• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-layer protective armour for underwater shock wave mitigationA hmed HAWASS, Hosam MOSTAFA, Ahmed ELBEIH*

    2015-07-02 06:16:28MilitaryTechnicalCollegeKobryElkobbahCairoEgyptReceivedNovember2014revised10February2015acceptedApril2015Availableonline11July2015
    Defence Technology 2015年4期

    Military Technical College, Kobry Elkobbah, Cairo, EgyptReceived 8 November 2014; revised 10 February 2015; accepted 1 April 2015 Available online 11 July 2015

    Multi-layer protective armour for underwater shock wave mitigation
    A hmed HAWASS, Hosam MOSTAFA, Ahmed ELBEIH*

    Military Technical College, Kobry Elkobbah, Cairo, Egypt
    Received 8 November 2014; revised 10 February 2015; accepted 1 April 2015 Available online 11 July 2015

    Abstract

    The effect of underwater shock wave on different target plates has been studied. An underwater shock wave generator (shock tube) was used to study the interactions between water and different constructed targets which act as shock wave mitigation. Target plates, composed of sandwich of two aluminum sheets with rubber and foam in between, were prepared and studied. For comparison, the target plates composed of triple aluminum sheets were tested. The study includes the testing of the selected plates in water under the effect of different peak pressures and the analysis of the results.

    The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:Shock simulator; Mitigation; Aluminum; Foam; Rubber

    E-mail addresses: elbeih.czech@gmail.com, elbeih.a@gmail.com (A. ELBEIH).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.04.006

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Historical background and introduction

    In the modern battles, there is an aim to build a new naval body structures composed of light and strong composite materials [1]. This naval vessel must be able to withstand the damage produced by underwater explosion (UNDEX) Understanding that the interaction between the composite material and the applied load simulate the underwater explosion is an interesting study. Low rates of the stress applied to the composite material were deeply studied in many studies unlike the higher loading caused by the underwater explosion [1].

    Since 1968, the different terrorist attack cases have been occurred [2]. To protect the naval vessel from these threats, the structure has to be supported by shock wave mitigation methods. Regarding to the good mechanical characteristics of the composite materials, they have varieties of applications, including military and defense applications. The understanding of blast response and resistance of these materials is very important to design a new material and decrease the effect of this attack. Many academic researchers have studied the response of different plates in the form of sandwich structure under the effect of different applied blast stresses [3-5]. Many studies have investigated the homogenous composite materials subjecting to different loads [6-10]. The addition of polymeric materials to different structures was studied to enhance the blast wave resistance [11]. The polymeric materials were used to decrease the weight of naval vessels and increase the protection level of their bodies.

    The dynamic response of metallic lattice sandwich plates under impulsive loading applied by ballistic pendulum system was studied [12]. Liu et al. studied the effect of blast loading on metallic sandwich-walled hollow cylinders with graded aluminum foam cores [13]. Sandwich tubes under internal explosive loading were investigated experimentally and the deformation of sandwich tubes occurred sequentially from the inner tube to the outer one was discussed [14]. Short duration of pressure pulses resulting from underwater explosions was represented by Riccardo et al. [15]. The energy dissipation and deformation occurred to sandwich structures subjected to underwater blast loading was investigated [16].

    Several typical phenomena can be observed by explosion of charge under water. These phenomena are the shock wave, gas bubble, cavitation, etc. Park [17] indicated that the explosive charge is converted to gaseous products at high temperature of 3000°C and produce shock wave pressure of approximate 500 MPa. The main product of the explosion conversion is gas at high temperature and pressure [18,19]. The reaction advance from the c-j plane to complete explosion reaction was presented in Ref. [20]. The resulted gaseous products form spherical gas bubbles producing initial shock wave followed by a further series of bubble oscillations until arriving to the surface or any target. After underwater explosive conversion, the generated shock wave propagates spherically at a speed which is faster than sound speed at first and then decreases to the similar value [21]. The formed gases provide rapid rise for the pulsed waves which are difficult for controlling and require a suitable safety arrangement. Underwater shock generator can be easily controlled and safer during test. Many researches studied and proved that the underwater shock wave generator can produce a pressure wave profile similar to the shock wave profile resulting from free underwater explosion tests [22-26].

    Deshpande et al. designed an underwater shock wave generator filled with water to study the effect of different pressure pulses on several plates under water, reducing the time and cost of underwater explosions test [27]. Guan et al. studied another novel technique based on transmission tube and explosion method [28]. Using steel projectile as a source of impact energy, a laboratory underwater shock wave generator was designed to produce underwater shock pressure. The underwater shock wave generator can be controlled by changing the mass and the velocity of the impact projectile [29]. Another apparatus made from water-filled fiber composite tube and 1.5 kg striker was used to test different fiber plates [30].

    The aim of this research is to investigate the mitigation of shock wave occurred at multilayer sheets made of light material such as rubber and polyethylene foam subjected to an underwater pressure wave.

    2. Material specification

    Multi-layer sandwich panels were fabricated. The outer sides of the panels were aluminum plates and the core was composed of two sheets of foam and one sheet of rubber, as shown in Fig. 1. Each aluminum 204 alloy has a composition of (93Al, 4.15Cu, 0.1 Cr, 0.5 Mn, 0.5 Si, 0.25 Zn, 1.5 Mg wt %), and the 8 mm thick and 0.98 kg weight multi-layer panel has a 330×330 mm face area. For comparison, an examined aluminum jackets made from three aluminum plates was prepared, which has the same face area mentioned above, and is 4.5 mm in thickness and 1.13 kg in weight. The constructions of the different plates are shown in Fig. 1 and the further details are provided in Table 1.

    The material properties of aluminum 204 are listed in Table 2. The characteristics of EPDM rubber (based on ethylenepropylene diene monomer) are listed in Table 3. The rubber hardness test was carried out by using Shore A which is used for soft elastomers and its value varies between 10 and 90.

    Fig. 1. Construction of the examined target.

    Table 1Specification of target sheets.

    Table 2Material properties of aluminum 204.

    Table 3Specification of EPDM rubber sheet.

    Cross-linked low density polyethylene (LDPE) foam, named VOLARA type A, produced by Sckisui Voltek,LLL, was selected as a shock wave mitigation material for the desired object of this research. LDPE have wide application in naval industry as it have many desirable properties including water resistance, chemical resistance, energy absorbance, buoyancy and cushioning. The specification of the foam used in the test is listed in Table 4. All test results of LDPE foamare related to standard test methods for flexible material ASTM D3575.

    Table 4Specification of LDPE foam sheet.

    3. Experimental testing

    An underwater shock generator in the form of cylindrical tube was used to produce a small scale laboratory blast wave. In this research, the underwater shock generator consists of shock tube made of mild steel with 5 mm in thickness. It is 1 m in length and 20.7 cm in diameter, and placed over a steel plate. A hammer with a pendulum arm is fixed at the end of the shock tube in a vertical position to generate the impact energy needed for the creation of underwater shock wave. Moving of the hammer at different angles causes the increase of the impact energy. A 25 mm thick steel piston is placed inside the shock tube at the end part facing to the hammer. The examined target is fixed at the front part of shock tube. The positions of strain gauge and sensor are shown in Figs. 2 and 3.

    The hammer has a mass of 21.3 kg. The impact of the hammer on the end part of the tube causes the piston to produce pressure in the water. The target is exposed to an impulse of a planer wave which propagates along the length of the tube as a result of the impact pressure imparted by the hammer. The generated pressure pulse is measured by the pressure sensor which is placed on the top of the underwater shock tube.

    Kistler type 211B series pressure sensors (range: 700 kPa, sensitivity: 8 mV/kPa), produced by Inter Technology Co., Canada, was used to measure an exponentially decaying pressure history. The pressure sensor recorded the first signal which is the first shock pressure and the second signal which is a reflected pressure.

    Fig. 2. The underwater shock generator.

    Fig. 3. Construction of underwater shock generator.

    Fig. 4. Sensors used for underwater testing.

    The examined targets were subjected to similar pulsed pressure wave during different applied tests while the resulted reflected pressure depends on the material properties of the examined target. N11-FA-5-120-11 strain gauge, produced byShow a Measuring Instruments Co., Japan, was used to measure the strain generated by the pressure wave. S13FLP12A displacement sensor, produced by Alther bv, Netherlands, was used to record the displacement of the examined target. The three sensors used in the experiments are shown in Fig. 4.

    Table 5Effect of the impact angles of hammer on the pressure wave characteristics.

    4. Results and discussion

    The results are divided into two main category: the measuring result of the pressure due to hammer impact and the measuring result of the targets' resistance to the underwater pressure wave, which are characterized by three main parameters, strain measurements, displacement measurements and visual examinations. Target visual examination containsthe depth of the resulted deformation produced as a result of different pressure waves after the different shots. Two examined groups were tested. The first group contains three different shots (peak pressure lies between 70 and 700 kPa) which permit the use of strain gauges, pressure anddisplacement sensors, and the second group contains one shot (peak pressure is more than 700 kPa) which imparts material damage and only allows strain gauge measurements. The angle between the impact hammer and the moving piston can be adjusted according to impact velocity and energy required. The adjustment can be produced by changing the distance between the hammer head and the piston. The detailed output characteristics are presented in Table 5.

    Fig. 5. Pressure profile of shock tube.

    Fig. 6. Measuring result of strain gauge.

    Fig. 7. Measuring results of displacement sensors.

    4.1. Measuring results of pressure sensor

    A typical pressure profile obtained by the pressure sensor for different shots at different impact angles is shown in Fig. 5. For impact energy of 3.12 J (10°impact angle of the hammer), the incident shock pressure was nearly 5.6×104Pa, and the reflected pressure wave has higher value than the incident one (6.2×104Pa), as shown in Fig. 5(a). This result might be due to the combination of the incident and reflected waves to form a high value of shock pressure.

    In case of impact energies of 12.4 J and 27.6 J, the incident pressures have maximum values of 2.5×105Pa and 5.5×105Pa, respectively, as shown in Fig. 5(b) and (c). The results show that the incident shock pressure increases as the impact energy of the hammer increases.

    Fig. 8. Deformation of aluminum plate caused by underwater shock wave.

    4.2. Fluid response (strain measurement)

    As a result of the impact energy of the hammer, underwater pressure wave is formed and travels through the water from the end part of the shock tube to the front part until reaching the sheet of the target. Local cavitation and bubbles are formed on the boundary between water and target. The incident pressure wave impacts on the target and is reflected back into the water. The corresponding measurements of the compressive core strain histories are presented in Fig. 6.

    The two test target plates had similar trend but different strain values were obtained for each particular impact energy. The multi-layer plate showed a great reduction in strain values at all the shot examined. The strain deformation of the multilayer target is nearly half the deformation value of the aluminum target in the case of 10°impact angle of the hammer. These results give indication that the rubber and foam sheets have the ability to absorb the incident shock wave energy and make the multi-layer plate more reliable against the underwater shock wave.

    4.3. Deflection of center point

    The displacement of sandwich plate was determined by the displacement sensors which present the displacement-time history for the triple-layer aluminum plate and multilayer sandwich materials. The results show that the deflections occurred in the multilayer sandwich material was less than the values recorded in the case of using the triple aluminum plates for particular shock pressure values. Reduction in the measured deflections is presented and explained in Fig. 7.

    4.4. Visual examination

    After four shots by the impact hammer, the degree of deformation of the triple-layer aluminum plate are 2.06 mm for the first aluminum plate face, 1.2 mm for the middle plate and 1.4 mm for the outer plate. In the case of multi-layer plate, no deformation occurred for the aluminum plate which firstly subjected to the underwater shock wave, and the degree of deformation of the outer aluminum plate is 2.24 mm. These results show that there is a significant absorption of the incident shock pressure and no reflection occurs. These results indicate that it is better to use polymerized material as internal layers of targets to obtain better mitigation in shock wave. Photos of the target sheets are shown in Fig. 8.

    5. Conclusions

    Underwater shock wave generator had been used successfully to investigate and compare the interaction between shock wave and aluminum target made of triple aluminum plates and multilayer plate with rubber and polyethylene foam. Pressure sensors were used to record the pressure wave produced by impact of a hammer. The measurements of strain gauge and displacement sensors proved that the multilayer plate has better mitigate shock wave compared to the aluminum target. Also the mass of multilayer plate is less than that of aluminum target. From this study, it is recommended to continue studying the possibility of replacing the ordinary plates of naval vehicle by multilayer plates.

    References

    [1] Shukla A, LeBlanc J. Dynamic response and damage evolution in composite materials subjected to underwater explosive loading an experimental and computational study. J Compos Struct 2010;92.

    [2] National Research Council. Protecting building from bomb damage: transfer of blast-effects mitigation technologies from military to civilian applications. Washington : DC: National Academy; 1995.

    [3] Wiezerbicki T, Nurick GN. Large deformation of thin plates under localized impulsive loading. Int J Impact Eng 1996;18(7):899-918.

    [4] Zhu L. Transient deformation modes of square plates subjected to explosive loadings. Int J Solids Struct 1996;33(3):301-14.

    [5] Fleck NA, Deshpande VS. The resistance of clamped sandwich beams to shock loading. J Appl Mech 2004;71(3):386-401.

    [6] Nurick GN, Gelman ME, Marshall NS. Tearing of blast loaded plates with clamped boundary conditions. Int J Impact Eng 1996;18(7):803.

    [7] Galiev U. Experimental observations and discussion of counterintuitive behavior of plates and shallow shells subjected to blast loading. Int J Impact Eng 1996;18(7):783-802.

    [8] Hammond L, Grzebieta R. Structural response of submerged air-backed plates by experimental and numerical analyses. Shock Vib 2000;7(6):333-41.

    [9] Teng TL, Liang CC, Liao CC. Nonlinear forced vibration analysis of the rectangular plates by the Fourier series method. Comput Mech 1999;23(1):1-7.

    [10] Ramajeyathilagam K, Vendhan CP. Deformation and rupture of thin rectangular plates subjected to underwater shock. Int J Impact Eng 2004;30(6):699-719.

    [11] Fatt MS Hoo, Ouyang X, Dinan RJ. Blast response of walls retrofitted with elastomer coatings. Struct Mater 2004;15:129-38.

    [12] Cui X, Zhao L, Wang Z, Zhao H, Fang D. Dynamic response of metallic lattice sandwich structures to impulsive loading. Int J Impact Eng 2012;43:1-5.

    [13] Liu X, Tian X, Jian T, Zhou D, Liang B. Blast resistance of sandwichwalled hollow cylinders with graded metallic foam cores. J Compos Struct 2012;94:2485-93.

    [14] Shen J, Lu G, Zhao L, Qingming Zhang. Short sandwich tubes subjected to internal explosive loading. J Eng Struct 2013;55:56-65.

    [15] Riccardo P, Serge A. Dynamic response of sandwich shells to underwater blasts. Cent Eur J Eng 2012;2(4):509-22.

    [16] Avachat S, Zhou M. Effect of face sheet thickness on dynamic response of composite sandwich plates to underwater impulsive loading. J Exp Mech 2012;52:83-93.

    [17] Park Wan J. Underwater explosion testing of catamaran-like structure vs. simulation and feasibility of using scaling law. Ocean Systems Engineering, KAIST; 2012 [Master's thesis].

    [18] Misovec AP, David W. Explosion phenomena. Taylor Naval Ship Research and Development Center; 1976.

    [19] Cole RH. Underwater explosions. Princeton, New Jersey: Princeton University Press; 1948.

    [20] Salvge engineer's handbook, vol. 1, S0300-A8-HBK-010.

    [21] Reid WD. The response of surface ships to underwater Explosions. Department of Defense; 1994.

    [22] Zakrajsek1 AJ, Miklaszewski1 EJ, Guildenbecher1 DR. Experimental analysis of blast mitigation associate with water sheets. Son School of Mechanical Engineering, Purdue University, West Lafayette IN 47905.

    [23] Freiwald DA. Approximate blast wave theory and experimental data for shock trajectories in linear explosive driven shock tubes. J Appl Phys 1972;43(5):2224-6.

    [24] Alley D. Explosive blast loading experiments for TBI scenarios: characterization and mitigation. West Lafayette, IN: Purdue University; 2009 [Thesis].

    [25] Lee S. Dynamic failure of blast-resistant structures subjected to impulsive loading. Evanston, IL, USA: Northwestern University; 2005 [Ph.D. thesis].

    [26] Espinosa D, Lee S, Moldovan N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading. Exp Mech 2006;46(6):805-24.

    [27] Schiffer A, Tagarielli L. The one-dimensional response of a water-filled double hull to underwater blast: experiments and simulations. Int J Impact Eng 2014;63:177-87.

    [28] Guan W, Aktas A, Potluri P, Cantwell J, Langdon G, Nurick N. The blast resistance of stitched sandwich panels. Int J Impact Eng 2014;65:137-45.

    [29] Deshpande S, Heaver A, Fleck A. An underwater shock simulator. In: Proceeding of the royal society; 2006.

    [30] Perotti E, Deiterding R, Inaba K, Shepherd J, Ortiz M. Elastic response of water-filled fiber composite tubes under shock wave loading. Int J Solids Struct 2013;50:473-86.

    * Corresponding author.

    av女优亚洲男人天堂| 黄色一级大片看看| 一个人免费看片子| 日日啪夜夜撸| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩综合久久久久久| 国产69精品久久久久777片| av不卡在线播放| 丝袜喷水一区| 久久人人爽人人爽人人片va| 国产毛片在线视频| 18禁在线播放成人免费| 日日摸夜夜添夜夜爱| 国产精品久久久久久精品古装| 日日撸夜夜添| 高清日韩中文字幕在线| 亚洲国产av新网站| 国产欧美日韩精品一区二区| 女性生殖器流出的白浆| 国产精品一二三区在线看| 天天躁日日操中文字幕| 99九九线精品视频在线观看视频| 国产乱来视频区| 国产亚洲av片在线观看秒播厂| 日本欧美视频一区| 男女啪啪激烈高潮av片| 大话2 男鬼变身卡| 免费看不卡的av| 亚洲国产精品国产精品| 免费大片18禁| 久久久精品免费免费高清| 男人狂女人下面高潮的视频| videossex国产| 熟女人妻精品中文字幕| 成年av动漫网址| 国产免费又黄又爽又色| av.在线天堂| 高清日韩中文字幕在线| 99热全是精品| 18禁动态无遮挡网站| 国产熟女欧美一区二区| 大片免费播放器 马上看| 亚洲图色成人| 青青草视频在线视频观看| 亚洲精品国产av成人精品| 最新中文字幕久久久久| 日韩精品有码人妻一区| 日韩av免费高清视频| 欧美丝袜亚洲另类| 亚洲精品456在线播放app| 免费大片黄手机在线观看| 国国产精品蜜臀av免费| 国产一级毛片在线| 久久国产精品男人的天堂亚洲 | 在线观看人妻少妇| 亚洲美女黄色视频免费看| 国产熟女欧美一区二区| 18禁在线无遮挡免费观看视频| 欧美一级a爱片免费观看看| 亚洲内射少妇av| 中文在线观看免费www的网站| 色婷婷av一区二区三区视频| 欧美成人精品欧美一级黄| 久久人妻熟女aⅴ| 丝袜脚勾引网站| 七月丁香在线播放| 伦精品一区二区三区| 国产 精品1| 天堂中文最新版在线下载| 国产成人a∨麻豆精品| 高清午夜精品一区二区三区| 国产视频首页在线观看| 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 国产高清三级在线| 亚洲激情五月婷婷啪啪| 噜噜噜噜噜久久久久久91| 亚洲av福利一区| 狠狠精品人妻久久久久久综合| 久久精品久久精品一区二区三区| 久久亚洲国产成人精品v| 国产精品一及| 国产成人aa在线观看| 亚洲欧美精品专区久久| 大又大粗又爽又黄少妇毛片口| 少妇熟女欧美另类| 亚洲欧美成人综合另类久久久| 免费看av在线观看网站| 男女啪啪激烈高潮av片| 春色校园在线视频观看| 国产精品久久久久久久久免| 久久久亚洲精品成人影院| 成人漫画全彩无遮挡| av天堂中文字幕网| 在线观看一区二区三区激情| 久久韩国三级中文字幕| 在线观看av片永久免费下载| 午夜福利在线观看免费完整高清在| 七月丁香在线播放| 精品一区二区三区视频在线| 26uuu在线亚洲综合色| 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| 国产精品久久久久久av不卡| 制服丝袜香蕉在线| 久久国产精品男人的天堂亚洲 | 国产成人aa在线观看| 欧美日韩在线观看h| 久久精品久久久久久久性| 熟女电影av网| 国产精品99久久99久久久不卡 | 色吧在线观看| 色5月婷婷丁香| 国产乱来视频区| 欧美zozozo另类| 久久久久视频综合| 国产伦理片在线播放av一区| 国产精品一区二区在线不卡| 最近最新中文字幕免费大全7| 国产精品久久久久成人av| 永久免费av网站大全| 欧美日韩亚洲高清精品| 26uuu在线亚洲综合色| 高清午夜精品一区二区三区| 丝袜喷水一区| 国产精品久久久久久精品古装| 亚洲自偷自拍三级| 国产免费福利视频在线观看| 欧美 日韩 精品 国产| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产日韩一区二区| 熟妇人妻不卡中文字幕| 日韩av免费高清视频| 夜夜看夜夜爽夜夜摸| 国产在线一区二区三区精| 日本猛色少妇xxxxx猛交久久| 国产黄频视频在线观看| 国产成人a区在线观看| 日日摸夜夜添夜夜添av毛片| 黄色配什么色好看| 人妻一区二区av| 黄色一级大片看看| 波野结衣二区三区在线| 亚洲欧美成人精品一区二区| 国产成人精品福利久久| 伊人久久精品亚洲午夜| 熟女av电影| 成人午夜精彩视频在线观看| 另类亚洲欧美激情| 久久久a久久爽久久v久久| 国产久久久一区二区三区| 亚洲av成人精品一区久久| h视频一区二区三区| 国产 一区 欧美 日韩| 国产色爽女视频免费观看| 欧美极品一区二区三区四区| 国产精品久久久久久精品古装| 天堂俺去俺来也www色官网| 国内精品宾馆在线| 春色校园在线视频观看| 精品久久久精品久久久| 美女福利国产在线 | 黄色怎么调成土黄色| 久久综合国产亚洲精品| 亚洲va在线va天堂va国产| 欧美一区二区亚洲| 久久6这里有精品| 一级毛片我不卡| 热re99久久精品国产66热6| 男人狂女人下面高潮的视频| 亚洲欧美日韩另类电影网站 | 在线观看免费视频网站a站| 美女高潮的动态| 欧美一级a爱片免费观看看| av天堂中文字幕网| 一区二区三区精品91| 丰满人妻一区二区三区视频av| 国产精品三级大全| 青春草亚洲视频在线观看| 午夜免费鲁丝| 亚洲精品国产av成人精品| 免费黄色在线免费观看| 香蕉精品网在线| 国产成人a区在线观看| 亚洲无线观看免费| 国产成人精品福利久久| 三级国产精品欧美在线观看| 亚洲真实伦在线观看| 亚洲怡红院男人天堂| 国产国拍精品亚洲av在线观看| 成人18禁高潮啪啪吃奶动态图 | 久久久久久人妻| 成人一区二区视频在线观看| 国产成人freesex在线| 亚洲精品自拍成人| 国产精品国产三级国产av玫瑰| 91精品国产国语对白视频| 国产免费视频播放在线视频| 女性被躁到高潮视频| 18禁动态无遮挡网站| 美女中出高潮动态图| 尾随美女入室| 欧美区成人在线视频| 欧美bdsm另类| 亚洲av福利一区| 亚洲,一卡二卡三卡| 老司机影院成人| 国产91av在线免费观看| 午夜视频国产福利| 国产高潮美女av| 日韩不卡一区二区三区视频在线| 有码 亚洲区| av国产久精品久网站免费入址| 久久久a久久爽久久v久久| 丝袜喷水一区| 少妇精品久久久久久久| 中文资源天堂在线| 永久网站在线| 亚洲欧美成人综合另类久久久| 久久久精品94久久精品| 亚洲高清免费不卡视频| 国产精品一二三区在线看| 久久久精品免费免费高清| 国产av精品麻豆| 亚洲成人中文字幕在线播放| 国产一区亚洲一区在线观看| 免费大片18禁| 人人妻人人添人人爽欧美一区卜 | 亚洲高清免费不卡视频| 亚洲欧美中文字幕日韩二区| 中文字幕亚洲精品专区| 一级毛片aaaaaa免费看小| 九草在线视频观看| 高清黄色对白视频在线免费看 | 我的老师免费观看完整版| 亚洲熟女精品中文字幕| 大码成人一级视频| 亚洲,一卡二卡三卡| 久久人人爽人人片av| 国产欧美日韩一区二区三区在线 | 久久久久久九九精品二区国产| 中文字幕av成人在线电影| 亚洲av.av天堂| 丰满人妻一区二区三区视频av| 我要看日韩黄色一级片| 啦啦啦视频在线资源免费观看| 一本久久精品| 亚洲欧美日韩另类电影网站 | 国产精品不卡视频一区二区| 全区人妻精品视频| 一本色道久久久久久精品综合| 久久久久人妻精品一区果冻| 搡老乐熟女国产| 校园人妻丝袜中文字幕| 毛片一级片免费看久久久久| 伊人久久国产一区二区| 色综合色国产| 婷婷色麻豆天堂久久| 亚洲精品国产成人久久av| 欧美xxxx性猛交bbbb| 国产69精品久久久久777片| 国产 一区 欧美 日韩| 各种免费的搞黄视频| 永久免费av网站大全| 久久精品国产自在天天线| 国产精品一及| 日韩强制内射视频| 亚洲婷婷狠狠爱综合网| 男人爽女人下面视频在线观看| 国产精品伦人一区二区| 中文字幕人妻熟人妻熟丝袜美| 老司机影院毛片| 夫妻性生交免费视频一级片| 欧美xxⅹ黑人| 一区二区三区精品91| 亚洲天堂av无毛| 亚洲国产欧美在线一区| 深爱激情五月婷婷| av国产久精品久网站免费入址| 亚洲国产成人一精品久久久| 亚洲av中文字字幕乱码综合| 久久毛片免费看一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 又大又黄又爽视频免费| 夫妻午夜视频| 大片免费播放器 马上看| 天堂俺去俺来也www色官网| 午夜免费观看性视频| 一个人看的www免费观看视频| 人人妻人人澡人人爽人人夜夜| 少妇被粗大猛烈的视频| 在线观看国产h片| 麻豆成人午夜福利视频| 又黄又爽又刺激的免费视频.| 亚洲无线观看免费| 蜜臀久久99精品久久宅男| 国产男人的电影天堂91| 毛片女人毛片| 国产在线一区二区三区精| 欧美最新免费一区二区三区| 哪个播放器可以免费观看大片| 99久久精品热视频| www.色视频.com| 中国国产av一级| 18禁裸乳无遮挡免费网站照片| 狂野欧美激情性bbbbbb| 欧美高清性xxxxhd video| 亚洲av中文字字幕乱码综合| 色网站视频免费| 久久国产乱子免费精品| 激情五月婷婷亚洲| 高清不卡的av网站| 国产成人aa在线观看| av线在线观看网站| 免费大片黄手机在线观看| 欧美亚洲 丝袜 人妻 在线| 日韩av免费高清视频| 女性被躁到高潮视频| 秋霞伦理黄片| 午夜福利网站1000一区二区三区| 亚洲精品色激情综合| av国产久精品久网站免费入址| 直男gayav资源| 久久久久久久久久久免费av| 哪个播放器可以免费观看大片| 超碰av人人做人人爽久久| 欧美xxxx性猛交bbbb| 国产欧美日韩精品一区二区| 永久网站在线| 成人国产av品久久久| 免费观看的影片在线观看| 久久久久网色| 成人一区二区视频在线观看| 亚洲欧美精品自产自拍| 观看av在线不卡| 国产精品人妻久久久影院| 亚洲精品国产色婷婷电影| 最近2019中文字幕mv第一页| 久久久a久久爽久久v久久| 国产白丝娇喘喷水9色精品| 欧美亚洲 丝袜 人妻 在线| 国产男女内射视频| 国产精品熟女久久久久浪| 女的被弄到高潮叫床怎么办| 中文资源天堂在线| 国产 一区精品| 久久 成人 亚洲| 99热全是精品| 亚洲精华国产精华液的使用体验| 边亲边吃奶的免费视频| 精品久久国产蜜桃| 在线免费观看不下载黄p国产| 久久亚洲国产成人精品v| av播播在线观看一区| 偷拍熟女少妇极品色| 亚洲精品成人av观看孕妇| 18+在线观看网站| 日日啪夜夜撸| 国产精品精品国产色婷婷| 97精品久久久久久久久久精品| 日韩一区二区视频免费看| 亚洲精品aⅴ在线观看| 国产男人的电影天堂91| 亚洲av免费高清在线观看| 成人美女网站在线观看视频| 亚洲欧美一区二区三区黑人 | 热re99久久精品国产66热6| 国产一区二区三区综合在线观看 | 男人舔奶头视频| 国产视频首页在线观看| 韩国av在线不卡| 国产av一区二区精品久久 | 亚洲伊人久久精品综合| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美 | 美女xxoo啪啪120秒动态图| 干丝袜人妻中文字幕| 大香蕉久久网| 亚洲综合色惰| 99久久精品国产国产毛片| 黄色欧美视频在线观看| 午夜福利网站1000一区二区三区| 欧美精品国产亚洲| 日本欧美国产在线视频| 成年女人在线观看亚洲视频| 纵有疾风起免费观看全集完整版| 伦理电影免费视频| 欧美 日韩 精品 国产| 国产高清不卡午夜福利| 亚洲精品色激情综合| 国产黄色视频一区二区在线观看| kizo精华| 最新中文字幕久久久久| 中文字幕精品免费在线观看视频 | 最近最新中文字幕大全电影3| 久久久亚洲精品成人影院| 激情 狠狠 欧美| 特大巨黑吊av在线直播| 日本-黄色视频高清免费观看| 男女国产视频网站| 嘟嘟电影网在线观看| 我的老师免费观看完整版| 人人妻人人添人人爽欧美一区卜 | 97超碰精品成人国产| 一区在线观看完整版| 中文字幕精品免费在线观看视频 | 男女无遮挡免费网站观看| 这个男人来自地球电影免费观看 | av福利片在线观看| 最近最新中文字幕免费大全7| 简卡轻食公司| 久久亚洲国产成人精品v| 哪个播放器可以免费观看大片| 国产精品久久久久久av不卡| 99热这里只有是精品50| 日韩av不卡免费在线播放| 一级毛片电影观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品日本国产第一区| 免费看不卡的av| 少妇人妻 视频| 国产精品熟女久久久久浪| 亚洲精品一二三| av免费观看日本| 国产亚洲精品久久久com| 97超碰精品成人国产| 精品国产三级普通话版| 成年人午夜在线观看视频| 中国美白少妇内射xxxbb| www.色视频.com| 欧美精品亚洲一区二区| 国产在线免费精品| 高清av免费在线| 如何舔出高潮| 免费观看在线日韩| 精品久久国产蜜桃| 亚洲av不卡在线观看| 精品国产露脸久久av麻豆| 久久精品久久精品一区二区三区| 亚洲精品一区蜜桃| 亚洲av欧美aⅴ国产| 91久久精品国产一区二区成人| 精品视频人人做人人爽| 3wmmmm亚洲av在线观看| 熟女人妻精品中文字幕| 看十八女毛片水多多多| 激情五月婷婷亚洲| 干丝袜人妻中文字幕| 国产熟女欧美一区二区| 免费av中文字幕在线| 欧美极品一区二区三区四区| 九草在线视频观看| 一级毛片黄色毛片免费观看视频| 搡老乐熟女国产| 精品亚洲成a人片在线观看 | 我要看日韩黄色一级片| 国产乱人偷精品视频| 亚洲精品亚洲一区二区| 18禁在线无遮挡免费观看视频| 成人午夜精彩视频在线观看| 99热国产这里只有精品6| 最近2019中文字幕mv第一页| 全区人妻精品视频| 黄色怎么调成土黄色| 狂野欧美白嫩少妇大欣赏| 性高湖久久久久久久久免费观看| 精品久久国产蜜桃| 欧美成人精品欧美一级黄| 欧美xxⅹ黑人| 校园人妻丝袜中文字幕| 国产日韩欧美在线精品| 黄片wwwwww| 热99国产精品久久久久久7| 麻豆成人av视频| 亚洲内射少妇av| 高清在线视频一区二区三区| 男人舔奶头视频| 六月丁香七月| 久久av网站| 亚洲av男天堂| 欧美丝袜亚洲另类| 国产男女超爽视频在线观看| 我要看日韩黄色一级片| 免费黄网站久久成人精品| 精品国产露脸久久av麻豆| 国产男女内射视频| 国产精品伦人一区二区| 最近中文字幕2019免费版| 伦理电影免费视频| 亚洲av在线观看美女高潮| 国产黄色免费在线视频| 国产免费视频播放在线视频| 国产欧美日韩精品一区二区| 99久久精品热视频| 亚洲精品成人av观看孕妇| 最近中文字幕2019免费版| 午夜免费鲁丝| 赤兔流量卡办理| xxx大片免费视频| 纯流量卡能插随身wifi吗| 亚洲av国产av综合av卡| 久久午夜福利片| 伦精品一区二区三区| 男女边吃奶边做爰视频| 亚洲精品一区蜜桃| 3wmmmm亚洲av在线观看| 妹子高潮喷水视频| 国产精品福利在线免费观看| 色视频www国产| 日日啪夜夜撸| 欧美xxxx性猛交bbbb| 国产高清不卡午夜福利| 国产精品爽爽va在线观看网站| 日本欧美视频一区| 久久国产乱子免费精品| 国产老妇伦熟女老妇高清| 久久久久久久久久久免费av| 在线观看国产h片| 男人添女人高潮全过程视频| 成人黄色视频免费在线看| 国产精品一区www在线观看| 亚洲第一区二区三区不卡| 卡戴珊不雅视频在线播放| 久久毛片免费看一区二区三区| 久久久精品94久久精品| 亚洲第一av免费看| 黑人高潮一二区| 一个人免费看片子| 久久久久久久久大av| 蜜桃亚洲精品一区二区三区| 男人舔奶头视频| 简卡轻食公司| 国产成人精品久久久久久| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 2018国产大陆天天弄谢| 国产在线一区二区三区精| 精品人妻视频免费看| 国产精品嫩草影院av在线观看| 黄色一级大片看看| 深爱激情五月婷婷| 久久这里有精品视频免费| av免费在线看不卡| 欧美日韩亚洲高清精品| 久久久午夜欧美精品| 国产老妇伦熟女老妇高清| .国产精品久久| 欧美一区二区亚洲| a级一级毛片免费在线观看| 各种免费的搞黄视频| 老熟女久久久| 美女主播在线视频| a级毛色黄片| 丝袜脚勾引网站| 国产精品一区二区在线观看99| 99九九线精品视频在线观看视频| 精品一品国产午夜福利视频| 日韩大片免费观看网站| 亚洲精品国产av蜜桃| 一区在线观看完整版| 狠狠精品人妻久久久久久综合| av国产免费在线观看| 热re99久久精品国产66热6| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区国产| 纵有疾风起免费观看全集完整版| 亚洲欧美中文字幕日韩二区| 男女免费视频国产| av不卡在线播放| 肉色欧美久久久久久久蜜桃| 日韩欧美精品免费久久| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 熟女电影av网| 老司机影院成人| av在线蜜桃| 简卡轻食公司| 国产乱人视频| 亚洲人与动物交配视频| 国产乱人视频| 亚洲人与动物交配视频| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区| 日本黄大片高清| 一本一本综合久久| 日本黄大片高清| 国产精品久久久久久精品电影小说 | 免费黄色在线免费观看| 久久久久久九九精品二区国产| 久久久色成人| 成年美女黄网站色视频大全免费 | 国产又色又爽无遮挡免| xxx大片免费视频| 欧美一级a爱片免费观看看| 亚洲自偷自拍三级| 国产高清三级在线| 久久久久视频综合| 熟女av电影| 精品一区在线观看国产| 另类亚洲欧美激情| 伦理电影免费视频| 亚洲欧美成人精品一区二区| 激情 狠狠 欧美| 亚洲无线观看免费| 午夜免费鲁丝| h日本视频在线播放| 插阴视频在线观看视频| 免费观看在线日韩| 中文乱码字字幕精品一区二区三区| 两个人的视频大全免费| 亚洲欧美中文字幕日韩二区| 在线观看av片永久免费下载| 黄色视频在线播放观看不卡| 男人舔奶头视频| 天堂俺去俺来也www色官网|