• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adapitive waveform design for distributed OFDM MIMO radar system in multi-target scenario

    2018-04-19 08:29:25HaitaoWANGJunpengYUWenzhenYUDeBEN
    CHINESE JOURNAL OF AERONAUTICS 2018年3期

    Haitao WANG,Junpeng YU,Wenzhen YU,De BEN

    Nanjing Research Institute of Electronics Technology,Nanjing 210039,China

    1.Introduction

    Recently,distributed Orthogonal-Frequency-Division Multiplexing(OFDM)Multiple-Input Multiple-Output(MIMO)radar system has attracted a lot of interest because this kind of radar system integrates the performance potentials of distributed MIMO radar and OFDM waveform.1,2It has been demonstrated in extensive literature that MIMO radar has more outstanding performance than the Single-Input Single-Output(SISO)counterpart.3Furthermore,compared with the collocated MIMO system,distributed MIMO radar has widely separated antennas,so it provides additional space diversity which is likely to benefit detection task.4,5

    Waveform design is one of the most important issues for MIMO radar.6,7Different from phase-encoding orthogonal waveform,OFDM waveform provides the frequency diversity that may also be beneficial to radar detection.8–10What’s more,one target usually has the different Doppler frequencies for the separate antennas of distributed radar system and OFDM waveform possesses high Doppler tolerance in general,8so this kind of waveform fits distributed radar especially.The OFDM waveform used in our work is composed of a number of Linear Frequency-Modulated(LFM)signals with the same bandwidth but different sub-carriers.9,10These LFM sub-waveforms are orthogonal to each other because they are separated in frequency domain.

    Adaptive Waveform Design(AWD)has become an active topic in radar research domain over the past decades.11–15This technique devotes to improving radar performance by adjusting transmitted waveform adaptively according to the priori knowledge of the environment and/or the radar system.11Many researchers have demonstrated the advantages of AWD for various radar configuration and operation tasks.Typically,the AWD approaches for several types of MIMO radars are discussed in Refs.13–15while the AWD algorithms are proposed for SISO radar systems in Refs.11,12Note that Ref.12involves the scenario of multiple targets and that the AWD issues in Refs.12,13are presented from the view of information theory.

    The contribution of our work in this paper is threefold.Firstly,we regard detection and estimation of multiple targets for distributed OFDM MIMO radar system as a problem of sparse recovery and derive the sparse measurement model of this radar system.The algorithm based on Decomposed Dantzig Selectors(DDS)is applied to our sparse recovery.9,16The study in Ref.16shows that DDS is more efficient than standard Dantzig Selector(DS)if both the system matrix and the sparse vector of the measurement model have the relevant block structures.Note that this sparse measurement model is also a key foundation to apply the technique of Compressed Sensing(CS)later.

    Secondly,we propose a novel AWD approach based on the Multi-Objective Optimization(MOO)for distributed OFDM MIMO radar system.One objective function we construct is to minimize the upper bound of the recovery error,and the other is to maximize the return energy of the weakest target.The former commits to reduce the recovery error and the latter devotes to improving the detection and estimation for the weak targets.These two objective functions can be solved by the result in Refs.17,18and some convex optimization approaches19respectively.Furthermore,we apply the popular Nondominated Sorting Genetic Algorithm II(NSGA-II)to solve our MOO problem in this paper.20Generally,there exist a set of optimal solutions for a MOO problem,which are called Pareto-optimal solutions.21The complex amplitudes of the transmitted OFDM waveform can be adjusted adaptively according to the optimal solutions of this MOO problem.

    Thirdly,we introduce the technique of CS to the proposed scheme in this paper.The acceptable sensor performance is likely to be realized by this emerging technique when available samples are reduced dramatically.22It has a special meaning to airborne and space-borne radar systems because their capability of data transmission is restricted by wireless links.

    Several numerical examples are given in this paper to show the detection and estimation improvement induced by the proposed AWD approach for distributed OFDM MIMO radar system.Their results show that,evaluated by empirical Receiver Operation Characteristics(ROC)and Root Mean Square Error(RMSE),the AWD approach based on either of two objective functions performs better than the traditional manner in which the OFDM waveform with fixed uniform amplitudes are transmitted,and that the AWD approach based on the proposed MOO technique behaves best.We also provide the numerical simulations to assess the system performance when the CS technique is introduced to the proposed scheme in this paper.Their results show that the proposed MOO-based AWD approach improves the system performance of distributed OFDM MIMO radar markedly when the available samples are reduced severally and the CS technique is applied.

    The rest of the paper is organized as follows.We derived the sparse measurement model of distributed OFDM MIMO radar system in Section 2.Next,the DDS-based sparse recovery algorithm is stated brie fly in Section 3.We proposed a novel AWD approach based on the MOO in Section 4.Some numerical examples and conclusions are provided in Section 5 and Section 6 respectively.

    2.Measurement model

    It is assumed that the distributed OFDM MIMO radar system has MTtransmitters and MRreceivers,and that there are K point targets which move in a two-dimensional(2-D)plane.Note that our work can be generalized easily to the threedimensional(3D)case.The kth target locatesand has a velocityin a Cartesian coordinate system.The ith transmitter and the jth receiver locate at ti= [tix,tiy]and rj= [rjx,rjy]respectively.Each of the transmitters sends the OFDM signal at one sub-carrier.We assume that the total transmitted energyper pulse where Eiis the energy of the emitting waveform at the ith sub-carrier.

    The band-pass signal arriving at the jth receiver can be written as

    where aiis the complex amplitude weight of the waveform emitted by the ith transmitter.are the signal attenuation,path delay and Doppler shift respectively corresponding to the kth target between the ith transmitter and the jth receiver.Note that the signal attenuation depends on many factors,such as the signal propagation path,target scattering and system loss.fi=fc+iΔf is the ith sub-carrier of the emitting OFDM signal where fcis the operational carrier frequency.Δf=B/(MT+1)is the spacing between the adjacent sub-carriers where B is the total bandwidth of the transmitted OFDM signal.The duration time of the transmitted waveform is defined as T.

    where 〈·〉is the inner product operator and c is the speed of the electromagnetic wave.andare the unit vector from the ith transmitter to the kth target and the unit vector from the kth target to the jth receiver respectively.

    where eij(n)represents the additive noise,κ represents the set of the targets which contribute the energy to this match filter at the sampling index n,and Tsrepresents the sampling interval.

    We define the target state vector ζ= [px,py,vx,vy]Twhich represents the location and velocity of a target.The target state space is discretized into L grids {ζ(l),?l=1,2,···,L} which contain all the possible states.We define

    What’s more,if the target state vector of the kth target is ζ(l),we define

    xijin Eq.(9)is a L×1 sparse vector which has only K nonzero elements.

    We stack xij(n),yij(n)and eij(n)into a LMR-dimensional column vector xi(n)and two MR-dimensional column vectors yi(n)and ei(n)as Eqs.(10)–(12)for every i respectively.Similarly,we exploit the matrices ψij(n)and aito form a blockdiagonal matrix ψi(n)and a diagonal matrix Aias Eqs.(13)and(14)for every i respectively.

    In Eqs.(10)–(14),diag{·} represents a diagonal matrix whose entries on the main diagonal are given by {·},and blkdiag{·}represents a block-diagonal matrix whose block matrices on the main diagonal are given by {·}.Next,we stackintoaLMTMR-dimensional column vector x and two MTMR-dimensional column vectors y(n)and e(n)as Eqs.(15)–(17)respectively.Furthermore,we exploit the matricesandto form a LMTMR× MTMRblock-diagonal matrix ψ(n)and a diagonal matrix A as Eqs.(18)and(19)respectively.

    The sparse vector x has KMTMRnonzero entries.

    The velocities of the considered targets are far less than the speed of light,so their Doppler effect in one pulse dwelling interval is negligible and multiple pulses are needed to estimate their velocities.We stackandto form y, e and ψ as Eqs.(21)-(23)respectively.

    From Eqs.(21)–(23),we obtain the sparse measurement model of distributed OFDM MIMO radar system as

    The nonzero elements of x represent the signal attenuation values.

    In practice,the measurement data collected by each receiver of distributed MIMO radar system are sent to a shared processor in the fusion center.The shared processor stacks the data properly and obtains the measurement vector y.In other words,the data are not processed locally by any individual receiver because such an un-centralized procedure may lead to suboptimal results.1,10,15

    We derive the sparse measurement model of distributed OFDM MIMO radar system in this section.In the next section,the sparse recovery algorithm based on decomposed Dantzig selectors will be stated.

    3.Sparse recovery

    In this section,we describe the sparse recovery algorithm used in our work brie fly.The purpose of sparse recovery is to estimate the sparse vector x from the measurement vector y and the approach based on Dantzig selector is one of the most popular sparse recovery approaches.5,16DS regards the estimate of x as a solution of the following ?1-regularization problem:

    Note that the vector x in Eq.(24)has a block structure as

    Every sparse sub-vector xiin Eq.(26)has KMRnonzero entries.Furthermore,the system matrix ψ in Eq.(23)can also be rewritten as

    Every NMTMR× LMRblock matrix ψiin Eq.(27)can be described as

    where OMR×LMRis a MR×LMRzero matrix.The block matrices ψis are orthogonal to each other,i.e.,=0 for i1≠i2.

    Based on the block structures of x and ψ,we can apply a revised vision of DS,namely decomposed DS.In this algorithm,MTsmall Dantzig selectors which correspond to MTblocks of x and ψ are run concurrently and each of the small Dantzig selectors is expressed as

    4.Adaptive waveform design

    In this section,we propose an AWD algorithm based on the MOO for distributed OFDM MIMO radar system.As a result,the weight vector a of the complex OFDM waveform amplitudes is adjusted to minimize the upper bound of the recovery error and to maximize the weakest target return in perfect compromise.We study two objective functions and their respective optimal solutions,and then construct the multiobjective optimization.

    4.1.Minimizing upper bound of error

    Lots of merits about the system matrix ψ have been proposed to evaluate the performance of sparse recovery methods.One of the most popular merits is Restricted Isometry Constant(RIC).However,it is very difficult to compute RICs for many types of system matrices.Refs.17,18propose another merit which is much easier to calculate,namely ?1-Constrained Minimal Singular Value(?1-CMSV).In our case, ?1-CMSV is defined as

    where

    The detailed physical explanations of the function s1(x)and?1-CMSV can be found in Refs.17,18

    Considering Theory 2 in Ref.18,the measurement model Eq.(24)and the principle of DDS,we can easily prove that the sparse vector x and its estimate^x obtained by DDS satisfy the following inequality:

    The above inequality is demonstrated in the supplement file owing to the limit of space.

    Note that each ψiin Eq.(27)can be represented asand thus there isIn order to minimize the upper bound of the recovery error,we construct an optimization problem based on Eq.(32)as

    where the vector a= [a1,a2,···,ai,···,aMT]T.The solution of the above optimization problem is easily obtained by the Lagrange-multiplier method as

    4.2.Maximizing the weakest target return

    When there are multiple targets in radar scene,we shall pay more attention to the detection and estimation of weak targets.12The transmitter-receiver pairs of a distributed radar system monitor the targets from different angles and the attenuations of one target corresponding to these pairs are usually different.Every transmitter of a distributed OFDM MIMO radar system sends the signal at one sub-carrier,so we can adjust the complex amplitudes of the sub-carrier waveforms to enhance the returns of the weak targets and to improve their detection and estimation.Accordingly,we propose the second objective function as

    4.3.Multi-objective optimization

    Two objective functions,namely Eqs.(33)and(35),have been proposed above.Next,we propose a constrained MOO problem based on the two functions to design the waveform of distributed OFDM MIMO radar system as

    As mentioned in the introduction,we solve this MOO problem by the NSGA-II20in the simulations.After the optimal solution is obtained,the fusion center of the radar system will send the waveform information to the radar transmitters and the new OFDM waveform will be radiated in the next CPI.

    5.Numerical results

    We provide several numerical simulations in this section to assess the performance improvement brought by the proposed AWD approach based on the constrained MOO technique.

    The distributed OFDM MIMO radar system that we simulate contains three transmitters and three receivers.Their positions are identified in a Cartesian coordinate system.The transmitters are located at t1= [1,0]km,t2= [2,0]km and t3= [3,0]km respectively,and the receivers are located at r1= [0,3]km,r2= [0,2]km and r3= [0,1]km respectively.The radar system parameters are set as follows:carrier frequency fc=1GHz,available bandwidth B=100MHz,sub-carrier amount MT=3, sub-carrier spacing Δf=B/(MT+1)=25MHz,pulse width T=1/Δf=40ns,pulse repetition interval Tp=10μs,and pulse number in one CPI N=128.We assume that there exist three targets in the simulated scenario.The target state spaces about position and velocity are separated into 9×9 and 5×5 grids respectively.Thus,the total number L of possible target states is 2025. Furthermore, the true sparse vector x has LMTMR=18225elementsandthereareKMTMR=27 nonzero elements of them.These targets are located at p(1)= [1.1,2.8]km,p(2)= [0.8,2.8]km and p(3)= [1.0,2.6]km respectively, and their velocities are given as v(1)= [120,100]m/s, v(2)= [110,110]m/s and v(3)=[130,130]m/s respectively.The attenuationss corresponding to all the combinations of the targets,transmitters and receivers are set as

    We assume that the elements of the noise vector e come independently from the Gaussian distribution with zero mean and the variance σ2in our simulations.The Signal to Noise Ratio(SNR)for distributed OFDM MIMO radar system is defined as

    In order to verify the performance of our scheme,we adopt two classical merits,namely empirical ROC and RMSE.Next,we describe brie fly how to obtain the two merits in the simulations.

    As mentioned earlier,the most significant KMTMRelements of the reconstructed vector^x will be on the indices where the nonzero elements of the true sparse vector x lie if the perfect recovery is realized.We define a length-L vector~x as

    Every element of~x integrates the entries of^x which correspond to all the transmitter-receiver pairs for one of the L grids in the target state space.In a similar way,a length-L vectoris structured from x.

    We assume that there are nTelements of the vector~x which are considered as the target responses after a Monte Carlo run.If nDelements of these nTelements lie on the indices with true targets,the empirical probabilities of false alarm(PFA)and correct detection(PD)are calculated respectively as

    where nFA=nT-nD.We obtain the RMSE value by calculating.Note that the approach by which we gain the empirical ROCs here is different from the classical one.

    Four kinds of waveforms are transmitted by the radar system in our simulations and they are:

    Case 1.Traditional OFDM waveform with fixed uniform weights of complex amplitudes.

    Case 2.Dynamic waveform designed adaptively according to the minimization of the upper bound on the recovery error,as discussed in Section 4.1.

    Case 3.Dynamic waveform designed adaptively according to the maximization of the weakest-target return,as discussed in Section 4.2.

    Case 4.Dynamic waveform designed adaptively by the proposed MOO technique,as discussed in Section 4.3.

    As mentioned in the introduction,we use the NSGA-II to solve the MOO problem of Eq.(36).The parameters of this algorithm are chosen as follows:mutation probability=10%,crossover probability=90%,number of generations=50 and population size=500.When the NSGA-II is carried out,we apply the relaxed constraint 0.999≤aHa≤1.001 according to the premise aHa=1 of Eq.(36).The optimal solutions and the corresponding values of two objective functions at the zeroth, fifth and fiftieth generations are shown in Figs.1 and 2 respectively.In Fig.1,we use|a1|,|a2|and|a3|as the axes of Cartesian coordinates and the constraint aHa=1 makes the solutions of every NSGA-II generation lie on the surface of the first unit octant.Note that the return energy of the weakest target is normalized by the noise level.It is shown that almost all of the solutions arrive at or come near the Pareto-front at the end of the fifth generation.We choose one of the solutions on the Pareto-front after the fiftieth generation to optimize our OFDM waveform.

    Fig.1 Optimal solutions obtained by the NSGA-II.

    Fig.2 Optimal values of two objective functions obtained by the NSGA-II.

    The DDS approach described in Section 3 is applied for the sparse recovery in our simulations.The empirical ROCs and RMSEs corresponding to the aforementioned four kinds of waveform are shown in Figs.3 and 4 respectively.They display that three AWD approaches mentioned in Section 4 all improve the radar system performance in terms of empirical ROC and RMSE.However,only the AWD approach based on the proposed MOO realizes both the best empirical ROC and the RMSEs.

    Fig.3 Empirical ROCs corresponding to four kinds of transmitted waveforms.

    Next,as stated in the introduction,we try to evaluate the effect of the proposed MOO-based AWD approach when the compressed sensing technique is integrated into our scheme.Note that the measurement vector y is sparse in the space spanned by all the columns of the matrix ψ.Therefore,we

    Fig.4 Estimation RMSEs corresponding to four kinds of transmitted waveforms.

    can exploit the samples which are far less than the complete size of y to reconstruct the sparse vector x in accordance with the CS theory.22Every receiver of the distributed OFDM MIMO radar system projects its received data by one Gaussian sequence with length of NCSwhere NCS?NMTMRand sends the compressed data to the fusion center of the radar system.The shared processor in fusion center stacks the data from all the receivers appropriately and the measurement model with CS is expressed as

    where Θ is the (NCS)× (NMTMR)sensing matrix.The entries of this matrix come form an independent Gaussian distribution.The compression level of the samples is defined as NCS/(NMTMR)× 100%.We show the advantages of the proposed AWD approach based on the MOO when the available samples are reduced severally and the CS technique is introduced.Figs.5 and 6 show that our MOO-based AWD approach gives the significant improvement in terms of both empirical ROC and estimation RMSE respectively when there are 50%of the samples.It is shown in Figs.7 and 8 that the same conclusion can be drawn even when there are only 25%of the samples.

    Fig.5 Empirical ROCs with and without MOO-based adaptive waveform when 50%of samples are available.

    Fig.6 Estimation RMSEs with and without MOO-based adaptive waveform when 50%of samples are available.

    Fig.7 Empirical ROCs with and without MOO-based adaptive waveform when 25%of samples are available.

    Fig.8 Estimation RMSEs with and without MOO-based adaptive waveform when 25%of samples are available.

    6.Conclusions

    We propose a novel approach of AWD based on the MOO so as to improve the system performance of distributed OFDM MIMO radar in multi-target scene.We translate the detection and estimation task of this radar system into the issue of sparse recovery and derive the sparse measurement model.The recovery algorithm based on DDS is applied according to the block structures of the sparse vector and the system matrix.Next,we construct the constrained MOO problem which minimizes the upper bound of the recovery error and maximizes the weakest target return in optimized compromise.This MOO problem is solved by the NSGA-II in our simulations.Its solution provides the optimal complex weights of the transmitted OFDM waveform amplitudes.

    Several simulations are given in this paper to demonstrate the validity of the proposed AWD algorithm.Their results show that,compared with the traditional fixed uniform OFDM waveform,the MOO-based adaptive waveform leads to the significant performance improvement of the distributed OFDM MIMO radar system.We also demonstrate that our proposed AWD approach based on the MOO affords the remarkable system performance improvement when the available samples are reduced severely and the CS technique is applied.

    Acknowledgement

    This study was supported by the National Basic Research Program of China(No.613205212).

    1.Gu W,Wang D,Ma X,Zheng D,Wu Y.Distributed OFDMMIMO radar track-before-detect based on second order target state model.Proceedings of 2016 IEEE information technology,networking, electronic and automation control conference(ITNEC);2016 May 20–22;Chongqing.Piscata way:IEEE Press;2016.p.667–71.

    2.Mohamed AH,Alexander MH,Rick B.Sidelobe mitigation in MIMO radar with multiple subcarriers.Proceedings of 2009 IEEE radar conference;2009 May 4–8;Pasadena.Piscataway:IEEE Press;2009.p.1–6.

    3.Tetsuya O,Idnin P,Takehiko K.Experimental evaluation of detection performance of a MIMO radar testbed.Proceedings of 2013 US national committee of URSI national radio science meeting(USNC-NRSI NRSM);2013 Jan 9–12;Boulder.Piscataway:IEEE Press;2013.p.1–1.

    4.Wang P,Li H,Braham H.Moving target detection using distributed MIMO radar in clutter with nonhomogeneous power.IEEE Trans Signal Process 2011;59(10):4809–20.

    5.Sandeep G,Arye N.Target estimation using sparse modeling for distributed MIMO radar.IEEE Trans Signal Process 2011;59(11):5315–25.

    6.Cui G,Li H,Muralidhar R.MIMO radar waveform design with constant modulus and similarity constraints.IEEE Trans Signal Process 2014;62(2):343–53.

    7.Sajid A,John ST,Yvan RP,Bernard M.Finite alphabet constantenvelope waveform design for MIMO radar.IEEE Trans Signal Process 2011;59(11):5326–37.

    8.Xia Y,Song Z,Lu Z,Fu Q.A novel range-Doppler imaging algorithm with OFDM radar.Chin J Aeronaut2016;29(2):492–501.

    9.Satyabrata S,Tang G,Arye N.Multiobjective optimization of OFDM radar waveform for target detection.IEEE Trans Signal Process 2011;59(2):639–52.

    10.Gu W,Wang D,Ma X.High speed moving target detection using distributed OFDM-MIMO phased radar.Proceedings of 2014 12th international conference on signal processing(ICSP);2014 Oct 19–23;Hangzhou.Piscataway:IEEE Press;2014.p.2087–91.

    11.Wang HT,Shi L,Wang Y,Ben D.A novel target detection approach based on adaptive radar waveform design.Chin J Aeronaut 2013;26(1):194–200.

    12.Leshem A,Naparstek O,Nehorai A.Information theoretic adaptive radar waveform design for multiple extended targets.IEEE J Sel Topics Signal Process 2007;1(1):42–55.

    13.Sandeep G,Arye N.Adaptive waveform design for collocated MIMO radar using sparse modeling.Proceedings of 2011 4th IEEE international workshop on computational advances in multi-sensor adaptive processing(CAMSAP);2011 Dec 13–16;San Juan.Piscataway:IEEE Press;2011.p.13–6.

    14.Wasim H,Joseph T,Reuven S.Optimal adaptive waveform design for cognitive MIMO radar.IEEE Trans Signal Process 2013;61(20):5075–89.

    15.Chen Y,Yogesh N,Yuen C,Chew Y,Ding Z.Adaptive distributed MIMO radar waveform optimization based on mutual information. IEEE Trans Aerosp Electron Syst 2013;49(2):1374–85.

    16.Satyabrata S,Tang G,Arye N.Sparsity-based estimation for target detection in multipath scenarios.Proceedings of 2011 IEEE RadarCon(RADAR);2011 May 23–27;Kansas.Piscataway:IEEE Press;2011.p.303–8.

    17.Tang G,Arye N.The stability of low-rank matrix reconstruction:A constrained singular value view.IEEE Trans Inf Theory 2012;58(9):6079–92.

    18.Tang G,Arye N.Computable quantification of the stability of sparse signal reconstruction.Proceedings of 2010 conference record of the forty fourth asilomar conference on signal,systems and computer(ASILOMAR);2010 Nov 7–10;Pacific Grove.Piscataway:IEEE Press;2011.p.248–52.

    19.Hu L,Liu H,Feng D,Jiu B,Wang X,Wu S.Optimal mismatched filter bank design for MIMO radar via convex optimization.Proceedings of 2010 international waveform diversity and design conference;2010 Aug 8–13;Niagara.Piscataway:IEEE Press;2010.p.126–31.

    20.Jeremy S,Gary L,Geoffrey A.Radar phase-coded waveform design using MOEAs.Proceedings of 2012 IEEE congerss on evolutionary computation(CEC);2012 June 10–15;Brisbane.Piscataway:IEEE Press;2012.p.1664–71.

    21.Satyabrata S.PAPR-constrained Pareto-optimal waveform design for OFDM-STAP radar.IEEE Trans Geosci Remote Sens 2014;52(6):3658–69.

    22.Laura A,Matern O,Peter H.False alarm probability estimation for compressive sensing radar.Proceedings of 2011 IEEE radar conference;2011 May 23–27;Kansas.Piscataway:IEEE Press;2011.p.206–11.

    免费观看人在逋| 国产aⅴ精品一区二区三区波| 99热6这里只有精品| 成人三级做爰电影| 两性午夜刺激爽爽歪歪视频在线观看| www日本在线高清视频| 精品一区二区三区视频在线观看免费| 美女高潮喷水抽搐中文字幕| 岛国在线免费视频观看| 久久草成人影院| 成人欧美大片| 我的老师免费观看完整版| 18禁国产床啪视频网站| 午夜福利在线观看吧| 老司机午夜福利在线观看视频| 99久久精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久,| 国产av不卡久久| 久久久久九九精品影院| 久久精品91蜜桃| 综合色av麻豆| 久久久色成人| 99热精品在线国产| 999久久久精品免费观看国产| 啦啦啦免费观看视频1| 天天添夜夜摸| 成人午夜高清在线视频| 法律面前人人平等表现在哪些方面| 国产成人精品久久二区二区免费| 男人舔女人的私密视频| 国产欧美日韩精品亚洲av| 国模一区二区三区四区视频 | 亚洲午夜理论影院| 午夜视频精品福利| 久久久久久国产a免费观看| 亚洲成av人片免费观看| 国产aⅴ精品一区二区三区波| 18禁裸乳无遮挡免费网站照片| 亚洲精品中文字幕一二三四区| 91久久精品国产一区二区成人 | 他把我摸到了高潮在线观看| 亚洲国产欧美人成| 免费大片18禁| 欧美xxxx黑人xx丫x性爽| 青草久久国产| 精品一区二区三区四区五区乱码| 人妻久久中文字幕网| 天堂网av新在线| 网址你懂的国产日韩在线| 无遮挡黄片免费观看| 亚洲熟妇中文字幕五十中出| 欧美成人免费av一区二区三区| 成人一区二区视频在线观看| 成年女人看的毛片在线观看| 欧美午夜高清在线| tocl精华| 中文字幕高清在线视频| ponron亚洲| 老汉色av国产亚洲站长工具| 三级毛片av免费| 小蜜桃在线观看免费完整版高清| 999久久久国产精品视频| 哪里可以看免费的av片| 男人和女人高潮做爰伦理| 国产又黄又爽又无遮挡在线| 亚洲国产高清在线一区二区三| 国产91精品成人一区二区三区| 国产精品久久视频播放| 99热这里只有是精品50| 大型黄色视频在线免费观看| 久久中文字幕人妻熟女| 亚洲欧美精品综合久久99| 亚洲最大成人中文| 久久精品国产清高在天天线| 麻豆国产av国片精品| 国内精品久久久久精免费| 999久久久精品免费观看国产| 亚洲18禁久久av| 久久午夜亚洲精品久久| 淫妇啪啪啪对白视频| 国产午夜福利久久久久久| 99精品欧美一区二区三区四区| 日本一二三区视频观看| 可以在线观看毛片的网站| 一区二区三区高清视频在线| 欧美一区二区国产精品久久精品| 黄色片一级片一级黄色片| 别揉我奶头~嗯~啊~动态视频| 久久精品91蜜桃| 亚洲成人久久性| 久久久久久人人人人人| 网址你懂的国产日韩在线| 国产伦人伦偷精品视频| 免费观看人在逋| 久久中文字幕一级| 国产黄a三级三级三级人| 男插女下体视频免费在线播放| 最新美女视频免费是黄的| 熟女电影av网| 亚洲熟妇中文字幕五十中出| 久久久国产成人精品二区| 亚洲最大成人中文| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 欧美不卡视频在线免费观看| 亚洲熟妇中文字幕五十中出| 精品一区二区三区四区五区乱码| 超碰成人久久| 免费电影在线观看免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲国产欧美网| 成人三级黄色视频| a在线观看视频网站| 免费在线观看视频国产中文字幕亚洲| 国产精品一区二区三区四区久久| 日本 av在线| 不卡av一区二区三区| 一二三四在线观看免费中文在| 日本 av在线| 桃红色精品国产亚洲av| 一本精品99久久精品77| 午夜福利在线在线| 男女视频在线观看网站免费| 看免费av毛片| 天天躁狠狠躁夜夜躁狠狠躁| 欧美乱妇无乱码| 精品一区二区三区av网在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久九九热精品免费| 脱女人内裤的视频| 美女大奶头视频| 免费看美女性在线毛片视频| 法律面前人人平等表现在哪些方面| 三级男女做爰猛烈吃奶摸视频| 亚洲激情在线av| 国产亚洲精品久久久com| 免费一级毛片在线播放高清视频| 日韩 欧美 亚洲 中文字幕| 精品久久久久久久末码| 中文字幕av在线有码专区| 人人妻人人澡欧美一区二区| 俺也久久电影网| 日韩大尺度精品在线看网址| 91av网一区二区| 国产精品久久久久久人妻精品电影| 国产av一区在线观看免费| 成年女人看的毛片在线观看| 国产精品av久久久久免费| 国产69精品久久久久777片 | 听说在线观看完整版免费高清| 成人一区二区视频在线观看| 国产亚洲精品av在线| 又黄又粗又硬又大视频| 国产野战对白在线观看| 国产精品日韩av在线免费观看| 一本一本综合久久| 午夜久久久久精精品| 黄色日韩在线| 一区福利在线观看| 国产伦人伦偷精品视频| 免费在线观看成人毛片| 怎么达到女性高潮| 九色国产91popny在线| 国产午夜精品久久久久久| 麻豆国产97在线/欧美| 国产精品 国内视频| 国产97色在线日韩免费| 国产伦精品一区二区三区四那| 黄色丝袜av网址大全| 国产激情偷乱视频一区二区| 精品不卡国产一区二区三区| 一级a爱片免费观看的视频| 久久久久久大精品| 国产精华一区二区三区| 亚洲精品乱码久久久v下载方式 | 久久热在线av| 精品国产超薄肉色丝袜足j| 国产一区二区三区在线臀色熟女| 九色国产91popny在线| 嫩草影视91久久| 51午夜福利影视在线观看| 国产高清videossex| 亚洲成人久久性| 搡老妇女老女人老熟妇| 日韩大尺度精品在线看网址| 日本 av在线| 99精品久久久久人妻精品| 特级一级黄色大片| 国产一区二区在线av高清观看| 国产亚洲欧美98| 国产黄片美女视频| 90打野战视频偷拍视频| 天堂影院成人在线观看| 97碰自拍视频| 十八禁人妻一区二区| 一级毛片高清免费大全| 丰满的人妻完整版| 日本黄色片子视频| 国产高清视频在线播放一区| 国产精品 国内视频| 看片在线看免费视频| 少妇人妻一区二区三区视频| 18禁裸乳无遮挡免费网站照片| 亚洲午夜理论影院| 亚洲精品美女久久久久99蜜臀| e午夜精品久久久久久久| 亚洲欧美精品综合一区二区三区| 久久久水蜜桃国产精品网| 欧美中文日本在线观看视频| 一区二区三区激情视频| 亚洲七黄色美女视频| 男女那种视频在线观看| 啦啦啦免费观看视频1| 久久久色成人| 在线a可以看的网站| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看| 99久久久亚洲精品蜜臀av| 日日干狠狠操夜夜爽| 亚洲在线观看片| 亚洲成人精品中文字幕电影| 欧美色视频一区免费| 日韩国内少妇激情av| 天堂动漫精品| 欧美国产日韩亚洲一区| 国产精品久久久久久亚洲av鲁大| 午夜精品在线福利| 欧美激情久久久久久爽电影| 国产精品av久久久久免费| 黑人欧美特级aaaaaa片| 美女大奶头视频| av女优亚洲男人天堂 | 国产成人影院久久av| 亚洲国产欧美网| 国产精品免费一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 999久久久国产精品视频| 嫩草影院入口| 国产伦一二天堂av在线观看| 国产成人福利小说| 观看免费一级毛片| www日本黄色视频网| 99在线视频只有这里精品首页| 欧美不卡视频在线免费观看| 一个人免费在线观看电影 | 国产精品自产拍在线观看55亚洲| 国产激情欧美一区二区| 欧美午夜高清在线| 国产精品久久电影中文字幕| 村上凉子中文字幕在线| 真人一进一出gif抽搐免费| 久久久久免费精品人妻一区二区| 九色成人免费人妻av| 99热这里只有精品一区 | 香蕉国产在线看| 色老头精品视频在线观看| 国产一区二区在线av高清观看| 高清在线国产一区| 巨乳人妻的诱惑在线观看| 一级作爱视频免费观看| 午夜两性在线视频| 99久久无色码亚洲精品果冻| 在线十欧美十亚洲十日本专区| 九色成人免费人妻av| 欧美国产日韩亚洲一区| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 日韩欧美 国产精品| 久久精品91无色码中文字幕| 黑人操中国人逼视频| 国产精品一区二区三区四区久久| 国产又黄又爽又无遮挡在线| 在线永久观看黄色视频| 成人亚洲精品av一区二区| 亚洲专区中文字幕在线| 欧美乱妇无乱码| 网址你懂的国产日韩在线| 叶爱在线成人免费视频播放| 欧美高清成人免费视频www| 亚洲精品色激情综合| 色av中文字幕| 五月伊人婷婷丁香| 免费看日本二区| 国产爱豆传媒在线观看| 久9热在线精品视频| 一级毛片女人18水好多| 亚洲18禁久久av| 国内久久婷婷六月综合欲色啪| 免费看a级黄色片| 后天国语完整版免费观看| 免费av不卡在线播放| 亚洲av第一区精品v没综合| 国产成人精品久久二区二区免费| АⅤ资源中文在线天堂| 两个人看的免费小视频| 97超视频在线观看视频| 久久久久精品国产欧美久久久| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品sss在线观看| 国产高清视频在线观看网站| 亚洲av成人av| 久久精品影院6| 成年免费大片在线观看| 免费在线观看视频国产中文字幕亚洲| 一区福利在线观看| 午夜福利在线观看吧| 两个人看的免费小视频| 午夜免费成人在线视频| 老鸭窝网址在线观看| 国产 一区 欧美 日韩| 此物有八面人人有两片| 午夜亚洲福利在线播放| 久久久久精品国产欧美久久久| 久久久久久人人人人人| 少妇裸体淫交视频免费看高清| 国产久久久一区二区三区| 999精品在线视频| a级毛片a级免费在线| 看免费av毛片| 国产成年人精品一区二区| 在线播放国产精品三级| 久久精品aⅴ一区二区三区四区| 精品久久蜜臀av无| 啦啦啦免费观看视频1| 美女高潮的动态| 欧美又色又爽又黄视频| 99精品久久久久人妻精品| 精品一区二区三区视频在线观看免费| 免费观看的影片在线观看| 三级男女做爰猛烈吃奶摸视频| cao死你这个sao货| 网址你懂的国产日韩在线| 岛国在线免费视频观看| 欧美不卡视频在线免费观看| 老鸭窝网址在线观看| 成人高潮视频无遮挡免费网站| 舔av片在线| 成人精品一区二区免费| 久久久久久久午夜电影| 成人精品一区二区免费| 嫩草影院精品99| 少妇的逼水好多| 国产欧美日韩精品亚洲av| 亚洲人成网站高清观看| 深夜精品福利| 淫妇啪啪啪对白视频| 99热只有精品国产| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 法律面前人人平等表现在哪些方面| 国产一区二区在线观看日韩 | 国产精品久久电影中文字幕| 99久久精品热视频| 国产精品永久免费网站| 久久99热这里只有精品18| 欧美成人免费av一区二区三区| 美女大奶头视频| www国产在线视频色| 国产av在哪里看| 欧美色欧美亚洲另类二区| 成人国产一区最新在线观看| 三级毛片av免费| www.自偷自拍.com| 夜夜夜夜夜久久久久| 日韩欧美国产一区二区入口| 97超级碰碰碰精品色视频在线观看| 97碰自拍视频| 最新在线观看一区二区三区| 精华霜和精华液先用哪个| 欧美丝袜亚洲另类 | 又爽又黄无遮挡网站| 国产野战对白在线观看| 久久久久国产一级毛片高清牌| 色综合亚洲欧美另类图片| www.精华液| 草草在线视频免费看| 国内久久婷婷六月综合欲色啪| 久久99热这里只有精品18| 国内久久婷婷六月综合欲色啪| 国产伦精品一区二区三区视频9 | 欧美一区二区精品小视频在线| 亚洲色图 男人天堂 中文字幕| 色哟哟哟哟哟哟| 一本一本综合久久| 日韩人妻高清精品专区| 很黄的视频免费| 2021天堂中文幕一二区在线观| 色视频www国产| av中文乱码字幕在线| 美女高潮的动态| 亚洲国产精品sss在线观看| 久久久久国产一级毛片高清牌| 国产一区在线观看成人免费| 国产久久久一区二区三区| 国产精品久久久久久精品电影| 中文在线观看免费www的网站| 国产私拍福利视频在线观看| 一级毛片女人18水好多| a级毛片a级免费在线| 中文资源天堂在线| 熟女人妻精品中文字幕| 成人国产一区最新在线观看| 国产精品亚洲av一区麻豆| 亚洲成人中文字幕在线播放| 国内久久婷婷六月综合欲色啪| 91麻豆精品激情在线观看国产| 两个人看的免费小视频| 亚洲国产欧美人成| 国产成+人综合+亚洲专区| 免费大片18禁| 老司机在亚洲福利影院| 日本 欧美在线| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 一区二区三区高清视频在线| 97超级碰碰碰精品色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| svipshipincom国产片| 一进一出好大好爽视频| 亚洲av成人精品一区久久| www.999成人在线观看| 啦啦啦观看免费观看视频高清| 麻豆国产97在线/欧美| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 日本熟妇午夜| 性色avwww在线观看| 动漫黄色视频在线观看| 热99re8久久精品国产| 中文字幕最新亚洲高清| 无人区码免费观看不卡| 我的老师免费观看完整版| 99riav亚洲国产免费| 久久久久国产精品人妻aⅴ院| 极品教师在线免费播放| 精品久久久久久久人妻蜜臀av| 在线免费观看的www视频| 高清毛片免费观看视频网站| 美女高潮的动态| 嫩草影视91久久| 日韩高清综合在线| 亚洲欧美日韩东京热| 亚洲无线在线观看| 亚洲av成人一区二区三| 男女下面进入的视频免费午夜| 国产v大片淫在线免费观看| 少妇人妻一区二区三区视频| 日本黄色片子视频| 久久欧美精品欧美久久欧美| bbb黄色大片| 国产精品久久久久久亚洲av鲁大| 国内精品久久久久久久电影| 每晚都被弄得嗷嗷叫到高潮| 午夜免费激情av| 在线观看舔阴道视频| 久久久久久久午夜电影| 国内精品久久久久久久电影| 亚洲精品在线美女| 十八禁人妻一区二区| 在线观看免费视频日本深夜| 午夜福利在线观看免费完整高清在 | 麻豆成人午夜福利视频| 91九色精品人成在线观看| 国产精品日韩av在线免费观看| 国产av麻豆久久久久久久| 亚洲精品美女久久久久99蜜臀| 亚洲av成人精品一区久久| 一二三四社区在线视频社区8| 亚洲精品456在线播放app | 这个男人来自地球电影免费观看| 在线a可以看的网站| 欧美激情在线99| 99国产精品一区二区三区| 国内毛片毛片毛片毛片毛片| 中文字幕av在线有码专区| 欧美黄色片欧美黄色片| 蜜桃久久精品国产亚洲av| 最好的美女福利视频网| 国产成人aa在线观看| 国产亚洲精品久久久久久毛片| 亚洲国产欧美一区二区综合| 一个人看视频在线观看www免费 | 国产一区二区在线av高清观看| 日本三级黄在线观看| 日日摸夜夜添夜夜添小说| 深夜精品福利| 日本一本二区三区精品| 最新中文字幕久久久久 | 手机成人av网站| 啪啪无遮挡十八禁网站| 久久精品亚洲精品国产色婷小说| 免费看美女性在线毛片视频| 亚洲国产欧美网| 国产av不卡久久| 亚洲天堂国产精品一区在线| 男人舔女人下体高潮全视频| 精品日产1卡2卡| 嫩草影视91久久| 欧美又色又爽又黄视频| 亚洲精品美女久久av网站| 99热精品在线国产| 久久久久久久久久黄片| 美女扒开内裤让男人捅视频| 国产成人系列免费观看| bbb黄色大片| 老熟妇仑乱视频hdxx| 这个男人来自地球电影免费观看| 亚洲最大成人中文| 久久久国产精品麻豆| 99国产精品99久久久久| 亚洲国产欧美人成| 91老司机精品| 丰满人妻一区二区三区视频av | 国产精品,欧美在线| 色综合欧美亚洲国产小说| 亚洲欧美日韩无卡精品| e午夜精品久久久久久久| 999精品在线视频| 两性夫妻黄色片| 在线a可以看的网站| 极品教师在线免费播放| 中文字幕av在线有码专区| 国产成人福利小说| 国产精品野战在线观看| 岛国视频午夜一区免费看| 日韩有码中文字幕| 精品国产亚洲在线| 一进一出抽搐动态| 男女午夜视频在线观看| 成年女人毛片免费观看观看9| 午夜福利18| 亚洲欧美激情综合另类| 2021天堂中文幕一二区在线观| 欧美成人免费av一区二区三区| 国产蜜桃级精品一区二区三区| 91老司机精品| 国产精品日韩av在线免费观看| 国产亚洲精品一区二区www| 欧美zozozo另类| 亚洲人成网站在线播放欧美日韩| 亚洲色图 男人天堂 中文字幕| 99久久久亚洲精品蜜臀av| 精品一区二区三区四区五区乱码| 18禁黄网站禁片免费观看直播| 老司机福利观看| 男女做爰动态图高潮gif福利片| 制服人妻中文乱码| 久久香蕉国产精品| 国产熟女xx| 两个人视频免费观看高清| 国产精品1区2区在线观看.| www.www免费av| 三级男女做爰猛烈吃奶摸视频| 禁无遮挡网站| 一区二区三区激情视频| 久9热在线精品视频| 日韩欧美国产一区二区入口| 久久久久国产一级毛片高清牌| 又紧又爽又黄一区二区| 久久伊人香网站| 日韩成人在线观看一区二区三区| 日韩有码中文字幕| 午夜影院日韩av| 丰满人妻熟妇乱又伦精品不卡| 长腿黑丝高跟| 香蕉久久夜色| 最近最新中文字幕大全免费视频| 一级黄色大片毛片| 欧美成狂野欧美在线观看| 久久久久亚洲av毛片大全| 欧美另类亚洲清纯唯美| 国产高清视频在线观看网站| 亚洲av片天天在线观看| 久久久久久久午夜电影| 国内精品一区二区在线观看| 狠狠狠狠99中文字幕| av天堂中文字幕网| 在线观看日韩欧美| 免费在线观看影片大全网站| 日本撒尿小便嘘嘘汇集6| 久久精品aⅴ一区二区三区四区| 淫妇啪啪啪对白视频| 欧美另类亚洲清纯唯美| 男女下面进入的视频免费午夜| 国产激情久久老熟女| 国产精品一区二区三区四区久久| 欧美日本视频| 18美女黄网站色大片免费观看| 老汉色∧v一级毛片| 老司机午夜十八禁免费视频| 精品久久久久久,| 高清在线国产一区| 亚洲国产欧洲综合997久久,| 国产亚洲精品综合一区在线观看| 国内毛片毛片毛片毛片毛片| 曰老女人黄片| 久久久色成人| 精品人妻1区二区| 性欧美人与动物交配| 成人三级黄色视频| 亚洲国产精品久久男人天堂| 他把我摸到了高潮在线观看| 真实男女啪啪啪动态图| 国产一区二区激情短视频| 欧美高清成人免费视频www| 欧美激情在线99| 日韩中文字幕欧美一区二区| x7x7x7水蜜桃| 一a级毛片在线观看| 最近最新中文字幕大全电影3| 久久久久久久午夜电影| 超碰成人久久| 99riav亚洲国产免费| 精品人妻1区二区|