• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variations of flutter mechanism of a span-morphing wing involving rigid-body motions

    2018-04-19 08:29:07ChoHUANGChoYANGZhigngWUChnghongTANG
    CHINESE JOURNAL OF AERONAUTICS 2018年3期

    Cho HUANG,Cho YANG,Zhigng WU,*,Chnghong TANG

    aSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    bThe First Aircraft Institute,Aviation Industry Corporation of China,Xi’an 710089,China

    1.Introduction

    The morphing aircraft can be defined as aerial vehicles which are capable of altering their configurations actively to fulfill multiple missions.Previous surveys have shown that future aircraft with morphing wings gain superior flight performance.1,2As a solution of configuration transformation, the span-morphing wing has attracted aeronautical specialists’attention.The design and the test have been conducted on span-morphing wings to verify their feasibility.3,4However,many practical problems still remain and flutter instability is one of them.

    Flutter is an aeroelastic problem which may destroy the aircraft in flight.Consequently,the flutter-free design is essential to aircraft safety.Specialists are required to master comprehensive knowledge about flutter mechanism,and such requirement in turn establishes challenges on flutter investigations for morphing aircraft.

    The flutter investigations for morphing aircraft are mostly related to the Z-shape morphing wings,5–8while analyses and discussions on flutter characteristics with respect to the spanmorphing wing are quite rare in the aeroelastic literature.Recently,Huang and Qiu developed a state-space model to uncover the aeroelastic properties of a variable-span wing during the morphing process.9Almost at the same time,Zhang et al.derived nonlinear governing equations of motion for a deploying-and-retreating wing in supersonic flow.10

    Generally, flutter is caused by the detrimental interaction between elastic structural dynamics and unsteady aerodynamics.The cantilever wing is usually studied first,which is the case in Refs.9,10.The conclusions made from the cantileverwing case,however,may be incorrect if rigid-body degrees of freedom are introduced to the structural dynamics.There is a potential threat caused by the coupling between rigid-body motions and wing elastic vibrations,and attention should be paid to this threat.11

    Flutter induced by the preceding coupling is nowadays termed as Body-Freedom Flutter(BFF)where the rigid-body pitch motion mainly couples with the wing bending motion.12–14The BFF occurrence has been observed in the flutter analysis of a Z-shape morphing wing for an unrestrained aircraft.8Thus,the question how flutter mechanism of the span-morphing wing are affected by the rigid-body motions arises.To authors’best knowledge,no published effort has been devoted to answering such a question.

    Focusing on a span-morphing wing model involving rigidbody motions,the present paper reveals the variations of its flutter mechanism from the classical Bending-Torsional Flutter(BTF)to the BFF,deepening the understanding of the aeroelastic properties of span-morphing wings.The rest part of the paper is organized as follows.Section 2 illustrates the schematic of the span-morphing wing model and states some assumptions to simplify the aeroelastic formulation.The development of equations of motion and the solution method are presented in Section 3.Section 4 gives the numerical results and Section 5 demonstrates the influence of some parameters on the variations of flutter mechanism,which is followed by the final conclusions drawn in Section 6.

    2.Preliminaries

    The investigated span-morphing wing is illustrated in Fig.1.Fig.1(a)displays its three-dimensional configuration.The semispan model perturbs around a trimmed state.Only two symmetric rigid-body motions,i.e.the pitch motion θ and the plunge motion w,are allowed.The main structure is a telescopic spar similar to the one in Ref.3.The spar provides most weight and rigidity,and it is comprised of two thin-walled tubes where the inner tube moves freely inside the outer one.Thus,a rectilinear Elastic Axis(EA)is assumed.It runs from the inboard to the outboard,indicating that the wing has a medium or high aspect ratio.

    The origin of the rectangular coordinate system is placed at the intersection of the EA and the wing-root section.The y axis coincides with the EA and the z axis points to the downward.Fig.1(b)displays the planform dimensions.A concentrated mass MFwhich lies ahead of the origin XFrepresents the inertia of the half fuselage.A tip weight representing the winglet is added,and the same idealization is applied to the tip weight MPlocated at the intersection of the EA and the wing-tip section.Besides,the following simplifications for the wing are made:

    (1)The chord-wise sections perpendicular to the EA are absolutely stiff,and its length is constant.

    (2)The span lengths of two tubes are identical,and the length is l0for the completely retracted configuration,and thus 2 l0for the fully extended configuration.

    (3)The wing is treated as a three-segment stepped Euler-Bernoulli beam during the span morphing,and the location of the EA,the static unbalance Xαas well as the radius of gyration Rαare all assumed unchanged along the span.

    (4)The in-plane deformation is neglected.

    (5)The span-morphing speed is so slow that any change about inertia and stiffness stemmed from such speed is ignored in the present quasi-static modeling.

    3.Equations of motion and solution methods

    Based on the aforementioned definition,the kinematics of the fuselage is described by the plunge motion w,positive downward,and the pitch motion θ,positive nose-up.The kinematics of the wing is represented by the EA motion.The EA motion which is commonly described by a vertical translation,h,positive downward,and a twist about the EA,α,positive nose-up,can be further decomposed into the rigid-body components and the elastic components as follows:

    Fig.1 Schematic of a span-morphing wing model.

    where Λ,ψ and φ denote the sweep angle,the bending displacementandthetorsionaldisplacement,respectively.Consequently,thekinematicsofthetipweightisgivenbythemotionshandαat the location y=l.In Eq.(1),the elastic displacements ψ and φ are usually expressed in modal expansion forms:

    In the morphing process,the ith mode shapes fi(y)and gi(y)are piecewise functions defined in three length intervals,[0,l-l0],[l-l0,l0]and[l0,l],and ψi(t)and φi(t)are the corresponding modal coordinates.Using the analytical method proposed in Ref.15,the uncoupled natural bending and torsional modes of the three-segment stepped cantilever beam are chosen.Herein the number of the modes,nψ=2 and nφ=1,are adopted.

    The kinetic energies of the fuselage,the wing and the tip weight are given respectively in the following compact forms:

    where m denotes the wing mass per unit length,RFthe radius of gyration of the fuselage about the origin,and RPthe radius of gyration of the tip weight about the EA.The wing length at any instance is l,and its value falls in the interval between l0and 2l0.

    The potential energy is attributable to the strain energy of the wing that reads:

    where E(y)I(y)and G(y)J(y)are local bending rigidity and torsional rigidity,respectively.

    The aerodynamic strip theory is applied to the wing immersed in an incompressible airstream.Utilizing Theodorsen’s unsteady thin-airfoil theory,the running lift L and moment Mincluding the sweep effect are simplified as

    where the aerodynamic terms Lnc,Lc,Mncand Mccan be found in Ref.16,and subscripts ‘nc” and ‘c” represent noncirculation and circulation,respectively.Three modifications in the above equations are addressed.Firstly,the Theodorsen function C(k)is approximated by a finite-state rational function obtained from Ref.17:

    where i denotes the imaginary unit,k=(ωb)/(VcosΛ)is the reduced frequency,and ω,b and V are the circular frequency,the semi-chord length and the airstream speed,respectively.Secondly,the local lift-curve slope CLαtakes place of the coefficient 2π in those aerodynamic terms in Eq.(5)and CLαincluding the effect of the finite span is used as18

    where AR=l/b denotes the aspect ratio and a0=2π is employed here for simplicity.The coefficient CLαcan also be replaced by simulated CFD data or wind-tunnel data.Finally,the aerodynamics on both the winglet and the fuselage are neglected since it is hard to acquire their analytical expressions.Substituting foregoing expressions into the Lagrange’s equation,the aeroelastic equations of motion are ultimately developed in a state-space form:

    where the vector X contains the states corresponding to the kinematic components in Eq.(1),their derivatives with respect to time as well as the aerodynamic lags.The state matrix Γ is expressed as

    where M stands for the structural inertial matrix,K the structural stiffness matrix,Q2the aerodynamic inertial matrix,Q1the aerodynamic damping matrix and Q0the aerodynamic stiffness matrix.The parameter vnequals(VcosΛ)/b,and the matrices A,B and C which are associated with Eq.(9)are given as follows:

    Finally,the flutter solution turns to be an eigenvalue problem of Eq.(10)for a specific range of airstream speeds.The flutter onset mathematically refers to a condition where the real part of one eigenvalue becomes zero while its associated imaginary part remains a nonzero value.Using eigenvalue decomposition function and other plotting syntax in MATLAB software,the flutter speed and frequency can be quickly captured from a V-g-f diagram.It should be noted that the state-space solution mentioned above,rather than the traditional frequency-dependent solution,is beneficial to the BFF investigation where the predominant eigenvalues lying in the proximity of the origin of the complex plane can be effectively solved.19

    4.Numerical example

    The data used in the present span-morphing wing model example are summarized in Table 1.These data are chosen to re flect a possible wind-tunnel flutter test model.Also the following piecewise relationship for the three-segment stepped beam is established due to the assumption that the two tubes of the wing spar share the same properties concerning the rigidity and the mass per unit length:

    In Eq.(11),the subscript ‘Ref” refers to the completely retracted configuration.According to Table 1,the aspect ratio for the completely retracted configuration is 5,and becomes 10 when the wing is fully extended.

    Fig.2 shows the variations of span-morphing location on the flutter characteristics of the model.The dimensionless flutter speed vFlutter=V/ωRefb and frequency ΩFlutter= ω/ωRefare used and vary with the dimensionless length ratio χ.Also calculated are the flutter speeds and frequencies in the cases where the rigid-body degrees of freedom and the elastic torsional degree of freedom are excluded successively.

    As anticipated,a continued decrease in the flutter speed accompanying the increase in span length is observed.However,the flutter speeds disagree with the calculated ones in the degrees-of-freedom-excluded cases.When the wing extends,it is found that the flutter speed approaches the value in the torsional-degrees-of-freedom-excluded case.Moreover,there is an abrupt drop of the flutter frequency in the interval between χ =1.4 and χ =1.5.When χ is less than 1.4,the flutter frequency lies between the frequencies of the first bending mode and the first torsional mode.If χ is beyond 1.5,the flutter frequency falls in the frequency band corresponding to the rigid-body pitch motion.

    To explain the preceding frequency drop,the V-g-f diagrams for χ =1.0 and χ =2.0 are then plotted and displayed in Fig.3 and Fig.4 respectively.Clearly,the completely retracted configuration of the span-morphing wing exhibits classical BTF where the torsional mode mainly couples with the second flexural mode and eventually goes unstable.On the contrary,the rigid-body pitch mode couples with the first bending mode when the wing is fully extended,leading tothe BFF.The BTF still exists but occurs at a higher airstream speed.

    Table 1 Data for present span-morphing wing model.

    Fig.2 Effects of variation of span-morphing location on flutter characteristics.

    Fig.3 V-g-f diagram of span-morphing wing model when χ=1.0.

    Fig.4 V-g-f diagram of span-morphing wing model when χ=2.0.

    Another calculation for the case with all bending modes excluded is also carried out,and no flutter instability is found.Since the frequency of the torsional mode is much higher compared to the one of the rigid-body pitch mode,the abrupt drop of the flutter frequency indicated in Fig.2 then reveals a variation of flutter mechanism,i.e.,from the BTF to the BFF.The rigid-body pitch mode and the torsional mode dominate the flutter mechanism for different span-morphing stages.Also,the fact that neither of these two modes should be excluded in the present example is demonstrated by Fig.2.

    Fig.5 Effect of wing mass ratio on variation of flutter mechanism.

    It should be noted that the flutter mode in the present BFF mechanism is always the pitch mode.Although the bending mode often acts as the stability killer in the current BFF investigations,the situation where the pitch mode becomes unstable can also be discovered in the early BFF literature.12,13,20–22Whether the pitch mode or the bending mode goes unstable is strongly dependent on the parameter selection.

    5.Influence of some parameter variations

    The effect of the wing mass ratio μ is illustrated in Fig.5.It can be seen that a small value of μ makes the transition of the flutter mechanism appear at the early stage of the span morphing.This implies that the lightweight wing is usually susceptible to the BFF.The effect of μ on the BFF speed,however,is not so significant in the present example.The BFF speed falls in the vicinity of a limited value when the wing approaches its fully extended configuration.On the other hand,the decrease of μ is destabilizing for the BTF.

    Fig.6 Effect of sweep angle on variation of flutter mechanism.

    Fig.8 Effect of location of fuselage mass on variation of flutter mechanism.

    Fig.9 Effect of radius of gyration of fuselage on variation of flutter mechanism.

    Fig.10 Effect of tip mass on variation of flutter mechanism.

    The effect of the sweep angle Λ is shown in Fig.6.Apparently,Λ decreases the BTF speed but makes no considerable influence on the change of its frequency.Because the change of Λ leads to the change of the inertia and the aerodynamics at the same time,the corresponding transition from the BTF to the BFF is a little complex.For Λ less than 5°,the transition still occurs within χ∈[1.4,1.5],and the BFF speed is slightly increased by the increase in Λ.For a certain value of Λ in the range between 5°and 10°,the preceding transition is delayed and makes the trend of the BFF speed irregular.

    The results displayed in Fig.7 reveal that the increase of the fuselage mass expedites the transition of the flutter mechanisms if the wing total mass remains constant.Furthermore,a heavier fuselage leads to a lower BFF speed and frequency,whereas it has an opposite and extremely limited influence on the BTF.Fig.8 depicts the variation of the flutter characteristics when the effect of the location of the fuselage mass xFis studied.The increase of xFplays a stabilizing role on the BFF,and its effect on the BTF is negligible.The BFF occurrence would be eliminated if xFcontinues to increase.For the present span-morphing wing model,it can be inferred that a certain large value of xFcan make the flutter characteristics almost identical to the one of the cantilever wing.

    Fig.9 presents the effects of the radius of gyration of the fuselage rF,cgon the flutter characteristics for some specified morphing locations.Here the parameter rF,cgis defined by

    The increase in rF,cgto suppress the BFF seems to be more effective than the enlargement of xF.Since the BTF is mostly related to the properties of the wing alone,the effect of rF,cgon the BTF is not noticeable as expected.This suggests that an unrestrained aircraft with large pitch moment of inertia contributed mainly from the fuselage is not sensitive to the BFF.As a result,the flutter mechanism may vary little if more sophisticated methods such as those proposed in Refs.9,10are applied to the span-morphing wing model.

    The results in Fig.10 indicate that an increase of the tip mass can reduce the flutter speed and frequency for both the BTF and the BFF.In the present analysis,the transition of the flutter mechanism which occurs within χ∈ [1.4,1.5]is still observed regardless of any change of the tip mass.

    6.Conclusions

    (1)In this paper,an aeroelastic span-morphing wing model involving the rigid-body motions is developed in a quasistatic way.The flutter characteristics of such a model is analyzed,and the results reveal variations of flutter mechanism from the BTF to the BFF accompanying the fact that the flutter speed decreases ceaselessly as the span increases.For an unrestrained aircraft having a symmetric configuration and a span-morphing wing,it is suggested that the rigid-body motions especially the pitch motion should be included in the flutter analysis to obtain more accurate understanding of its flutter characteristics.

    (2)Effects of some parameters belonging to the wing,the fuselage and the tip weight on the variation of flutter mechanism are investigated respectively.As for the flutter speed and the transition of flutter mechanism,the variation of either or both is observed.The parameters of the fuselage have limited in fluences on the BTF but significant effects on the BFF.A fuselage with a large value of the radius of gyration about the wing’s elastic axis eliminatesthe BFF occurrenceof thespanmorphing wing most effectively.

    1.Barbarino S,Bilgen O,Ajaj RM,Friswell MI,Inman DJ.A review of morphing aircraft.J Intel Mat Syst Str 2011;22(9):823–77.

    2.Weisshaar TA.Morphing aircraft systems:historical perspectives and future challenges.J Aircraft 2013;50(2):337–53.

    3.Blondeau J,Pines D.Design and testing of a pneumatic telescopic wing for unmanned aerial vehicles.J Aircraft 2007;44(4):1088–99.

    4.Vocke RD,Kothera CS,Woods BKS,Wereley NM.Development and testing of a span-extending morphing wing.J Intel Mat Syst Str 2011;22(9):879–90.

    5.Tang D,Dowell EH.Theoretical and experimental aeroelastic study for folding wing structures.J Aircraft 2008;45(4):1136–47.

    6.Liska S,Dowell EH.Continuum aeroelastic model for a foldingwing configuration.AIAA J 2009;47(10):2350–8.

    7.Wang I,Gibbs SC,Dowell EH.Aeroelastic model of multisegmented folding wings:Theory and experiment.J Aircraft 2012;49(3):911–21.

    8.Snyder MP,Sanders B,Eastep FE,Frank GJ.Vibration and flutter characteristics of a folding wing.J Aircraft 2009;46(3):791–9.

    9.Huang R,Qiu ZP.Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process.Chinese J Aeronaut 2013;26(6):1430–8.

    10.Zhang W,Sun L,Yang XD,Jia P.Nonlinear dynamic behaviors of a deploying-and-retreating wing with varying velocity.J Sound Vib 2013;332(25):6785–97.

    11.Wu ZG,Yang C.Flight loads and dynamics of flexible air vehicles.Chinese J Aeronaut 2004;17(1):17–22.

    12.Widmayer E.Some low-speed studies of the effects of wing location on wing-deformation-body-freedom flutter.Langley Field:Langley Aeronautical Laboratory,National Advisory Committee for Aeronautics;1952.Report No.:RM-L52I24.

    13.Weisshaar TA,Zeiler TA.Dynamic stability of flexible forward swept wing aircraft.J Aircraft 1983;20(12):1014–20.

    14.Love MH,Zink PS,Wieselmann PA,Youngren H.Body freedom flutter of high aspect flying wings.46th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics&materials conference;2005 Apr 18–21;Austin,USA.Reston:AIAA;2005.

    15.Naguleswaran S.Vibration of an Euler-Bernoulli beam on elastic end supports and with up to three step changes in cross-section.Int J Mech Sci 2002;44(12):2541–55.

    16.Bisplinghoff RL,Ashley H,Halfman RL.Aeroelasticity.New York:Dover Publications;1996.p.398.

    17.Venkatesan C,Friedmann P.New approach to finite-state modeling of unsteady aerodynamics.AIAA J 1986;24(12):1889–97.

    18.Diederich FW.A planform parameter for correlating certain aerodynamic characteristics of swept wings.Langley Field:Langley Aeronautical Laboratory,National Advisory Committee for Aeronautics;1951.Report No.:TN-2335.

    19.Pototzky AS.Modeling state-space aeroelastic systems using a simple matrix polynomial approach for the unsteady aerodynamics.NATO RTO specialists meeting AVT-154 on advanced methods in aeroelasticity;2008 May 5-7;Loen,Norway.Brussels:NATO Science and Technology Organization;2008.

    20.Pak CG,Truong S.Creating a test-validated finite-element model of the X-56A aircraft structure.J Aircraft 2015;52(5):1044–67.

    21.Schmidt DK.MATLAB-based flight-dynamics and flutter modeling of a flexible flying-wing research drone.J Aircraft 2016;53(4):1045–55.

    22.Cunningham HJ,Lundstrom RR.Description and analysis of a rocket-vehicle experiment on flutter involving wing deformation and body motions.Langley Field:Langley Aeronautical Laboratory,National Advisory Committee for Aeronautics;1955.Report No.:TN-3311.

    一级毛片aaaaaa免费看小| 九九久久精品国产亚洲av麻豆| 国模一区二区三区四区视频| 日本免费在线观看一区| 99热6这里只有精品| 亚洲怡红院男人天堂| 日本91视频免费播放| 日本猛色少妇xxxxx猛交久久| 久久久久久久亚洲中文字幕| 日日摸夜夜添夜夜爱| 18禁裸乳无遮挡动漫免费视频| 乱码一卡2卡4卡精品| 卡戴珊不雅视频在线播放| 啦啦啦在线观看免费高清www| 日韩,欧美,国产一区二区三区| 国产爽快片一区二区三区| 亚洲情色 制服丝袜| 大香蕉久久成人网| 新久久久久国产一级毛片| 人妻少妇偷人精品九色| 国产亚洲欧美精品永久| 日本黄大片高清| 男人添女人高潮全过程视频| 一二三四中文在线观看免费高清| 国产精品无大码| 99国产精品免费福利视频| 三上悠亚av全集在线观看| 最近手机中文字幕大全| xxx大片免费视频| 午夜福利网站1000一区二区三区| 极品少妇高潮喷水抽搐| 国产 精品1| 国产欧美日韩综合在线一区二区| 欧美97在线视频| 久久99热6这里只有精品| 最近手机中文字幕大全| 国产极品天堂在线| 成年av动漫网址| 丝袜美足系列| 一区二区三区精品91| 80岁老熟妇乱子伦牲交| 日韩 亚洲 欧美在线| 亚洲欧美成人综合另类久久久| 91精品三级在线观看| 国产欧美日韩一区二区三区在线 | 亚洲av福利一区| 久久久国产欧美日韩av| 久久青草综合色| 26uuu在线亚洲综合色| 在线天堂最新版资源| 久久国产精品男人的天堂亚洲 | 欧美一级a爱片免费观看看| 又粗又硬又长又爽又黄的视频| videosex国产| 内地一区二区视频在线| 卡戴珊不雅视频在线播放| 日韩中文字幕视频在线看片| 熟女av电影| 国产深夜福利视频在线观看| 最近手机中文字幕大全| 色哟哟·www| av.在线天堂| kizo精华| 国产精品久久久久久精品古装| 日本av手机在线免费观看| 国产永久视频网站| 99re6热这里在线精品视频| 一本一本综合久久| 一本色道久久久久久精品综合| 久久精品人人爽人人爽视色| 国产深夜福利视频在线观看| 青青草视频在线视频观看| 在线精品无人区一区二区三| 国产精品久久久久久久久免| 啦啦啦中文免费视频观看日本| av在线观看视频网站免费| 亚洲在久久综合| 成人二区视频| 国产亚洲精品久久久com| 纵有疾风起免费观看全集完整版| 国产又色又爽无遮挡免| 免费看av在线观看网站| 亚洲高清免费不卡视频| 777米奇影视久久| 亚洲精品久久久久久婷婷小说| 亚洲经典国产精华液单| 99热这里只有精品一区| 亚洲国产精品一区三区| 免费高清在线观看视频在线观看| 亚洲国产日韩一区二区| 老熟女久久久| 精品久久久精品久久久| 中文字幕最新亚洲高清| 免费人妻精品一区二区三区视频| av视频免费观看在线观看| 99热全是精品| 成人国产av品久久久| 成人黄色视频免费在线看| 久久久久久久久久久久大奶| 永久网站在线| 大话2 男鬼变身卡| 日本-黄色视频高清免费观看| 老司机影院毛片| 国产成人精品福利久久| 国产在线一区二区三区精| 免费日韩欧美在线观看| 人人妻人人添人人爽欧美一区卜| 18禁裸乳无遮挡动漫免费视频| 亚洲精品自拍成人| 久久婷婷青草| 秋霞在线观看毛片| 王馨瑶露胸无遮挡在线观看| 亚洲综合色网址| 午夜日本视频在线| www.av在线官网国产| 精品亚洲乱码少妇综合久久| 欧美 亚洲 国产 日韩一| 青春草亚洲视频在线观看| 我的女老师完整版在线观看| 久久99一区二区三区| 国产毛片在线视频| 中文字幕免费在线视频6| 精品久久久精品久久久| 欧美日韩精品成人综合77777| videosex国产| 在线观看美女被高潮喷水网站| 国产永久视频网站| 日本黄色日本黄色录像| 国产淫语在线视频| 飞空精品影院首页| 久久精品夜色国产| 我要看黄色一级片免费的| 国精品久久久久久国模美| 日韩av免费高清视频| 日韩中字成人| 汤姆久久久久久久影院中文字幕| 熟女电影av网| 免费看光身美女| 三级国产精品片| 久久精品夜色国产| 能在线免费看毛片的网站| 一级毛片电影观看| 成人国产av品久久久| 久久精品国产自在天天线| 高清视频免费观看一区二区| 久久久久久人妻| 亚洲综合精品二区| 免费大片18禁| 97超视频在线观看视频| 国产永久视频网站| 十八禁网站网址无遮挡| av专区在线播放| 亚洲精品国产av蜜桃| 精品卡一卡二卡四卡免费| 少妇人妻 视频| 国产精品一区二区在线观看99| 午夜视频国产福利| 亚洲av不卡在线观看| 老司机亚洲免费影院| 人人妻人人添人人爽欧美一区卜| 97超视频在线观看视频| 久久免费观看电影| 极品少妇高潮喷水抽搐| 91精品伊人久久大香线蕉| 99久久中文字幕三级久久日本| 日韩熟女老妇一区二区性免费视频| 国产探花极品一区二区| 高清视频免费观看一区二区| 一级毛片黄色毛片免费观看视频| 蜜臀久久99精品久久宅男| 日韩制服骚丝袜av| 大片免费播放器 马上看| 熟妇人妻不卡中文字幕| 国产精品 国内视频| 国产精品免费大片| 秋霞在线观看毛片| 免费高清在线观看日韩| 久久久久视频综合| 妹子高潮喷水视频| 亚洲欧美精品自产自拍| 久久ye,这里只有精品| 国产片特级美女逼逼视频| 最近手机中文字幕大全| 美女xxoo啪啪120秒动态图| 啦啦啦在线观看免费高清www| av免费在线看不卡| 久久人人爽人人爽人人片va| 欧美性感艳星| 婷婷色综合www| 亚洲欧美一区二区三区国产| 国产视频内射| 久久精品国产a三级三级三级| 大又大粗又爽又黄少妇毛片口| 麻豆成人av视频| 亚洲,欧美,日韩| 22中文网久久字幕| 国产免费视频播放在线视频| 国产不卡av网站在线观看| 最黄视频免费看| 高清欧美精品videossex| 少妇被粗大的猛进出69影院 | av又黄又爽大尺度在线免费看| 9色porny在线观看| 欧美日本中文国产一区发布| 亚洲不卡免费看| 国产老妇伦熟女老妇高清| 丝袜脚勾引网站| 亚洲色图综合在线观看| 亚洲精品久久午夜乱码| 国产老妇伦熟女老妇高清| 三上悠亚av全集在线观看| 精品人妻在线不人妻| 女性生殖器流出的白浆| 国产女主播在线喷水免费视频网站| 亚洲情色 制服丝袜| 亚洲不卡免费看| 肉色欧美久久久久久久蜜桃| 最近中文字幕高清免费大全6| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 99精国产麻豆久久婷婷| 美女xxoo啪啪120秒动态图| 丁香六月天网| 国产有黄有色有爽视频| 岛国毛片在线播放| 成人影院久久| 日韩强制内射视频| 黄色毛片三级朝国网站| 一本大道久久a久久精品| av电影中文网址| 如何舔出高潮| 美女中出高潮动态图| 国产av一区二区精品久久| 亚洲国产欧美日韩在线播放| 丁香六月天网| 免费看光身美女| 国产永久视频网站| 亚洲av男天堂| 欧美日韩国产mv在线观看视频| 日韩一区二区视频免费看| 视频区图区小说| 简卡轻食公司| 精品熟女少妇av免费看| 中文字幕av电影在线播放| h视频一区二区三区| 又大又黄又爽视频免费| 欧美3d第一页| 亚洲精品自拍成人| 99久国产av精品国产电影| 亚洲国产日韩一区二区| 国产片内射在线| 精品亚洲成a人片在线观看| 亚洲精品视频女| 美女内射精品一级片tv| 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 亚洲国产欧美日韩在线播放| 欧美日韩成人在线一区二区| 简卡轻食公司| 亚洲欧美一区二区三区黑人 | 69精品国产乱码久久久| 国产乱来视频区| 精品熟女少妇av免费看| 国产免费一区二区三区四区乱码| 91精品三级在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲一区二区精品| 天天躁夜夜躁狠狠久久av| 成人无遮挡网站| 高清视频免费观看一区二区| 国产高清国产精品国产三级| 免费人成在线观看视频色| 免费播放大片免费观看视频在线观看| 久久久精品区二区三区| 久久热精品热| 国产老妇伦熟女老妇高清| 人人妻人人澡人人爽人人夜夜| 日韩强制内射视频| 精品人妻在线不人妻| 99久久中文字幕三级久久日本| 久久久精品区二区三区| 国产极品天堂在线| 国产精品一区www在线观看| 国产又色又爽无遮挡免| 亚洲精品日韩av片在线观看| 久久久久国产精品人妻一区二区| 岛国毛片在线播放| 亚洲国产欧美在线一区| 国产爽快片一区二区三区| 视频在线观看一区二区三区| 美女国产高潮福利片在线看| 精品国产一区二区三区久久久樱花| 亚洲情色 制服丝袜| 国产色婷婷99| 99热网站在线观看| 蜜桃久久精品国产亚洲av| 在线观看免费日韩欧美大片 | 蜜臀久久99精品久久宅男| 国产精品嫩草影院av在线观看| 五月开心婷婷网| 欧美性感艳星| 午夜福利,免费看| 少妇的逼好多水| 国产日韩欧美亚洲二区| www.色视频.com| 美女视频免费永久观看网站| av播播在线观看一区| 一本久久精品| 大又大粗又爽又黄少妇毛片口| 亚洲成色77777| 成人黄色视频免费在线看| 日韩强制内射视频| 久久99热6这里只有精品| 国产毛片在线视频| 大话2 男鬼变身卡| 一区二区av电影网| 秋霞在线观看毛片| 18在线观看网站| 精品一区二区三区视频在线| 永久网站在线| 一本大道久久a久久精品| 亚洲av二区三区四区| 色视频在线一区二区三区| 国产不卡av网站在线观看| 精品久久久久久久久av| 97在线人人人人妻| 全区人妻精品视频| 女人精品久久久久毛片| 久久99热这里只频精品6学生| 在线观看人妻少妇| 中国三级夫妇交换| 欧美精品高潮呻吟av久久| 视频在线观看一区二区三区| 97在线视频观看| 老熟女久久久| 日日撸夜夜添| 老女人水多毛片| 亚洲av成人精品一二三区| 亚洲国产欧美日韩在线播放| 欧美bdsm另类| 狠狠精品人妻久久久久久综合| 久久热精品热| 秋霞在线观看毛片| 一区二区三区精品91| 秋霞在线观看毛片| 91国产中文字幕| 最近的中文字幕免费完整| 成人午夜精彩视频在线观看| 99精国产麻豆久久婷婷| av黄色大香蕉| 看免费成人av毛片| 制服诱惑二区| 一本大道久久a久久精品| 免费高清在线观看日韩| 午夜福利影视在线免费观看| 制服丝袜香蕉在线| 一本大道久久a久久精品| 午夜福利,免费看| 国产高清国产精品国产三级| 麻豆成人av视频| 久久综合国产亚洲精品| 一个人看视频在线观看www免费| 久久久久人妻精品一区果冻| 欧美激情 高清一区二区三区| 丰满乱子伦码专区| 国产又色又爽无遮挡免| 黑人欧美特级aaaaaa片| 国产在线视频一区二区| 卡戴珊不雅视频在线播放| 看免费成人av毛片| av卡一久久| 久久久国产精品麻豆| 免费观看无遮挡的男女| 免费高清在线观看日韩| 国产亚洲精品久久久com| 国产有黄有色有爽视频| 久久久久网色| 国产精品 国内视频| 狂野欧美白嫩少妇大欣赏| 亚洲一区二区三区欧美精品| 人妻系列 视频| 国产精品国产三级专区第一集| 亚洲人与动物交配视频| 久久99精品国语久久久| 蜜桃国产av成人99| 亚洲欧洲国产日韩| 亚洲少妇的诱惑av| 啦啦啦在线观看免费高清www| 美女中出高潮动态图| 日本猛色少妇xxxxx猛交久久| 一区二区日韩欧美中文字幕 | 精品久久久久久久久亚洲| 香蕉精品网在线| 一区在线观看完整版| 韩国高清视频一区二区三区| 久久女婷五月综合色啪小说| 午夜免费观看性视频| 成人毛片60女人毛片免费| 久久久久视频综合| 免费黄色在线免费观看| 国产精品久久久久久久电影| 午夜久久久在线观看| 在线亚洲精品国产二区图片欧美 | 一本色道久久久久久精品综合| 在线 av 中文字幕| 日本黄色日本黄色录像| 亚洲精品乱久久久久久| 欧美丝袜亚洲另类| 久久人妻熟女aⅴ| 狂野欧美激情性xxxx在线观看| 欧美丝袜亚洲另类| 在线天堂最新版资源| 777米奇影视久久| 婷婷成人精品国产| 寂寞人妻少妇视频99o| 久久青草综合色| 青春草视频在线免费观看| 免费播放大片免费观看视频在线观看| 最近的中文字幕免费完整| 欧美三级亚洲精品| 老司机影院成人| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 亚洲美女黄色视频免费看| 美女视频免费永久观看网站| 亚洲国产精品专区欧美| 欧美97在线视频| 色哟哟·www| 国产精品国产av在线观看| 久久综合国产亚洲精品| 亚洲av二区三区四区| 中文字幕精品免费在线观看视频 | 日韩三级伦理在线观看| h视频一区二区三区| 亚洲国产精品一区三区| 国产欧美亚洲国产| 春色校园在线视频观看| 亚洲精品自拍成人| 欧美3d第一页| 少妇人妻久久综合中文| 美女中出高潮动态图| 亚洲欧洲精品一区二区精品久久久 | 两个人免费观看高清视频| 国产亚洲最大av| 国产成人一区二区在线| 18禁在线无遮挡免费观看视频| 插逼视频在线观看| 狂野欧美激情性bbbbbb| 69精品国产乱码久久久| 中文字幕人妻熟人妻熟丝袜美| 大片电影免费在线观看免费| 蜜桃在线观看..| 午夜免费鲁丝| 免费av不卡在线播放| 国产亚洲精品久久久com| 在线看a的网站| 欧美xxxx性猛交bbbb| 亚洲天堂av无毛| 亚洲不卡免费看| 一级毛片 在线播放| 亚洲丝袜综合中文字幕| 久久久久久久精品精品| 欧美日韩综合久久久久久| 美女内射精品一级片tv| 三级国产精品欧美在线观看| 在线观看www视频免费| 亚洲欧洲国产日韩| 青春草视频在线免费观看| 丰满迷人的少妇在线观看| 日本黄色日本黄色录像| 久久午夜福利片| 男女免费视频国产| 三级国产精品片| 成人国产麻豆网| 黄色欧美视频在线观看| 天堂8中文在线网| videosex国产| 一本一本综合久久| 只有这里有精品99| 精品亚洲乱码少妇综合久久| 97在线视频观看| 一个人看视频在线观看www免费| 99九九在线精品视频| 人妻夜夜爽99麻豆av| 久久人人爽人人片av| 日韩精品有码人妻一区| 亚洲第一av免费看| 欧美性感艳星| 大陆偷拍与自拍| 国产精品久久久久久精品电影小说| 丝袜脚勾引网站| 欧美 日韩 精品 国产| 街头女战士在线观看网站| 狂野欧美激情性bbbbbb| 国产免费一级a男人的天堂| 春色校园在线视频观看| 国产男女超爽视频在线观看| 日本av手机在线免费观看| 日韩在线高清观看一区二区三区| 欧美国产精品一级二级三级| 成年女人在线观看亚洲视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产a三级三级三级| 国产极品粉嫩免费观看在线 | 免费看不卡的av| 国产男人的电影天堂91| 高清在线视频一区二区三区| 少妇被粗大猛烈的视频| 天堂俺去俺来也www色官网| 久久久久久久久久久久大奶| 夜夜骑夜夜射夜夜干| 欧美激情国产日韩精品一区| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 日韩中文字幕视频在线看片| 乱码一卡2卡4卡精品| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲成a人片在线观看| 大话2 男鬼变身卡| 色婷婷av一区二区三区视频| 女的被弄到高潮叫床怎么办| 国产 一区精品| 国产精品熟女久久久久浪| 中文字幕久久专区| 免费高清在线观看视频在线观看| 秋霞在线观看毛片| 亚洲美女黄色视频免费看| 热re99久久精品国产66热6| 视频在线观看一区二区三区| 免费看av在线观看网站| 日日撸夜夜添| 人人妻人人爽人人添夜夜欢视频| 亚洲综合精品二区| 中文欧美无线码| 亚洲国产毛片av蜜桃av| 青春草亚洲视频在线观看| 成人亚洲欧美一区二区av| 在线免费观看不下载黄p国产| 日韩精品有码人妻一区| 久久这里有精品视频免费| 国精品久久久久久国模美| 中文天堂在线官网| 国产精品久久久久久精品古装| 五月玫瑰六月丁香| 黄色配什么色好看| 熟女人妻精品中文字幕| 成人国产麻豆网| 久久毛片免费看一区二区三区| 精品国产国语对白av| 亚洲精品日韩在线中文字幕| 久久精品国产鲁丝片午夜精品| a级毛片免费高清观看在线播放| 久久久久久久久久人人人人人人| 少妇熟女欧美另类| 色吧在线观看| 一个人看视频在线观看www免费| 日韩亚洲欧美综合| 国产极品粉嫩免费观看在线 | 亚洲精品,欧美精品| 又黄又爽又刺激的免费视频.| 色视频在线一区二区三区| 永久网站在线| 亚洲国产欧美日韩在线播放| 色哟哟·www| 老司机影院毛片| 少妇熟女欧美另类| 爱豆传媒免费全集在线观看| 人妻制服诱惑在线中文字幕| 亚洲欧美一区二区三区国产| 亚洲av.av天堂| 97超碰精品成人国产| 一级毛片我不卡| 国产 一区精品| 在线观看免费视频网站a站| 亚洲高清免费不卡视频| freevideosex欧美| 91成人精品电影| 在线观看国产h片| 国产有黄有色有爽视频| 国产一级毛片在线| 九色成人免费人妻av| 免费av不卡在线播放| 国产69精品久久久久777片| 中文精品一卡2卡3卡4更新| 国产欧美亚洲国产| 亚洲精品第二区| 亚州av有码| 成年人免费黄色播放视频| 丝袜脚勾引网站| 久久久久久伊人网av| 国产探花极品一区二区| 人妻少妇偷人精品九色| 亚洲怡红院男人天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天堂中文最新版在线下载| 亚洲色图 男人天堂 中文字幕 | 一边亲一边摸免费视频| 亚洲丝袜综合中文字幕| 欧美性感艳星| 久久久久久久久久人人人人人人| 久久久久国产精品人妻一区二区| 日韩中字成人| 亚洲av成人精品一区久久| 亚洲国产精品一区三区| 亚洲无线观看免费| 日韩成人av中文字幕在线观看| 亚洲国产日韩一区二区| 久久精品久久精品一区二区三区| 精品人妻熟女毛片av久久网站| 久久青草综合色| 一级毛片黄色毛片免费观看视频| 亚洲精品第二区| 五月玫瑰六月丁香| 大香蕉久久网|