在线| 欧美成狂野欧美在线观看| 国产成人a区在线观看| 一区二区三区激情视频| 亚洲18禁久久av| 99精品久久久久人妻精品| 国产欧美日韩精品一区二区| 亚洲精品在线观看二区| av视频在线观看入口| 中文字幕免费在线视频6| 少妇高潮的动态图| 丰满人妻一区二区三区视频av| 俺也久久电影网| 99热这里只有是精品50| 亚洲 国产 在线| 亚洲精品粉嫩美女一区| 中国美女看黄片| 麻豆成人午夜福利视频| 久久草成人影院| 又爽又黄a免费视频| 国产精品不卡视频一区二区 | 久久精品影院6| 日本a在线网址| 亚洲av免费高清在线观看| 精品日产1卡2卡| 美女被艹到高潮喷水动态| 两个人的视频大全免费| 国内少妇人妻偷人精品xxx网站| 丰满的人妻完整版| 亚洲av一区综合| 精品人妻熟女av久视频| 日韩欧美国产在线观看| 亚洲欧美日韩高清在线视频| 白带黄色成豆腐渣| 一区福利在线观看| av女优亚洲男人天堂| 免费av观看视频| 日本五十路高清| 国产黄色小视频在线观看| 婷婷丁香在线五月| 一区二区三区激情视频| АⅤ资源中文在线天堂| 国产视频内射| 白带黄色成豆腐渣| 国产精品三级大全| 中文字幕免费在线视频6| 午夜两性在线视频| 国产精品自产拍在线观看55亚洲| 如何舔出高潮| 亚洲一区二区三区色噜噜| 变态另类丝袜制服| 如何舔出高潮| 精品国产亚洲在线| 18禁在线播放成人免费| 色综合欧美亚洲国产小说| 国产精品1区2区在线观看.| 深夜精品福利| 又爽又黄无遮挡网站| 免费无遮挡裸体视频| 国产精品免费一区二区三区在线| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 香蕉av资源在线| 99在线视频只有这里精品首页| 久久久久久久久中文| 成人三级黄色视频| 亚洲av免费高清在线观看| 欧美高清成人免费视频www| www日本黄色视频网| 18美女黄网站色大片免费观看| 午夜精品一区二区三区免费看| 此物有八面人人有两片| 免费观看人在逋| 久久久久精品国产欧美久久久| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 天堂网av新在线| av在线观看视频网站免费| 99国产精品一区二区蜜桃av| 午夜精品一区二区三区免费看| 波多野结衣高清无吗| 免费人成视频x8x8入口观看| 中文字幕av在线有码专区| 亚洲美女黄片视频| 久久性视频一级片| 91在线观看av| 我的女老师完整版在线观看| 一级黄片播放器| 欧美绝顶高潮抽搐喷水| 久久人人爽人人爽人人片va | 亚洲精品在线美女| 久久婷婷人人爽人人干人人爱| 国产黄a三级三级三级人| 亚洲av第一区精品v没综合| 亚洲av熟女| 国产av一区在线观看免费| 国产精品一区二区三区四区免费观看 | 99热只有精品国产| 性色avwww在线观看| 日本三级黄在线观看| 久久久久国产精品人妻aⅴ院| 国产男靠女视频免费网站| 久久精品综合一区二区三区| 男人和女人高潮做爰伦理| 一本精品99久久精品77| h日本视频在线播放| 精华霜和精华液先用哪个| 男女之事视频高清在线观看| 成人鲁丝片一二三区免费| 好看av亚洲va欧美ⅴa在| 亚洲精品一区av在线观看| 舔av片在线| 在线看三级毛片| 国产伦一二天堂av在线观看| 亚洲精品成人久久久久久| 噜噜噜噜噜久久久久久91| 亚洲av电影不卡..在线观看| 又粗又爽又猛毛片免费看| 99国产精品一区二区蜜桃av| 亚洲国产日韩欧美精品在线观看| 99热只有精品国产| 亚洲avbb在线观看| 亚洲美女黄片视频| 成人av在线播放网站| 老司机深夜福利视频在线观看| 日本 av在线| 午夜精品在线福利| 国产白丝娇喘喷水9色精品| 国产av不卡久久| 亚洲av电影不卡..在线观看| 自拍偷自拍亚洲精品老妇| 日本一二三区视频观看| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 男人狂女人下面高潮的视频| 男人舔奶头视频| 性插视频无遮挡在线免费观看| 成人欧美大片| 久久久久久久久大av| 美女 人体艺术 gogo| 一个人看的www免费观看视频| 麻豆国产97在线/欧美| 内地一区二区视频在线| 国产av在哪里看| 日韩高清综合在线| 欧美绝顶高潮抽搐喷水| or卡值多少钱| 男女那种视频在线观看| 久久亚洲精品不卡| 首页视频小说图片口味搜索| 日本免费一区二区三区高清不卡| 欧美zozozo另类| 真人做人爱边吃奶动态| 黄片小视频在线播放| 国产精品久久久久久久久免 | 在线观看午夜福利视频| 一本综合久久免费| 国产三级黄色录像| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩无卡精品| 无人区码免费观看不卡| 欧美三级亚洲精品| 免费av观看视频| 国产精品,欧美在线| 最新在线观看一区二区三区| 亚洲av成人不卡在线观看播放网| 一边摸一边抽搐一进一小说| 伊人久久精品亚洲午夜| 成人特级av手机在线观看| 一卡2卡三卡四卡精品乱码亚洲| ponron亚洲| 日本 欧美在线| 又紧又爽又黄一区二区| 国产三级黄色录像| 欧美丝袜亚洲另类 | 我的老师免费观看完整版| 久久久久久久午夜电影| 亚洲精品456在线播放app | 国内少妇人妻偷人精品xxx网站| 久久久久久久午夜电影| 免费在线观看亚洲国产| 国产午夜精品论理片| 男女下面进入的视频免费午夜| 午夜老司机福利剧场| 可以在线观看毛片的网站| 日本与韩国留学比较| 最近中文字幕高清免费大全6 | 欧美色视频一区免费| 国产激情偷乱视频一区二区| 国产精品久久久久久亚洲av鲁大| 观看美女的网站| 精品久久久久久成人av| 999久久久精品免费观看国产| 国产精品女同一区二区软件 | 国产午夜福利久久久久久| 丝袜美腿在线中文| 亚洲成av人片在线播放无| 国产私拍福利视频在线观看| www.熟女人妻精品国产| 婷婷六月久久综合丁香| 人妻久久中文字幕网| 好男人电影高清在线观看| 99riav亚洲国产免费| 国内精品一区二区在线观看| 超碰av人人做人人爽久久| 天堂av国产一区二区熟女人妻| 一进一出好大好爽视频| 校园春色视频在线观看| 少妇人妻一区二区三区视频| 欧美日韩福利视频一区二区| 身体一侧抽搐| 免费观看的影片在线观看| 少妇高潮的动态图| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久中文| 国产av不卡久久| 校园春色视频在线观看| 色哟哟哟哟哟哟| 国产伦精品一区二区三区视频9| 一进一出抽搐gif免费好疼| 欧美一区二区亚洲| 国产综合懂色| 99久久九九国产精品国产免费| 88av欧美| 中亚洲国语对白在线视频| 国产欧美日韩精品一区二区| 久久99热这里只有精品18| 在线看三级毛片| 亚洲欧美日韩东京热| 久久久久久大精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩欧美国产一区二区入口| 国产精品久久视频播放| 免费av观看视频| 一进一出好大好爽视频| 精品一区二区三区视频在线| 内射极品少妇av片p| av欧美777| 亚洲人成电影免费在线| 国产熟女xx| 日韩欧美一区二区三区在线观看| 国产人妻一区二区三区在| 日日夜夜操网爽| 男女做爰动态图高潮gif福利片| 中文字幕精品亚洲无线码一区| 亚洲色图av天堂| 久久精品影院6| 亚洲男人的天堂狠狠| 又紧又爽又黄一区二区| www.色视频.com| 久久精品夜夜夜夜夜久久蜜豆| 亚洲五月天丁香| 国产单亲对白刺激| 婷婷亚洲欧美| 黄色女人牲交| 可以在线观看的亚洲视频| 老熟妇乱子伦视频在线观看| av欧美777| 91av网一区二区| www.www免费av| 国产探花极品一区二区| 久久中文看片网| 免费人成视频x8x8入口观看| 欧美日韩国产亚洲二区| 久久久久久久久久黄片| 首页视频小说图片口味搜索| 国产一区二区三区视频了| 99久久无色码亚洲精品果冻| 国产亚洲精品av在线| 长腿黑丝高跟| 亚洲av不卡在线观看| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 亚洲色图av天堂| 淫秽高清视频在线观看| 看免费av毛片| 日韩欧美三级三区| 欧美另类亚洲清纯唯美| 此物有八面人人有两片| 在现免费观看毛片| 变态另类成人亚洲欧美熟女| 露出奶头的视频| 国产又黄又爽又无遮挡在线| www日本黄色视频网| 亚洲av免费高清在线观看| 精品不卡国产一区二区三区| 亚洲七黄色美女视频| 久久久久免费精品人妻一区二区| 变态另类丝袜制服| 观看免费一级毛片| 搡女人真爽免费视频火全软件 | 欧美日韩瑟瑟在线播放| 极品教师在线免费播放| 国产精品电影一区二区三区| 亚洲激情在线av| 极品教师在线视频| 12—13女人毛片做爰片一| 午夜老司机福利剧场| 国产乱人伦免费视频| 在线观看美女被高潮喷水网站 | 国产视频一区二区在线看| 岛国在线免费视频观看| 好看av亚洲va欧美ⅴa在| 变态另类丝袜制服| 高清在线国产一区| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 午夜免费男女啪啪视频观看 | 国产欧美日韩一区二区精品| 婷婷精品国产亚洲av| 18禁在线播放成人免费| 亚洲av不卡在线观看| 亚洲精品亚洲一区二区| 亚洲精品久久国产高清桃花| 好看av亚洲va欧美ⅴa在| 哪里可以看免费的av片| 又黄又爽又刺激的免费视频.| 一区福利在线观看| 久久精品国产99精品国产亚洲性色| 国产精品综合久久久久久久免费| 男插女下体视频免费在线播放| 成人国产综合亚洲| or卡值多少钱| 亚洲三级黄色毛片| 97超视频在线观看视频| 午夜福利成人在线免费观看| 亚洲av成人不卡在线观看播放网| 在现免费观看毛片| 在线a可以看的网站| 女人十人毛片免费观看3o分钟| 搡老熟女国产l中国老女人| 精品久久国产蜜桃| 欧美高清性xxxxhd video| 神马国产精品三级电影在线观看| 给我免费播放毛片高清在线观看| 婷婷亚洲欧美| 天堂动漫精品| 精品久久久久久成人av| 婷婷精品国产亚洲av在线| 麻豆成人午夜福利视频| 亚洲欧美日韩东京热| 亚洲最大成人av| 日韩欧美在线乱码| 久久人人爽人人爽人人片va | 欧美高清成人免费视频www| 亚洲自偷自拍三级| 久久伊人香网站| 久久久久亚洲av毛片大全| 18美女黄网站色大片免费观看| 亚洲午夜理论影院| 国产高清视频在线观看网站| 高清在线国产一区| 亚洲精品在线观看二区| 色尼玛亚洲综合影院| 欧美乱色亚洲激情| 欧美日韩中文字幕国产精品一区二区三区| 淫妇啪啪啪对白视频| 亚洲精品影视一区二区三区av| 日本a在线网址| 国产欧美日韩一区二区精品| 欧美色欧美亚洲另类二区| 99riav亚洲国产免费| 成年免费大片在线观看| 白带黄色成豆腐渣| 国产免费一级a男人的天堂| 国产伦精品一区二区三区视频9| 久久久久久国产a免费观看| 一级毛片久久久久久久久女| 国产亚洲欧美98| 赤兔流量卡办理| 全区人妻精品视频| 精华霜和精华液先用哪个| 国产av不卡久久| 久久天躁狠狠躁夜夜2o2o| 亚洲不卡免费看| 国产精品不卡视频一区二区 | 91麻豆精品激情在线观看国产| 欧美zozozo另类| 欧美色欧美亚洲另类二区| 91九色精品人成在线观看| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 别揉我奶头~嗯~啊~动态视频| 久久6这里有精品| 免费观看精品视频网站| 欧美日本亚洲视频在线播放| 啪啪无遮挡十八禁网站| 国产欧美日韩精品一区二区| 美女免费视频网站| 久久九九热精品免费| 欧美高清成人免费视频www| 嫩草影视91久久| 噜噜噜噜噜久久久久久91| 国产在线精品亚洲第一网站| 久久欧美精品欧美久久欧美| 免费看美女性在线毛片视频| 日韩欧美国产在线观看| 亚洲自拍偷在线| 久久久久九九精品影院| 夜夜躁狠狠躁天天躁| 国产男靠女视频免费网站| 日本一二三区视频观看| 亚洲va日本ⅴa欧美va伊人久久| 村上凉子中文字幕在线| 国产亚洲精品久久久com| 色综合婷婷激情| 久久久久久久久久黄片| 97超级碰碰碰精品色视频在线观看| 国产午夜精品论理片| eeuss影院久久| 国产精品嫩草影院av在线观看 | 欧美丝袜亚洲另类 | 香蕉av资源在线| 毛片一级片免费看久久久久 | 国产欧美日韩一区二区三| 一本一本综合久久| 国产伦一二天堂av在线观看| 亚洲精品日韩av片在线观看| 久久午夜亚洲精品久久| 特级一级黄色大片| 深夜精品福利| 性欧美人与动物交配| 国产精品久久久久久久电影| 免费观看人在逋| 中文字幕久久专区| 亚洲国产精品999在线| 日韩高清综合在线| netflix在线观看网站| 国产精品av视频在线免费观看| 精品人妻熟女av久视频| 757午夜福利合集在线观看| 90打野战视频偷拍视频| 蜜桃久久精品国产亚洲av| 国产精品影院久久| 午夜福利在线观看吧| 亚洲国产精品合色在线| or卡值多少钱| 午夜精品一区二区三区免费看| 日本五十路高清| 亚洲五月婷婷丁香| 日韩欧美在线乱码| 亚洲自偷自拍三级| 色av中文字幕| 精品一区二区三区人妻视频| 亚洲av熟女| 色综合婷婷激情| 亚洲av免费在线观看| 国产成人欧美在线观看| 亚洲av成人不卡在线观看播放网| 性色avwww在线观看| 久久精品国产亚洲av涩爱 | 欧美日本亚洲视频在线播放| 男人的好看免费观看在线视频| 亚洲色图av天堂| 综合色av麻豆| 国产色爽女视频免费观看| 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 免费无遮挡裸体视频| 99国产综合亚洲精品| www.熟女人妻精品国产| 自拍偷自拍亚洲精品老妇| 久久久国产成人免费| 欧美+日韩+精品| 亚洲精品粉嫩美女一区| 亚洲男人的天堂狠狠| 99国产极品粉嫩在线观看| 久久久久国内视频| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 蜜桃久久精品国产亚洲av| 两个人的视频大全免费| 中国美女看黄片| 特级一级黄色大片| 久久久久久久午夜电影| 尤物成人国产欧美一区二区三区| 搡老岳熟女国产| 99热6这里只有精品| 人妻夜夜爽99麻豆av| 日韩欧美精品免费久久 | 久久久久久久午夜电影| 九色国产91popny在线| 男人舔女人下体高潮全视频| 两人在一起打扑克的视频| 两个人的视频大全免费| 成年人黄色毛片网站| 少妇的逼水好多| 一二三四社区在线视频社区8| 99久久成人亚洲精品观看| eeuss影院久久| 亚洲av不卡在线观看| 深夜a级毛片| x7x7x7水蜜桃| 国内少妇人妻偷人精品xxx网站| 久久性视频一级片| 又黄又爽又免费观看的视频| 国产精品久久久久久人妻精品电影| 91在线观看av| 国产乱人视频| 国内揄拍国产精品人妻在线| 一夜夜www| 欧美区成人在线视频| 欧美一区二区精品小视频在线| 日韩中字成人| 欧美性猛交╳xxx乱大交人| 男女视频在线观看网站免费| 一个人观看的视频www高清免费观看| 我要看日韩黄色一级片| 久久久国产成人免费| 日本一二三区视频观看| 午夜精品在线福利| 欧美xxxx黑人xx丫x性爽| 久久6这里有精品| 中国美女看黄片| 亚洲成av人片免费观看| 日本熟妇午夜| 嫩草影院入口| 成人特级黄色片久久久久久久| 欧美激情在线99| 国产免费男女视频| 黄色视频,在线免费观看| netflix在线观看网站| 床上黄色一级片| av专区在线播放| 哪里可以看免费的av片| 亚洲人成网站高清观看| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 五月玫瑰六月丁香|