• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of preload on the friction and wear properties of high-speed instrument angular contact ball bearings

    2018-04-19 08:29:32ToZHANGXioyngCHENJimingGUZhenglingWANG
    CHINESE JOURNAL OF AERONAUTICS 2018年3期

    To ZHANG,Xioyng CHEN,*,Jiming GU,Zhengling WANG

    aResearch Institute of Bearings,Shanghai University,Shanghai 200072,China

    bShanghai Tian An Bearing Co.Ltd,Shanghai 201108,China

    1.Introduction

    In high-speed rotor systems for aviation,aerospace,and precision machine tools,pairs of preloaded angular contact ball bearings are commonly used.An appropriate axial preload,on one hand,can improve the rotation accuracy and support stiffness of the rotor,as well as reduce vibration and noise.1,2On the other hand,under high-speed and light-load conditions,by precisely controlling the preload,it is possible to effectively prevent orbit slipping and gyro sliding of balls,and reduce friction heating and wear.3,4Two main preload methods are often used in practice,constant-force preload and fixed-position preload,also called constant preload and rigid preload.The effects of preload on dynamic stiffness,5,6natural frequency,5,7vibration,2,8temperature rise,9,10and fatigue life4,11of spindle bearings with sufficient oil supply have been studied a lot.Some of the works have focused on preload optimization,3,10–12and revealed that the optimum preload can be determined by temperature rise,dynamic stiffness,and fatigue life for different speed ranges.Other researchers also investigated the impacts of different bearing preload methods on spindle dynamics.Li and Shin13presented the effects of bearing configuration on dynamic thermal and stiffness behaviors of high-speed spindles using a dynamic thermomechanical simulation model.Cao et al.14compared the effects of bearing preload methods on the dynamic performance of high-speed spindles by using a mathematical model as well as experiments,and pointed out that at high speeds and under cutting loads,the rigid preload method is more efficient in maintaining the dynamic stiffness of spindles than the constant preload one.

    However,for starved-oil(lubricated by a plastic cage impregnated with a few milligrams of oil)or solid lubrication of high-speed instrument angular contact ball bearings,friction heating and wear are the main reasons of bearing failure.Liu et al.15established a wear life estimation model based on the quasi-static of Gyro-spin bearings for fixed-position preload.Gupta and Forster16built a numerical simulation model of wear for solid-lubricated ball bearings based on the overall dynamics of bearing elements.The time-averaged wear rates of balls,races,and the cage can be obtained by the computer model ADORE,which provides an analytical estimate of wear life for solid-lubricated ball bearings.However,researchers did not consider the impacts of different preload methods and the significant changes of preload caused by wear during the operation on the bearing wear life.This paper presents a coupled dynamic wear simulation model considering the differential sliding,spin sliding,and gyro sliding between balls and races for high-speed instrument rotor angular contact ball bearings.The changes of contact parameters and residual preload with the friction coefficient and wear volume under constant preload and fixed-position preload are analyzed.Thus,a foundation for more accurate prediction of bearing wear life can be laid.

    2.Modeling and verification

    Fig.1 Coordinate system.

    According to the dynamic modeling method of rolling bearings in Refs.16,17,a dynamic wear simulation model of gyro rotor angular contact ball bearings was built up.It is assumed that the mass centers of bearing components coincide with their geometric centers,balls and the cage have six degrees of freedom,the mass center of the outer race is fixed,the mass center of the inner race have three or two degrees of freedom with constant or rigid preload respectively,and both the inner and outer races can rotate around the axis.The effect of lubrication is considered by setting a reasonable friction coefficient.For starved-oil or solid lubrication of angular contact ball bearings,there is no hydrodynamic pressure effect in the ball/cage and cage/guide lands contacts.For all contacts,normal and tangential forces are calculated by the Hertz contact theory and the Coulomb friction law.The friction coefficient in the contact area is constant.A variable step-size of the fourth-order Runge-Kutta method is used to solve the differential equations of bearing motion.

    2.1.High-speed rotor bearing dynamic model

    2.1.1.Coordinate system and kinematic equations

    The centroid motion of bearing parts is described in the inertial coordinate system,and the rotation about the centroid is described in the body fixed or azimuth coordinate system.The coordinate system is defined as shown in Fig.1.The origin Oiof the inertial coordinate coincides with the center of locus of outer raceway groove curvature centers,Xiis along the bearing axial,and Zivertical up.The origin Oaof the azimuth coordinate frame is fixed to the ball center,Xais in the axial direction of the bearing,and Zais in the radial direction,where dmis the bearing pitch diameter and ψ is the ball azimuth angle.The cage coordinate frame origin Ocis fixed to the geometric center of the cage,Xcis along the cage axis,and Zcpoints to the first pocket hole center.

    It can be achieved through three successive rotations from the inertial coordinate system to the body fixed coordinate system.17The transformation matrix is as follows:

    Gupta deduced the relationship between the angular velocity of bearing parts and the rotation angle(η, ξ, λ),and obtained the kinematic equation17as

    where ω1, ω2,and ω3are the angular velocity components of bearing parts.

    2.1.2.Calculation of interaction forces and moments between bearing parts

    For constant preload and fixed-position preload models,the positions of the ball center and raceway curvature centers at angular position ψjwith applied axial,radial,and moment loads are shown in Fig.2,where Ocois the groove curvature center of the outer raceway,andrepresent the positions of the ball center and the groove curvature center of the inner raceway before and after the loads being applied and during high-speed operation,respectively.

    The geometric centers of the inner race and the ball in the inertial coordinate systemandcan be expressed as follows:

    where BD=(fi+fo-1)Dw,fi/ois the inner/outer raceway groove curvature factor,and Dwis the ball diameter.α0is the initial contact angle. δaand δrare the axial and radial deformations of the inner race relative to the outer race.For fixed-position preload,δais a constant determined by static equilibrium.A1jand A2jare the axial and radial distances of the inner and outer race groove curvature centers,X1jand X2jare the axial and radial displacements between the ball center and the outer raceway groove curvature center,and Ri/ois the radius of locus of raceway groove curvature centers.ψjis the azimuth angle of the jth ball in the inertial coordinate system.The superscript indicates the coordinate system.

    The position vector of the ball center relative to the race center in the race coordinate system can be written as

    where Tir=T(0,Θ,0)is the transformation matrix from the inertial coordinate system to the inner race coordinate system,in which Θ is the tilt angle of the inner race around the Yiaxis.Then,the angular position θbrof the ball in the inner race coordinate system is obtained as

    where rbr2and rbr3are components of

    The vector of the curvature center at angular position θbrrelative to the inner race center is

    The position vector of the ball center relative to the curvature center of the inner race in the azimuth coordinate system is

    where Tia=T(ψj,0,0)is the transformation matrix from the inertial to the azimuth coordinate system of the ball.

    The contact angle between the ball and the inner race is defined as

    The contact deformation between the ball and the raceway is given as

    where rbc1,rbc2and rbc3are the components of.

    Fig.2 Positions of the ball center and raceway groove curvature centers at angular position ψjwith applied load.

    The contact force is calculated according to the Hertz theory as follows:

    where Kpis the load-deformation coefficient of point contact,and δ is the contact deformation.

    For the ball/race interaction,the load and sliding velocity greatly vary across the elliptical contact zone.However,as the minor axis of the contact ellipse is generally narrow,the change of the sliding velocity along the minor axis can be ignored;thus,the contact area can be divided into equidistant strips along the major axis as shown in Fig.3.The origin Otof the contact coordinate frame is fixed at the center of the contact ellipse,Xtis along the major axis,and Ztis normal to the contact surface.a and b represent the semimajor and semiminor axes of the contact ellipse,respectively.

    where Tat=T(0,π - αij,0)is the transformation matrix from the azimuth coordinate system to the contact coordinate system of the ball and the inner race.is the translation velocity of the inner race center,whileandare the angular velocities of the inner race and the ball.andare the position vectors of the strip center relative to the inner race center and the ball center,respectively.

    The sliding velocity of the inner race relative to the ball at the strip center is

    Then,the sliding speed Vkand the equivalent contact load Qkat the center point of each narrow strip can be calculated as follows:

    where vk1and vk2are the components of,a is the semi major axis of the contact ellipse,xkis the distance from the strip center to the ellipse center,and m is the number of strips in the semi major axis.

    The tangential force Ftkon the strip is obtained by

    where μkis the friction coefficient on the strip.

    Fig.3 The kth strip in the contact area.

    The components of the tangential force along the major and minor axes are determined by the sliding velocity at the strip center as follows:

    where φkis the angle between the sliding velocity at the strip center and the minor axis of the contact ellipse,and φk=arctan

    In the contact coordinate system of the ball and the race,the moment vector of the contact strip acting on the ball is

    The force vector of the race acting on the ball in the contact coordinate system is

    where Qi/ois the contact force between the ball and the inner or outer race.

    where Qcis the contact force between the ball and the cage,and Fctxand Fctzare the tangential force components produced by the ball/cage contact.is the position vector of the contact point between the ball and the cage pocket relative to the ball center in the contact coordinate system.

    The total force and moment acting on the ball in the azimuth coordinate system are

    where the superscripts it,ot,and ct represent the contact coordinate systems of ball/inner race,ball/outer race,and ball/cage,respectively,andis the force vector of the inner race acting on the ball in the ball/inner race contact coordinate system.Tita,Tota,and Tctaare the transformation matrices from the three contact coordinate systems to the azimuth coordinate system,respectively.

    2.1.3.Calculation of time-averaged wear rate of bearing parts

    Fig.4 Ball loading at angular position ψj.

    Fig.5 Flow chart of the dynamic wear simulation program of angular contact ball bearings.

    Fig.6 Time-averaged wear rates of ball and cage.

    Table 1 Bearing geometrical parameters.

    For high-speed instrument angular contact ball bearings,there are differential sliding,spin sliding,and gyro sliding between the ball and race contacts,as well as the sliding of the cage with the ball and guide lands.Friction heating and wear in the contact areas are unavoidable.The Archard adhesive wear theory16can be used to calculate the wear rate of bearing parts.where w is the wear rate of parts,Ksis the wear coefficient,H is the Brinell hardness of the material,and Q and V are the contact load and sliding speed,respectively.For the contact between the ball and the race,the contact ellipse is divided into equidistant strips along the major axis.The product QkVkof the equivalent load and the slip velocity on each strip can be calculated.Then,the QV value of the whole contact area is obtained,which can be substituted into the above equation to calculate the wear rate.For the ball/cage and cage/race interactions,the sliding velocity is normally very high and the size of the contact zone is quite small.It is reasonable to consider the interaction as a point or line contact and use Archard’s equation to compute the instantaneous wear rate.Once the wear rate is known at any time during the simulation time T,a time-averaged wear rate can be calculated asThe time-averaged wear rate of bearing parts can be used to estimate the wear life of the bearing.

    2.1.4.Equilibrium constraint equations and differential equations of motion

    In order to eliminate the high-frequency vibration caused by the elastic contact between the ball and the race,17and to effectively study the low-frequency performance of the cage motion,equilibrium constraints for balls are used in the model.At each time step,the radial and axial differential equations of the ball motion are replaced by the normal force equilibrium of the ball/race contact.The position of the rolling element center is determined by the equilibrium equation.The loads acting on the ball at angular position ψjare shown in Fig.4,and the equilibrium constraint equations of the ball can be written as

    where the contact angles αijand αojare the functions of the ball center position,the subscripts i and o represent the inner and outer race,respectively,and Fcjis the centrifugal force of the ball.In Fig.4,Fitxjand Fityjare the tangential force components of the inner race acting on the ball,and Mgjis the gyro-scopic moment.Qij,Qoj,and Qcjare the contact forces,as discussed above.

    Table 2 Bearing material properties.

    Fig.7 Effects of the friction coefficient on wear parameters for different preload methods(ΔDw=0).

    The position of the inner race center is also determined by the equilibrium constraint equation.For the constant preload model,the inner race center has three degrees of freedom,and the equilibrium equation is

    where Fx,Fyand Fzare the axial and radial external loads acting on the inner race,and N is the number of balls.

    For the fixed-position preload model,the inner race center is fixed in the axial direction,but it can move in the radial plane.The equilibrium constraint equation can be simplified as

    The tangential force of the ball/race contact is relatively small compared to the normal force;therefore,it is not considered in the equilibrium equation in order to improve the computational efficiency.

    The position of the inner race center and the axial and radial positions of the ball center can be determined by solving the equilibrium equations of the ball and the inner race.The circumferential position of the ball center is determined by the differential Eq.(28).

    Equations of mass center motion and momentum moment of the ball are

    where mbis the ball mass,r is the radius of the ball mass center locus,and r=X2j+Ro.Fψis the total force acting on the ball in the circumference direction,and Fψ=-Fb2,where Fb2is the component of Fab.Ibis the ball inertia moment,ωb1,ωb2,and ωb3are the angular velocity components of ωab,and Mb1,Mb2,and Mb3are the moment components of

    Equations of mass center motion and momentum moment of the cage are

    Fig.8 Effects of the friction coefficient on wear parameters for different preload methods(ΔDw=0.5 μm).

    where mcis the cage mass,and Ic1,Ic2,and Ic3are the principal moments of inertia.xc,ycand zcare the displacements of the cage mass center in the inertial coordinate system,and ωc1,ωc2,and ωc3are the angular velocity components of.Fcx,Fcy,and Fczare the components of,while Mc1,Mc2,and Mc3are the components of

    Combined solving the equations of mass center motion and momentum moment and Gupta kinematic equation,one can describe the general movement of bearing parts.

    2.2.Dynamic block diagram and verification

    For the different preload mechanisms of constant-force preload and fixed-position preload,the corresponding dynamic wear simulation program of angular contact ball bearings was developed.The program flow chart is shown in Fig.5.In the figure,i is the step number,t(i)is the simulation time,t_end is the end time,ht is the step size,ht_min is the minimum step size,and dh is the variable step factor.

    Compare to the No.2 ball bearing example in Gupta’s Ref.17to verify the present program.The drag coefficient of the lubricant in the ball/race contact is 0.08–0.10(a constant coefficient of 0.09 is assumed in this paper),and the ball/cage and cage/race friction coefficient is 0.10.The bearing operates at a 30000 r/min shaft speed with a 5000 N thrust load and a 4000 N rotating load.The results of this paper program and ADORE are shown in Fig.6.

    As can be seen from the time-averaged wear rates of the ball No.1(azimuth angle ψ=0 at the initial moment)and the cage in Fig.6,our results are consistent with ADORE’s in the trend and magnitude,and the value is also very close.The correctness of the program of the constant-force preload model is verified.As the program of fixed-position preload is modified on the basis of the constant-force preload model,the test results are also credible.

    3.Results and discussion

    The integral value QV of stress and slip velocity of the ball/race contact ellipse is an important parameter that affects the friction heating and wear of high-speed precision angular contact ball bearings.Taking a certain gyro rotor bearing as an example,the changes of the total QV value with the friction coefficient and wear volume under the two preload methods were analyzed.The wear volume of the ball and the race is equivalent to the decrease of the ball diameter ΔDw.Tables 1 and 2 describe the geometrical details and properties of the bearing materials.The wear coefficient in the table is derived from Gupta’s Ref.16.Since the time-averaged wear rate is directly proportional to the wear coefficient,the wear rate trend of bearing parts can be calculated.

    3.1.Effects of friction coefficient

    For different lubrication conditions,the ball/race drag coefficient μ was set as 0.02,0.05,0.08,and 0.11,18and the ball/cage and cage/race friction coefficient was estimated to be 0.05.19Under the operating conditions of a 30,000 r/min shaft speed and a 7 N thrust load,the effects of the friction coefficient on wear parameters for the two preload methods were analyzed.The wear volume is zero(ΔDw=0),and results are shown in Fig.7.

    As can be seen from Fig.7(a)that,under the same initial preload,the QV value decreases with an increase of the friction coefficient for both preload methods.When the friction coefficient is larger than 0.05,the change tends to be stable.Fig.7(b)shows that the normal load of the ball/race contacts offixedposition preload is larger than that of constant-force preload,so the QV value is slightly larger for fixed-position preload.Fig.7(c)and(d)show the sliding velocity distributions in the contact ellipse.The sliding velocity along the major axis of the contact ellipse is caused by gyroscopic motion,and the sliding velocity along the minor axis is the combined velocity of differential sliding and spin sliding of the ball and the raceway.The axis of abscissa represents the dimensionless major axis of the contact ellipse by dividing the actual contact ellipse into equidistant strips.The sliding velocity at the center of each narrow strip is calculated and output.The sliding velocity distributions show that the gyro sliding velocity with a friction coefficient of 0.02 is slightly higher than that of 0.08,which leads to a larger QV value.In the rolling direction,there is one pure rolling point in the ball/outer race contact area,while two pure rolling points in the ball/inner race contact area.The sliding velocity of the ball/outer race contact is higher than that of the ball/inner race contact,which indicates that the ball spins mainly on the outer race.That is because the groove curvature factor of the outer race is larger(0.585),the resistance torque is small,and the ball is prone to spin on the outer race.

    The wear of the ball and the raceway is equivalent to the ball diameter reduction.In Fig.8,when the ball diameter wear is 0.5 μm,the residual preload offixed-position preload is obviously smaller than that of constant-force preload,and the QV value decreases as the contact load decreases.The residual preload force here is calculated from the axial component of the contact force between the ball and the inner race.Fig.8(c)and(d)show that when the friction coefficient of the ball/race contact is 0.08,the gyro sliding velocity is very low that is almost zero,and the sliding velocity in the rolling direction is close for the two types of preload.Results indicate that fixed-position preload is more sensitive to a change of the wear volume.The ball diameter is reduced by 0.025%,and the preload is decreased by 60.33%.

    3.2.Effects of wear volume

    The friction coefficient between the ball and the raceway is given as 0.08,and the results of the ball diameter wear of 0,0.1,0.3,0.5,and 0.7 μm are shown in Fig.9.

    Fig.10 Effects of the wear volume on wear parameters for different preload methods(μ=0.02).

    As can be seen in Fig.9,when the friction coefficient is 0.08,the QV value of constant-force preload is basically kept constant with an increase of the ball diameter wear,while the QV value offixed-position preload is reduced along with the residual preload.The contact angle of the ball/inner race increases and that of the ball/outer race decreases for fixedposition preload,while both the contact angles increase slowly as the ball diameter wear increases for constant-force preload.The variation of the time-averaged wear rate of the ball is the same as that of the QV value.As shown in Fig.8(c)and(d),the preload force has little influence on the sliding velocity distributions of the contact ellipses when the friction coefficient is about 0.08.

    Given the friction coefficient between the ball and the raceway as 0.02,the wear parameters change with the ball diameter wear as shown in Fig.10.With an increase of the ball diameter wear,the QV values fluctuate for both preload methods.This is caused by the variation of the sliding velocity components of the ball/race contacts under different wear volumes.For fixed-position preload,the QV value decreases with a decrease of the contact load on the whole before the ball diameter wear volume is 0.4 μm,and then increases obviously,which indicates that the sliding velocity of the ball/race contacts is increased significantly.Fig.10(c)and(d)show that,for fixed-position preload,when the friction coefficient is small as 0.02,the gyro sliding velocity increases greatly with an increase of the ball diameter wear for insufficient preload.Considering the effect of lubricant viscosity resistance20,when the ball diameter wear is larger than 0.6 μm,a slip occurs in the rolling direction due to an insufficient drag force between the ball and the raceway,which results in an obvious increase in the QV value.

    4.Conclusions

    (1)A wear numerical simulation model based on the angular contact ball bearing dynamics was established.Considering the in fluences of differential sliding,spin sliding,and gyro sliding of the ball/race contacts,the wear properties of the bearing changing with the friction coefficient,wear,and preload methods were quantitatively analyzed by the QV value of the ball/race contacts.This work can provide a theoretical basis for the preload and preload methods optimization of high-speed instrument ball bearings.

    (2)Under the same initial preload,the QV value decreases with an increase of the friction coefficient for both preload methods,and that of the fixed-position preload is slightly greater.When the friction coefficient is larger than 0.05,the velocity of gyro sliding is very small,which can significantly reduce the QV value.The fixedposition preload is more sensitive to a change of the wear volume.The ball diameter is reduced by 0.025%,and the preload is decreased by 60.33%.

    (3)Given a friction coefficient of 0.08 between the ball and the race,with the ball diameter wear increasing,the QV value of constant-force preload remains essentially unchanged,while that offixed-position preload reduces with the residual preload.For fixed-position preload,when the friction coefficient is small as 0.02,the gyro sliding velocity increases greatly with an increase of the ball diameter wear for insufficient preload.Meanwhile,a slip may occur in the rolling direction,which will lead to a significant increase in the QV value.

    (4)The QV value of ball/race contacts varies with the lubrication condition and wear volume.An estimation of the bearing wear life under different preload methods requires a consideration of changes in the wear rate.

    Acknowledgement

    This study was supported by the National‘the twelfth fiveyear’Projects of Science and Technology of China.

    1.Harris TA.Rolling bearing analysis-essential concepts of bearing technology.5th ed.New York:John Wiley&Sons,Inc.;2001.p.158–63.

    2.Alfares MA,Elsharkawy AA.Effects of axial preloading of angular contact ball bearings on the dynamic of a grinding machine spindle system.J Mater Process Technol 2003;136(1–3):48–59.

    3.Xu T,Xu GH,Zhang Q,Hua C,Tan HH,Zhang SC,et al.A preload analytical method for ball bearings utilizing bearing skidding criterion.Tribol Int 2013;67(11):44–50.

    4.Kaczor J,Raczynski A.The effect of preload of angular contact ball bearings on durability of bearing system.J Eng Tribol 2015;229(6):723–32.

    5.Cao YZ,Altintas Y.A general method for the modeling of spindle bearing systems.J Mech Des 2004;126(6):557–66.

    6.Li JD,Zhu YS,Xiong QQ,Yan K.Research on axial dynamic stiffness offix-pressure spindle.J Xi’an Jiaotong Univ 2014;48(10):126–30[Chinese].

    7.Deng SE,Wang YS,Li XN.Experimental study on the relationship between bearing preload and system natural frequency.J Aerospace Power 2010;25(8):1883–7[Chinese].

    8.Spiewak SA,Nickel T.Vibration based preload estimation in machine tool spindles.Int J Mach Tools Manuf 2001;41(4):567–88.

    9.Holkup T,Cao HR,Kolar P,Altintas Y,Zeleny J.Thermomechanical model of spindles.CIRP Annals Manuf Technol 2010;59(1):365–8.

    10.Jeng YR,Gao CC.Investigation of the ball-bearing temperature rise under an oil-air lubrication system.J Eng Tribol 2001;215(2):139–48.

    11.Hagiu GD,Ga fitanu MD.Preload-service life correlation for ball bearings on machine tool main spindles.Wear 1994;172(1):79–83.

    12.Jiang SY,Mao HB.Investigation of variable optimum preload for a machine tool spindle.Int J Mach Tools Manuf 2010;50(1):19–28.

    13.Li HQ,Shin YC.Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model.Int J Mach Tools Manuf 2004;44(4):347–64.

    14.Cao HR,Holkup T,Altintas Y.A comparative study on the dynamic of high speed spindles with respect to different preload mechanisms.Int J Adv Manuf Technol 2011;57(9):871–83.

    15.Liu CH,Chen XY,Gu JM,Jiang SN,Feng ZL.High-speed wear lifetime analysis of instrument ball bearings.J Eng Tribol 2009;223(3):497–510.

    16.Gupta PK,Forster NH.Modeling of wear in a solid-lubricated ball bearing.Tribol Trans 1986;30(1):55–62.

    17.Gupta PK.Advanced dynamic of rolling elements.New York:Springer-Verlag;1984.p.9–23.

    18.Houpert L.Ball bearing and tapered roller bearing torque:analytical,numerical and experimental results.Tribol Trans 2002;45(3):345–53.

    19.Kingsbury EP,Walker R.Motions of an unstable retainer in an instrument ball bearing.J Tribol 1994;116(2):202–8.

    20.Schlichting H,Gersten K.Boundary-layer theory.Berlin:Springer-Verlag;2000.p.15-9,93–9,606–8.

    亚洲av成人不卡在线观看播放网 | 亚洲成人手机| 狂野欧美激情性xxxx| 免费人妻精品一区二区三区视频| 五月开心婷婷网| 精品国产一区二区三区四区第35| 日韩,欧美,国产一区二区三区| 91九色精品人成在线观看| 天堂8中文在线网| 男女国产视频网站| 国产精品人妻久久久影院| 只有这里有精品99| 亚洲精品一区蜜桃| 午夜久久久在线观看| 电影成人av| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久成人aⅴ小说| 99热全是精品| 女人久久www免费人成看片| 亚洲国产欧美日韩在线播放| 精品少妇一区二区三区视频日本电影| 秋霞在线观看毛片| 国产成人欧美| 国产免费又黄又爽又色| 另类亚洲欧美激情| 午夜福利在线免费观看网站| 在线看a的网站| 丝袜人妻中文字幕| 最黄视频免费看| 香蕉国产在线看| 亚洲国产精品一区二区三区在线| 黄频高清免费视频| 日韩中文字幕欧美一区二区 | 丰满少妇做爰视频| av一本久久久久| 国产精品亚洲av一区麻豆| 欧美日韩成人在线一区二区| 青春草视频在线免费观看| 午夜两性在线视频| 色婷婷久久久亚洲欧美| 久久国产精品人妻蜜桃| 精品久久蜜臀av无| 国产色视频综合| 成人亚洲欧美一区二区av| 欧美成人精品欧美一级黄| 精品国产国语对白av| 99香蕉大伊视频| av网站免费在线观看视频| 国产精品一区二区在线观看99| 人人妻人人澡人人爽人人夜夜| 丁香六月天网| 国产国语露脸激情在线看| 精品熟女少妇八av免费久了| 日本wwww免费看| 99久久精品国产亚洲精品| 婷婷色麻豆天堂久久| 中文字幕人妻丝袜制服| 亚洲精品美女久久久久99蜜臀 | 新久久久久国产一级毛片| 男人舔女人的私密视频| 日韩一卡2卡3卡4卡2021年| 亚洲 国产 在线| 老司机靠b影院| 热re99久久国产66热| 91老司机精品| 美女扒开内裤让男人捅视频| 美女大奶头黄色视频| 夫妻性生交免费视频一级片| 日韩欧美一区视频在线观看| 精品亚洲乱码少妇综合久久| 午夜激情av网站| 国产精品 国内视频| 日本午夜av视频| 七月丁香在线播放| 国产男女内射视频| 免费高清在线观看视频在线观看| 大话2 男鬼变身卡| 波野结衣二区三区在线| 19禁男女啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 精品一区二区三区四区五区乱码 | 人人妻人人爽人人添夜夜欢视频| www.自偷自拍.com| 夜夜骑夜夜射夜夜干| 一级毛片女人18水好多 | 欧美老熟妇乱子伦牲交| 一边摸一边做爽爽视频免费| 中文欧美无线码| 你懂的网址亚洲精品在线观看| 成年美女黄网站色视频大全免费| 亚洲色图 男人天堂 中文字幕| 多毛熟女@视频| 啦啦啦中文免费视频观看日本| 不卡av一区二区三区| 精品福利观看| 亚洲av在线观看美女高潮| 啦啦啦视频在线资源免费观看| 国产国语露脸激情在线看| 日本猛色少妇xxxxx猛交久久| 亚洲精品久久午夜乱码| 亚洲精品久久午夜乱码| 久久影院123| 三上悠亚av全集在线观看| a 毛片基地| 悠悠久久av| 久久久久国产精品人妻一区二区| 蜜桃国产av成人99| 亚洲欧美色中文字幕在线| 中文字幕人妻丝袜一区二区| 精品视频人人做人人爽| 19禁男女啪啪无遮挡网站| 国产精品一区二区在线观看99| 成年人免费黄色播放视频| 一级毛片 在线播放| 欧美日韩视频精品一区| 亚洲av成人精品一二三区| 99久久人妻综合| 国产亚洲av高清不卡| 亚洲五月色婷婷综合| 欧美日韩亚洲高清精品| 免费少妇av软件| 午夜福利在线免费观看网站| 免费看十八禁软件| 观看av在线不卡| 欧美精品av麻豆av| 欧美精品亚洲一区二区| 丝袜喷水一区| 国产精品二区激情视频| 国产亚洲精品久久久久5区| 夫妻性生交免费视频一级片| 精品国产一区二区三区久久久樱花| 亚洲精品自拍成人| 日本色播在线视频| 首页视频小说图片口味搜索 | 国产一级毛片在线| 91字幕亚洲| 国产又爽黄色视频| 18禁国产床啪视频网站| 国产欧美日韩精品亚洲av| 欧美日韩亚洲综合一区二区三区_| 汤姆久久久久久久影院中文字幕| 国产成人91sexporn| 国产精品一区二区免费欧美 | www.自偷自拍.com| 黄频高清免费视频| xxxhd国产人妻xxx| 精品一区二区三卡| 波多野结衣一区麻豆| 国产成人精品久久二区二区免费| 精品一品国产午夜福利视频| 久9热在线精品视频| 免费一级毛片在线播放高清视频 | 美女视频免费永久观看网站| 午夜福利免费观看在线| 免费av中文字幕在线| 欧美日韩黄片免| 女性生殖器流出的白浆| 亚洲国产中文字幕在线视频| 久久久久久久大尺度免费视频| 国产男女超爽视频在线观看| 国产精品 欧美亚洲| 亚洲欧美日韩另类电影网站| 91精品三级在线观看| 99久久精品国产亚洲精品| 手机成人av网站| 欧美人与善性xxx| 性少妇av在线| 亚洲精品在线美女| 国产福利在线免费观看视频| 高清不卡的av网站| 精品一品国产午夜福利视频| 午夜老司机福利片| 少妇 在线观看| 久久久久精品人妻al黑| 各种免费的搞黄视频| 国产精品免费视频内射| 精品国产一区二区三区久久久樱花| 国产亚洲午夜精品一区二区久久| 婷婷成人精品国产| 亚洲一码二码三码区别大吗| 国产成人a∨麻豆精品| tube8黄色片| 久久久亚洲精品成人影院| av天堂久久9| 国产爽快片一区二区三区| 性色av乱码一区二区三区2| 中国国产av一级| 亚洲精品一区蜜桃| 日本av免费视频播放| 少妇猛男粗大的猛烈进出视频| 丁香六月天网| 欧美亚洲 丝袜 人妻 在线| 国精品久久久久久国模美| 天天影视国产精品| 人人妻人人澡人人看| 又黄又粗又硬又大视频| 精品人妻熟女毛片av久久网站| av片东京热男人的天堂| 美女视频免费永久观看网站| 久久免费观看电影| 精品国产国语对白av| 两个人免费观看高清视频| 美女主播在线视频| 9热在线视频观看99| 久久鲁丝午夜福利片| 十分钟在线观看高清视频www| 亚洲欧美日韩另类电影网站| 51午夜福利影视在线观看| 青青草视频在线视频观看| 极品少妇高潮喷水抽搐| 欧美人与性动交α欧美精品济南到| 一本综合久久免费| 国产一区二区激情短视频 | a 毛片基地| www.av在线官网国产| av又黄又爽大尺度在线免费看| 超碰97精品在线观看| 国产免费福利视频在线观看| 黄色毛片三级朝国网站| 久久天堂一区二区三区四区| 亚洲av日韩精品久久久久久密 | 国产亚洲精品第一综合不卡| 男人操女人黄网站| 国产片特级美女逼逼视频| 看免费成人av毛片| 国产精品 欧美亚洲| 亚洲图色成人| 久久99一区二区三区| 欧美少妇被猛烈插入视频| 18禁观看日本| 日韩大码丰满熟妇| 王馨瑶露胸无遮挡在线观看| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| 手机成人av网站| 性高湖久久久久久久久免费观看| 日本猛色少妇xxxxx猛交久久| 成年av动漫网址| 免费看十八禁软件| 老司机深夜福利视频在线观看 | 最黄视频免费看| 水蜜桃什么品种好| 你懂的网址亚洲精品在线观看| 欧美日韩视频高清一区二区三区二| tube8黄色片| 日本午夜av视频| 丝袜脚勾引网站| 人人妻人人澡人人爽人人夜夜| 国产高清国产精品国产三级| 国产成人系列免费观看| 日本vs欧美在线观看视频| 建设人人有责人人尽责人人享有的| 叶爱在线成人免费视频播放| 一区二区三区四区激情视频| 黄片小视频在线播放| 精品欧美一区二区三区在线| 亚洲精品国产av蜜桃| 美女大奶头黄色视频| 欧美日韩国产mv在线观看视频| 1024香蕉在线观看| 又粗又硬又长又爽又黄的视频| 男人舔女人的私密视频| 日本午夜av视频| 97精品久久久久久久久久精品| 香蕉丝袜av| 午夜免费鲁丝| 91麻豆精品激情在线观看国产 | 超碰成人久久| 欧美激情极品国产一区二区三区| 久久久久久久久免费视频了| 国产不卡av网站在线观看| 国产成人免费观看mmmm| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 五月天丁香电影| 夫妻性生交免费视频一级片| 少妇猛男粗大的猛烈进出视频| 熟女av电影| 2018国产大陆天天弄谢| 新久久久久国产一级毛片| 欧美人与性动交α欧美精品济南到| 亚洲精品一卡2卡三卡4卡5卡 | 欧美精品人与动牲交sv欧美| 夜夜骑夜夜射夜夜干| 久久久欧美国产精品| 国产精品九九99| 建设人人有责人人尽责人人享有的| av视频免费观看在线观看| 9191精品国产免费久久| 一区二区三区乱码不卡18| 91成人精品电影| 肉色欧美久久久久久久蜜桃| 少妇人妻 视频| 大片免费播放器 马上看| 精品一区二区三卡| 老鸭窝网址在线观看| 91麻豆av在线| 欧美日韩av久久| 国产高清视频在线播放一区 | 999精品在线视频| 欧美激情极品国产一区二区三区| 少妇人妻久久综合中文| 2021少妇久久久久久久久久久| 在线观看免费视频网站a站| 国产成人影院久久av| 精品一区二区三区av网在线观看 | 又大又爽又粗| 一级毛片女人18水好多 | 首页视频小说图片口味搜索 | 国产成人精品久久二区二区91| 丁香六月欧美| 亚洲人成网站在线观看播放| 欧美中文综合在线视频| 国产淫语在线视频| 777米奇影视久久| 嫩草影视91久久| 91国产中文字幕| 水蜜桃什么品种好| 久久免费观看电影| 亚洲欧美精品综合一区二区三区| 国产精品 国内视频| 欧美性长视频在线观看| 一级毛片黄色毛片免费观看视频| netflix在线观看网站| 捣出白浆h1v1| av国产精品久久久久影院| 少妇被粗大的猛进出69影院| 午夜久久久在线观看| 国产又爽黄色视频| av网站在线播放免费| tube8黄色片| 18禁黄网站禁片午夜丰满| 99久久99久久久精品蜜桃| av天堂在线播放| 国产欧美日韩一区二区三 | 男女床上黄色一级片免费看| 国产成人欧美| 国产午夜精品一二区理论片| 国产亚洲精品久久久久5区| 黄色片一级片一级黄色片| 一级毛片女人18水好多 | 成人手机av| 婷婷色麻豆天堂久久| 首页视频小说图片口味搜索 | www.999成人在线观看| 日韩一卡2卡3卡4卡2021年| 黄网站色视频无遮挡免费观看| av视频免费观看在线观看| 国产麻豆69| 午夜激情av网站| 大香蕉久久网| av片东京热男人的天堂| 亚洲成人免费电影在线观看 | 五月天丁香电影| 黄色视频不卡| 亚洲精品国产一区二区精华液| 亚洲精品第二区| 国产精品国产三级国产专区5o| 一二三四社区在线视频社区8| 首页视频小说图片口味搜索 | 制服诱惑二区| 女性被躁到高潮视频| 人妻一区二区av| 七月丁香在线播放| 亚洲精品国产区一区二| 婷婷色综合大香蕉| 悠悠久久av| 一区在线观看完整版| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 99热全是精品| 制服诱惑二区| 国产欧美日韩一区二区三区在线| 美女主播在线视频| 亚洲av成人不卡在线观看播放网 | 亚洲中文日韩欧美视频| 欧美日本中文国产一区发布| 日日夜夜操网爽| 午夜福利,免费看| 9色porny在线观看| 国产在线观看jvid| 狂野欧美激情性xxxx| 午夜影院在线不卡| 熟女少妇亚洲综合色aaa.| av欧美777| 国产精品 欧美亚洲| 国产av一区二区精品久久| 欧美国产精品一级二级三级| 熟女av电影| 久久综合国产亚洲精品| 99国产精品免费福利视频| 精品少妇久久久久久888优播| 久久久久精品人妻al黑| 亚洲中文日韩欧美视频| 人体艺术视频欧美日本| 精品卡一卡二卡四卡免费| 人人妻人人澡人人爽人人夜夜| 好男人视频免费观看在线| 女性生殖器流出的白浆| 亚洲国产欧美网| 波野结衣二区三区在线| 超碰成人久久| 一级,二级,三级黄色视频| 一级黄片播放器| 国产精品成人在线| 狠狠精品人妻久久久久久综合| 精品国产一区二区久久| 中文字幕制服av| 少妇人妻 视频| 97在线人人人人妻| 爱豆传媒免费全集在线观看| 男女无遮挡免费网站观看| 欧美日韩亚洲国产一区二区在线观看 | 一边摸一边做爽爽视频免费| 后天国语完整版免费观看| 老司机靠b影院| 亚洲欧洲国产日韩| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看 | 久久午夜综合久久蜜桃| 日韩,欧美,国产一区二区三区| 啦啦啦在线免费观看视频4| 成人亚洲精品一区在线观看| av电影中文网址| 高清黄色对白视频在线免费看| 777久久人妻少妇嫩草av网站| 婷婷色麻豆天堂久久| 妹子高潮喷水视频| 亚洲av成人精品一二三区| 亚洲av在线观看美女高潮| 亚洲成国产人片在线观看| 搡老岳熟女国产| 夫妻午夜视频| 亚洲av美国av| 免费一级毛片在线播放高清视频 | 熟女av电影| 啦啦啦中文免费视频观看日本| 成人亚洲精品一区在线观看| 欧美性长视频在线观看| 中国美女看黄片| 亚洲精品国产区一区二| 亚洲伊人久久精品综合| 巨乳人妻的诱惑在线观看| 免费久久久久久久精品成人欧美视频| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 男女免费视频国产| 黄网站色视频无遮挡免费观看| 别揉我奶头~嗯~啊~动态视频 | 美女脱内裤让男人舔精品视频| 最近手机中文字幕大全| 国产精品久久久久久人妻精品电影 | 国产精品亚洲av一区麻豆| 热99国产精品久久久久久7| 久久人妻福利社区极品人妻图片 | 日韩大码丰满熟妇| 亚洲国产欧美日韩在线播放| 十分钟在线观看高清视频www| 国产淫语在线视频| 天堂8中文在线网| 欧美激情极品国产一区二区三区| 夜夜骑夜夜射夜夜干| 日韩人妻精品一区2区三区| 亚洲欧美激情在线| 黄色片一级片一级黄色片| 涩涩av久久男人的天堂| 久久久精品94久久精品| 精品少妇黑人巨大在线播放| 精品久久久精品久久久| 国产精品久久久久久人妻精品电影 | 国产亚洲午夜精品一区二区久久| 亚洲,欧美精品.| 真人做人爱边吃奶动态| 肉色欧美久久久久久久蜜桃| 99热全是精品| 国产国语露脸激情在线看| av在线app专区| www.精华液| 免费在线观看完整版高清| 国产成人a∨麻豆精品| 久久精品国产亚洲av高清一级| 99热全是精品| 国产麻豆69| 日韩精品免费视频一区二区三区| 亚洲av电影在线观看一区二区三区| 国产三级黄色录像| 老司机影院成人| 国产黄频视频在线观看| 日韩制服丝袜自拍偷拍| 免费久久久久久久精品成人欧美视频| 国产成人一区二区在线| 女人爽到高潮嗷嗷叫在线视频| 母亲3免费完整高清在线观看| 一区二区三区激情视频| 国产成人av教育| 精品国产一区二区三区四区第35| 色视频在线一区二区三区| 99国产综合亚洲精品| 成年人午夜在线观看视频| 亚洲精品自拍成人| 黄色 视频免费看| 国产精品秋霞免费鲁丝片| 嫩草影视91久久| 18禁裸乳无遮挡动漫免费视频| 成年动漫av网址| 国产片内射在线| 亚洲第一青青草原| 啦啦啦视频在线资源免费观看| 成在线人永久免费视频| 一边摸一边抽搐一进一出视频| 最新的欧美精品一区二区| 热re99久久精品国产66热6| 别揉我奶头~嗯~啊~动态视频 | 欧美黑人精品巨大| 在线观看国产h片| 国产伦理片在线播放av一区| 91精品伊人久久大香线蕉| 最近中文字幕2019免费版| a级毛片黄视频| 嫁个100分男人电影在线观看 | 18禁黄网站禁片午夜丰满| 一个人免费看片子| 男女国产视频网站| 欧美成人午夜精品| 一区二区三区精品91| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 色视频在线一区二区三区| 精品人妻在线不人妻| 99精品久久久久人妻精品| 一区二区三区激情视频| 国产精品 国内视频| 免费在线观看视频国产中文字幕亚洲 | 国产日韩一区二区三区精品不卡| 亚洲少妇的诱惑av| 精品国产乱码久久久久久小说| 久热爱精品视频在线9| 精品国产一区二区三区久久久樱花| 精品少妇久久久久久888优播| 国产午夜精品一二区理论片| 美女扒开内裤让男人捅视频| 日韩视频在线欧美| 最新在线观看一区二区三区 | 热99久久久久精品小说推荐| 美女扒开内裤让男人捅视频| 一个人免费看片子| 亚洲精品乱久久久久久| 丝瓜视频免费看黄片| 99热国产这里只有精品6| 在线观看www视频免费| 久久这里只有精品19| 亚洲人成网站在线观看播放| 99九九在线精品视频| 久久久亚洲精品成人影院| 老熟女久久久| 国产精品一区二区在线不卡| 国产有黄有色有爽视频| 欧美日韩黄片免| 一级毛片 在线播放| 亚洲男人天堂网一区| 91九色精品人成在线观看| 免费人妻精品一区二区三区视频| 波多野结衣av一区二区av| 亚洲av电影在线观看一区二区三区| 国产熟女欧美一区二区| 亚洲精品国产区一区二| av网站在线播放免费| 国产一区二区激情短视频 | 少妇被粗大的猛进出69影院| 99九九在线精品视频| 大香蕉久久成人网| 国产亚洲av片在线观看秒播厂| 黄片播放在线免费| 大型av网站在线播放| 女人被躁到高潮嗷嗷叫费观| 夫妻午夜视频| 欧美日韩综合久久久久久| 久久久精品区二区三区| 婷婷丁香在线五月| 女人久久www免费人成看片| 国产精品久久久久久精品电影小说| 人人妻人人澡人人看| 一区二区日韩欧美中文字幕| 国精品久久久久久国模美| 日韩av不卡免费在线播放| 老熟女久久久| 两个人看的免费小视频| 狠狠婷婷综合久久久久久88av| 另类精品久久| 国产激情久久老熟女| 国产精品.久久久| 国产视频一区二区在线看| 亚洲av男天堂| 亚洲第一青青草原| 久久精品亚洲熟妇少妇任你| 日本午夜av视频| 欧美变态另类bdsm刘玥| 91精品国产国语对白视频| 日韩av不卡免费在线播放| 91成人精品电影| 亚洲 欧美一区二区三区| 欧美精品一区二区大全| 亚洲 国产 在线| 丰满迷人的少妇在线观看| 最近最新中文字幕大全免费视频 | 中文精品一卡2卡3卡4更新| 女性生殖器流出的白浆| 亚洲成人免费电影在线观看 | 欧美人与善性xxx| a 毛片基地| 桃花免费在线播放| 深夜精品福利| www日本在线高清视频| 久久精品久久久久久噜噜老黄| 少妇被粗大的猛进出69影院|