張 雄,張 勇,尚以順,史開志,張永軍,王 婧,陳 怡
?
面向從江香豬選育的肌內(nèi)脂肪活體超聲無損測定
張 雄1,張 勇2※,尚以順1,史開志1,張永軍3,王 婧1,陳 怡3
(1. 貴州省農(nóng)業(yè)科學(xué)院畜牧獸醫(yī)研究所,貴陽 550005; 2. 貴州大學(xué)高原山地動物遺傳育種與繁殖省部共建教育部重點(diǎn)實(shí)驗(yàn)室,貴州大學(xué)動物科學(xué)學(xué)院,貴陽 550025; 3. 貴州大學(xué)計算機(jī)科學(xué)與技術(shù)學(xué)院,貴陽 550025)
為探索從江香豬肌內(nèi)脂肪含量的超聲活體預(yù)測方法,該文選取110頭從江香豬育肥豬開展活體測定,以超聲圖像為研究對象,利用Matlab R2015b軟件提取灰度-梯度共生矩陣(gray gradient cooccurrence matrix, GGCM)及4個角度灰度共生矩陣(gray level cooccurrence matrix, GLCM)圖像紋理特征參數(shù)。通過逐步回歸分析法構(gòu)建肌內(nèi)脂肪(intramuscular fat, IMF)含量預(yù)測模型,再將此模型應(yīng)用于另外42頭從江香豬,驗(yàn)證模型準(zhǔn)確性。逐步回歸分析結(jié)果表明,背膘厚、灰度平均和梯度熵3個參數(shù)指標(biāo)達(dá)到顯著水平(<0.05),回歸預(yù)測模型決定系數(shù)2=0.369。線性回歸及相關(guān)分析得出,估測值與實(shí)測值間RMSE為0.686,皮爾遜積矩相關(guān)系數(shù)(pearson correlation coefficients)和斯皮爾曼相關(guān)系數(shù)(spearman correlation coefficients)分別為0.592和0.640(<0.001)。該研究所構(gòu)建的擬合回歸模型可應(yīng)用于從江香豬肌內(nèi)脂肪活體預(yù)測,為后期高肌內(nèi)脂肪含量從江香豬的選育提供更為便捷有效的手段。
超聲圖像;無損檢測;模型;從江香豬;肌內(nèi)脂肪;選育
在高度集約化飼養(yǎng)條件下,快速生長的瘦肉型豬肉質(zhì)和營養(yǎng)已不能滿足大眾對高品質(zhì)豬肉的需求。肌內(nèi)脂肪含量作為豬肉質(zhì)性狀最重要評價指標(biāo)之一,影響著肉質(zhì)的嫩度、風(fēng)味和多汁性[1-2]。長期對瘦肉率和生長速度的過度選育,已造成豬肌內(nèi)脂肪含量普遍較低,成為影響豬肉品質(zhì)的重要因素[3-4]。因此,將生豬后期選育方向定位為降低皮下脂肪和腎周脂肪含量,提高肌內(nèi)脂肪水平具有良好的生產(chǎn)實(shí)踐意義。
傳統(tǒng)選育方法中,生豬肌內(nèi)脂肪含量測定往往通過屠宰后采樣測定,操作難,成本高,周期長。隨著計算機(jī)技術(shù)發(fā)展,超聲圖像處理已逐步應(yīng)用于現(xiàn)代畜牧業(yè)生產(chǎn)中,其可顯著提高豬經(jīng)濟(jì)性狀選育進(jìn)展,降低測定成本,獲得良好育種效果。Hassen等[5-6]最早利用超聲波圖像檢測技術(shù)建立了牛肌內(nèi)脂肪含量活體預(yù)測模型,目前該技術(shù)已廣泛應(yīng)用于牛肉品質(zhì)改良研究中。Newcom等[7-8]利用超聲圖像處理技術(shù)成功構(gòu)建出豬活體肌內(nèi)脂肪含量預(yù)測模型,其中杜洛克群體中預(yù)測肌內(nèi)脂肪含量與實(shí)測肌內(nèi)脂肪含量間相關(guān)系數(shù)均高于約克夏群體,杜洛克和約克夏豬間肌內(nèi)脂肪回歸模型準(zhǔn)確度存在一定差異,表明運(yùn)用超聲圖像構(gòu)建豬肌內(nèi)脂肪回歸模型不具有普適性,不同品種豬間存在各自的最佳回歸方程。Jung等[9]運(yùn)用Newcom所構(gòu)建的模型預(yù)測了4個不同品種豬活體IMF含量(predict lion intramuscular fat, PIMF),同時采用化學(xué)分析法測定了豬IMF實(shí)測值(carcass lion intramuscular fat, CIMF),發(fā)現(xiàn)UIMF與CIMF間遺傳和表型相關(guān)系數(shù)分別為0.75和0.76,得出超聲活體預(yù)測IMF(intramuscular fat)含量可有效代替實(shí)際測定值的結(jié)論。
本文以從江香豬這一優(yōu)良小型地方豬種作為研究對象,通過提取詳細(xì)的圖像紋理參數(shù),更為全面地反映超聲圖像所包含的信息,相比前人模型驗(yàn)證方法,本研究對從江香豬肌內(nèi)脂肪含量的預(yù)測值與估測值進(jìn)行了線性回歸分析,并結(jié)合兩者間相關(guān)系數(shù),闡明了從江香豬回歸模型的準(zhǔn)確性,同時,討論分析了造成現(xiàn)階段回歸模型準(zhǔn)確性較低的原因,并首次提出了活體背膘厚性狀為不同品種豬肌內(nèi)脂肪預(yù)測模型的關(guān)鍵自變量參數(shù)這一觀點(diǎn)。
從江香豬是中國稀有優(yōu)良小型地方特色香豬的一個類型[10],以體軀矮小、生長發(fā)育緩慢、肉質(zhì)細(xì)嫩、性成熟早、抗病力強(qiáng)、遺傳多樣性低、基因純合度高而著稱[11-14],主產(chǎn)于貴州從江縣宰便和東朗等鄉(xiāng)鎮(zhèn)。農(nóng)業(yè)部1993年將從江香豬列為國家二級保護(hù)畜種,于2000年130號公告將其列入《國家畜禽品種資源保護(hù)名錄》[15]。本研究通過超聲圖像處理結(jié)合活體檢測技術(shù)構(gòu)建從江香豬活體肌內(nèi)脂肪含量預(yù)測模型,為高肌內(nèi)脂肪含量從江香豬的選育提供更為便捷有效的方法和手段,從而降低選育成本,提高選育效率,縮短高肌內(nèi)脂肪含量從江香豬選育進(jìn)程,實(shí)現(xiàn)貴州從江香豬種質(zhì)資源的創(chuàng)新與開發(fā)利用,推動香豬特色產(chǎn)業(yè)的發(fā)展。
本試驗(yàn)所用從江香豬育肥豬均來自貴州省綠生源香豬生態(tài)福利養(yǎng)殖基地。為避免環(huán)境及飼養(yǎng)管理的改變給其生長、屠宰及肉質(zhì)性能等帶來影響,試驗(yàn)豬群均保持在同樣的飼養(yǎng)管理?xiàng)l件下進(jìn)行飼喂和測定。
選取110頭達(dá)到出欄體質(zhì)量從江香豬作為肌內(nèi)脂肪模型構(gòu)建樣品,屠宰前1 d稱量體質(zhì)量后,使試驗(yàn)豬處于自然狀態(tài)下直立綁定,在豬左側(cè)用手觸摸至10~11肋間,距背中線5 cm處,前后間距10 cm范圍內(nèi)用彎剪剔毛,并清除毛渣與污物。于剪毛處均勻涂抹超聲耦合劑,探頭上也涂抹少許超聲耦合劑[16]。
超聲圖像采集與胴體性狀活體測定采用徐州市凱信電子設(shè)備有限公司KX5200 B型超聲儀進(jìn)行,設(shè)定總增益127,增益在超圖像采集過程中保持一致,調(diào)節(jié)亮度和對比度合適后保持不變。探測深度20 cm,3.5 MHz凸振探頭,讓探頭與超聲耦合劑部位緊密接觸,力度稍輕,保持直立姿態(tài),當(dāng)超聲圖像清晰完整、4根肋骨及肋骨結(jié)節(jié)處可見時,操作B型超聲儀保存2張眼肌縱向圖像(圖1),并于超聲圖像上進(jìn)行背膘厚、眼肌深度性狀活體測定。在整個圖像采集及性能測定過程中均由同1人操作完成,最大限度降低人為誤差。
注:A、B、C和D分別代表4頭從江香豬個體超聲圖像。
在貴州省綠生源香豬生態(tài)福利養(yǎng)殖基地將豬屠宰后,快速采集左側(cè)胴體第10~11肋間眼肌肉樣裝入塑封帶并貼上編號及相關(guān)信息。肌肉中肌內(nèi)脂肪含量測定采用乙醚索氏抽提法,參考國家標(biāo)準(zhǔn)執(zhí)行[17],具體測定方法[18]如下:將眼肌肉樣剔除外周筋膜,置于55~65℃烘箱中烘干至恒質(zhì)量,稱重烘干前后肉的質(zhì)量,并根據(jù)其差值計算樣品游離水分含量(%),游離水分測定后的干肉樣,經(jīng)多功能粉碎機(jī)粉碎后,過40目篩,取過篩后的肉粉進(jìn)行IMF測定。洗凈的盛醚瓶置于105±2 ℃烘箱烘30 min;將定量濾紙疊成脂肪包,用電子分析天平稱取肉樣1~5 g(),精確至0.001 g,將肉樣裝入脂肪包內(nèi),并做好標(biāo)記,稱質(zhì)量為2;用鑷子將脂肪包放入浸提管內(nèi),加入乙醚至盛醚瓶2/3處即可,60 ℃水浴鍋上持續(xù)恒溫加熱,啟動通風(fēng)及冷凝水裝置,使乙醚回流,回流速度控制在1次/min,回流約9 h,其間不得停止冷凝水供應(yīng)及水浴鍋供電;浸提完畢取出脂肪包,置于60 ℃烘箱中干燥10 h后對脂肪包進(jìn)行稱質(zhì)量(1),間斷30 min再次進(jìn)行稱質(zhì)量,最終至2次質(zhì)量差小于0.001 g。每份試驗(yàn)肉樣測定重復(fù)3次,取平均值為IMF含量,計算公式如下:
式中為肉樣質(zhì)量,g;1為抽提后脂肪包質(zhì)量,g;2為浸提前脂肪包質(zhì)量,g。
從采集的縱向超聲圖像中,第10~11肋間接近眼肌最中央處選定一塊大小為50*50像素區(qū)域?yàn)榕d趣域(region of interest, ROI)(見圖2),輸入程序代碼,利用Matlab R2015b軟件分別提取選定區(qū)域灰度-梯度共生矩陣(gray gradient cooccurrence matrix, GGCM)[19-20]、4個角度灰度共生矩陣(gray level cooccurrence matrix,GLCM)圖像參數(shù)[21-23]。
注:圖中白色方框標(biāo)記處為ROI區(qū)域。
1)灰度-梯度共生矩陣參數(shù)包括:大梯度優(yōu)勢(H1)、小梯度優(yōu)勢(H2)、灰度分布的不均勻性(H3)、梯度分布的不均勻性(H4)、能量(H5)、灰度平均(H6)、梯度平均(H7)、灰度均方差(H8)、梯度均方差(H9)、相關(guān)(H10)、灰度熵(H11)、梯度熵(H12)、混合熵(H13)、慣性(H14)、逆差矩(H15)。
2)灰度共生矩陣包括:0°、45°、90°、135°共4個方向,每個方向分別提取4個紋理特征參數(shù):對比度、能量、熵和相關(guān)。
設(shè)定經(jīng)乙醚索氏抽提法得到的豬肌內(nèi)脂肪含量實(shí)測值為因變量,宰前體質(zhì)量、背膘厚、眼肌深度及相關(guān)圖像紋理特征參數(shù)等為自變量,通過SPSS18.0統(tǒng)計分析軟件中多元線性回歸方法建立擬合回歸模型。
另外選取42頭從江香豬作為驗(yàn)證樣本集,按照上述方法步驟進(jìn)行圖像采集與活體性能測定、肌內(nèi)脂肪含量測定、圖像紋理特征參數(shù)提取。根據(jù)回歸模型計算得到肌內(nèi)脂肪含量估測值,利用SPSS 18.0軟件對實(shí)測值和估測值進(jìn)行線性回歸及相關(guān)性分析,驗(yàn)證模型準(zhǔn)確性。
活體測定達(dá)到出欄體質(zhì)量從江香豬152頭(建模集110頭,測試集42頭),結(jié)果均以“平均數(shù)±標(biāo)準(zhǔn)差”表示,宰前體質(zhì)量:56.90±12.87 kg,背膘厚:22.7±4.9 mm,眼肌深度:33.2±6.5 mm。
測定的152頭從江香豬肉樣中,最低IMF含量為1.83%,最高IMF含量為5.70%;總體IMF含量平均數(shù)±標(biāo)準(zhǔn)差:3.09±0.98%,表明從江香豬的肌內(nèi)脂肪沉積能力達(dá)到國內(nèi)地方豬標(biāo)準(zhǔn)[15],但群體內(nèi)變異性較大(變異系數(shù)高達(dá)31.71%),需要進(jìn)一步加強(qiáng)品種選育,提高群體肌內(nèi)脂肪含量的整齊度。圖3為圖1中A~D號從江香豬超聲圖像ROI區(qū)域?qū)?yīng)的肌內(nèi)脂肪測定值,通過圖像的亮度分布特征及紋理溝紋深淺變化可看出超聲圖像紋理的差異反映從江香豬個體間肌內(nèi)脂肪含量的不同。
注:IMF為肌內(nèi)脂肪。
以豬肌內(nèi)脂肪含量實(shí)測值為因變量,宰前體質(zhì)量、背膘厚、眼肌深度及相關(guān)圖像紋理特征參數(shù)為自變量,經(jīng)多元線性回歸分析結(jié)果得到,符合相關(guān)顯著(<0.05)自變量參數(shù)有3個,分別為背膘厚、灰度平均H6和梯度熵H12,對應(yīng)的值分別是0.008、0.001和0.030,系數(shù)分別是0.064、0.031和–7.421。其他自變量參數(shù)相關(guān)不顯著(>0.05),因此均被舍棄。模型擬合結(jié)果、2分別是0.608、0.369。另外,值為14.826,<0.001,當(dāng)顯著性水平取=0.05,校驗(yàn)差異顯著,故擬合結(jié)果有效。由此,得出肌內(nèi)脂肪含量預(yù)測的回歸方程式為:
肌內(nèi)脂肪含量(PIMF)=6.443+0.064×背膘厚+0.031× H6–7.421×H12
利用42頭驗(yàn)證集樣本進(jìn)行從江香豬活體性狀測定,將背膘厚、H6和H12代入回歸模型得出預(yù)測的肌內(nèi)脂肪含量(PIMF)。為驗(yàn)證PIMF的準(zhǔn)確性,以實(shí)測IMF作為因變量,PIMF作為自變量,線性回歸分析,結(jié)果表明(見圖4),、2、RMSE分別是0.617、0.381、0.686(=24.61,<0.001),說明PIMF能較好地描述實(shí)測IMF的分布情況。相關(guān)分析發(fā)現(xiàn),PIMF與實(shí)測IMF間存在極顯著正相關(guān)關(guān)系,皮爾遜積矩相關(guān)系數(shù)(Pearson)和斯皮爾曼相關(guān)系數(shù)(Spearman)分別為0.592和0.640(<0.001),故采用超聲圖像無損檢測從江香豬活體IMF含量具有可行性。
圖4 從江香豬肌內(nèi)脂肪含量實(shí)測值與估測值的比較
馬小軍等[24-25]利用超聲活體檢測技術(shù)構(gòu)建的北京黑豬肌內(nèi)脂肪活體預(yù)測回歸模型的決定系數(shù)2為0.305 8,預(yù)測IMF與實(shí)測IMF含量的皮爾遜積矩相關(guān)系數(shù)和斯皮爾曼相關(guān)系數(shù)分別為0.5534和0.627 2(<0.000 1)。張金霜等[26]以Duroc豬屠宰后實(shí)測IMF含量反推圖像分割閾值,以該閾值為因變量,采用逐步線性回歸法構(gòu)建圖像分割閾值的回歸模型,最后根據(jù)預(yù)測出的分割閾值計算出超聲圖像IMF含量,結(jié)果發(fā)現(xiàn)圖像分割得出的IMF值與實(shí)測IMF值間皮爾遜積矩相關(guān)系數(shù)為0.669(<0.001)。袁才珺等[27]運(yùn)用一種基于反饋學(xué)習(xí)參數(shù)優(yōu)化系統(tǒng)的超聲活體檢測手段構(gòu)建的生豬活體肌內(nèi)脂肪回歸預(yù)測模型決定系數(shù)2為0.418,預(yù)測IMF與實(shí)測IMF含量的皮爾遜積矩相關(guān)系數(shù)和斯皮爾曼相關(guān)系數(shù)分別為0.65和0.63(<0.001)。結(jié)合前人研究報道,本試驗(yàn)所構(gòu)建從江香豬肌內(nèi)脂肪含量預(yù)測回歸模型中預(yù)測IMF與實(shí)測IMF含量的皮爾遜積矩相關(guān)系數(shù)和斯皮爾曼相關(guān)系數(shù)分別為0.592和0.640(<0.001),與上述報道的試驗(yàn)結(jié)果類似,且回歸模型決定系數(shù)(2=0.369)同樣具有一致性,均處于0.30~0.42之間,表明后期利用超聲圖像處理技術(shù)構(gòu)建豬IMF預(yù)測回歸模型擬合程度具有較大上調(diào)空間。分析現(xiàn)階段造成豬IMF預(yù)測模型準(zhǔn)確度不高的主要影響因素包含2個方面:一方面,B超探頭探測靈敏度低,地方豬皮膚粗糙、毛鬃堅硬,技術(shù)人員耦合劑涂抹或探頭放置不正確等內(nèi)外因素均會導(dǎo)致B超圖像模糊不清,成像不均勻,信息含量少,進(jìn)而降低超聲圖像質(zhì)量;另一方面,豬肌內(nèi)脂肪含量實(shí)測值需屠宰采樣,操作繁瑣,耗時長。針對這一特殊性,增大了大批量基礎(chǔ)數(shù)據(jù)測定的困難度,影響回歸模型的構(gòu)建及驗(yàn)證工作[28]。
本研究構(gòu)建的從江香豬IMF含量預(yù)測回歸模型,背膘厚、灰度平均和梯度熵3個參數(shù)指標(biāo)達(dá)到顯著水平(<0.05),其中以背膘厚和灰度平均值最低,梯度熵值最高。馬小軍等[24]與Ragland等[29]研究報道分別指出,北京黑豬與外三元豬IMF預(yù)測回歸模型中背膘厚這一參數(shù)指標(biāo)均為最佳自變量數(shù)據(jù)集,而在從江香豬IMF含量回歸模型中背膘厚參數(shù)指標(biāo)也表現(xiàn)為最佳自變量(=0.008),推測豬IMF預(yù)測回歸模型中活體背膘厚性狀可能為極其重要的一個參數(shù)自變量,需在后期對不同地區(qū)、不同品種豬肌內(nèi)脂肪預(yù)測回歸模型構(gòu)建試驗(yàn)中進(jìn)一步印證。
1)本文采用超聲紋理圖像結(jié)合活體測定方法構(gòu)建了從江香豬IMF含量預(yù)測模型,背膘厚、灰度平均和梯度熵參數(shù)指標(biāo)均達(dá)到顯著水平(<0.05),回歸預(yù)測模型決定系數(shù)2為0.369。
2)從江香豬肌內(nèi)脂肪含量預(yù)測值與實(shí)測值間決定系數(shù)2為0.381,RMSE為0.686,皮爾遜積矩相關(guān)系數(shù)和斯皮爾曼相關(guān)系數(shù)分別為0.592和0.640。
運(yùn)用超聲活體檢測手段,配合分子遺傳標(biāo)記技術(shù)對從江香豬群體肉質(zhì)性狀進(jìn)行遺傳改良,其肌內(nèi)脂肪含量定會呈現(xiàn)出上升趨勢。雖然本文所構(gòu)建模型的精確度不是很高,但作為一種實(shí)用性無損檢測手段,模型仍可為后期從江香豬肌內(nèi)脂肪選育提供有效地技術(shù)支持,本課題組仍將進(jìn)行不斷研究,以提高超聲圖像質(zhì)量,完善圖像處理算法,增加試驗(yàn)樣本數(shù)量,優(yōu)化回歸預(yù)測模型,提高預(yù)測模型的準(zhǔn)確率及魯棒性。
[1] 祁云霞,吳江鴻,何小龍,等. 肌內(nèi)脂肪含量測定技術(shù)綜述[J]. 食品科技,2012,37(12):115-120. Qi Yunxia, Wu Jianghong, He Xiaolong, et al. Detection of intramuscular fat content[J]. Food Science and Technology, 2012, 37(12): 115-120. (in Chinese with English abstract)
[2] 黃練,駱璐,董春霞. 豬肌內(nèi)脂肪調(diào)控研究進(jìn)展[J]. 中國豬業(yè),2014,11:36-39.
[3] 付敏. 豬肌內(nèi)脂肪沉積的營養(yǎng)調(diào)控[J]. 豬業(yè)科學(xué),2014,28(3):407-412. Fu Min. Nutritional regulation of intramuscular fat content in pigs[J]. Swine Industry Science, 2014, 28(3): 407-412. (in Chinese with English abstract)
[4] 劉建華,賈光強(qiáng),馮定遠(yuǎn),等. 豬肌內(nèi)脂肪代謝與調(diào)控研究[J]. 飼料研究,2011,2:13-18.
[5] Hassen A, Wilson D.E, Amin V.Z, et al. Repeatability of ultrasound-predicted percentage of intramuscular fat in feedlot cattle[J]. Journal of Animal Science, 1999, 77(6): 1335-1340.
[6] Hassen A, Wilson D.E, Amin V.Z, et al. Predicting percentage of intramuscular fat using two types of real-time ultrasound equipment [J]. Journal of Animal Science, 2001, 79(1): 11-18.
[7] Newcom D.W, Baas T.J, and Lampe J.F. Prediction of intramuscular fat percentage in live swine using real-time ultrasound[J]. Journal of Animal Science, 2002, 80(12): 3046-3052.
[8] Newcom D.W, Baas T.J, Stalder K.J, et al. Comparison of three models to estimate breeding values for percentage of loin intramuscular fat in Duroc swine[J]. Journal of Animal Science, 2005, 83(4): 750-756.
[9] Jung J.H, Shim K.S, Choe H.S, et al. Study on intramuscular fat percentage in live swine using real-time ultrasound to determine pork quality[J]. Asian Australas. J. Anim.Sci, 2015, 28(3): 318-322.
[10] 申學(xué)林,楊秀江,韋勝權(quán). 從江香豬生長發(fā)育繁殖性能測定[J]. 中國畜禽種業(yè),2007,11:39-41.She Xuelin, Yang Xiujiang, Wei Shengquan. Characterization of growth and reproductive performance in congjiang pigs[J]. The Chinese Livestock and Poultry Breeding, 2007, 11: 39-41. (in Chinese with English abstract)
[11] 姚紹寬,張勤,劉培瓊,等. 利用微衛(wèi)星標(biāo)記分析7品種(類群)小型豬的遺傳多樣性[J]. 遺傳,2006,28(4):407-412. Yao Shaokuan, Zhang Qin, Liu Peiqiong, et al. Genetic diversity of seven miniature pig breeds (strains) analyzed by using microsatellite markers[J]. Hereditas(Beijing), 2006, 28(4): 407-412. (in Chinese with English abstract)
[12] 劉榮輝. 中國小型豬SLA微衛(wèi)星的遺傳多樣性研究[D]. 雅安:四川農(nóng)業(yè)大學(xué),2010. Liu Ronghui. The Study of Microsatellites Diversities of SLA in Chinese Miniature Pigs[D]. Yaan: Sichuan Agricultural University, 2010. (in Chinese with English abstract)
[13] 陳祥,丁玫,許厚強(qiáng),等. 貴州5個地方豬品種微衛(wèi)星標(biāo)記的遺傳多樣性[J]. 中國畜牧雜志,2015,51(7):1-5. Chen Xiang, Ding Mei, Xu Houqiang, et al. Genetic diversity of microsatellite markers in five domestic pig breeds in guizhou province[J]. Chinese Journal of Animal Science, 2015, 51(7): 1-5. (in Chinese with English abstract)
[14] Ran M L, Wang M F, Yang A Q, et al. The complete mitochondrial genome of Congjiang miniature pig (Susscrofa) [J]. Mitochondrial DNA, 2016, 27(3): 1787-1788.
[15] 劉培瓊,劉若余,張依裕,等. 中國香豬[M]. 北京:中國農(nóng)業(yè)出版社,2010.
[16] 何道領(lǐng), 王金勇. 超聲波在豬育種中應(yīng)用的研究進(jìn)展[J].中國畜牧雜志, 2008, 44(9):57-60. He Daoling, Wang Jinyong. Reserach advances in the application of ultrasonic in swine genetic improvement [J]. Chinese Journal of Animal Science, 2008, 44(9): 57-60. (in Chinese with English abstract)
[17] GB9695.1-1988,中華人民共和國國家標(biāo)準(zhǔn)《肉與肉制品-游離脂肪含量的測定》[S].
[18] 陳亞靜,雷明剛,劉望宏,等. 豬肌肉肌內(nèi)脂肪測定方法的比較[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2015,34(4):84-88.Chen Yajing, Lei Minggang, Liu Wanghong, et al. Comparison of test method of intramuscular fat in porcine muscle[J]. Journal of Huazhong Agricultural University, 2015, 34(4): 84-88. (in Chinese with English abstract)
[19] 洪繼光. 灰度梯度共生矩陣紋理分析方法[J]. 自動化學(xué)報,1984,10(1):22-25. Hong Jiguang. Gray level-gradient cooccurrence matrix texture analysis method[J]. Acta Automatica Sinica, 1984, 10(1): 22-25. (in Chinese with English abstract)
[20] 叢蕊,高光甫,喬磊,等. 基于灰度-梯度共生矩陣和模糊核聚類的振動圖形識別方法[J]. 振動與沖擊,2012,31(21):73-76. Cong Rui, Gao Guangfu, Qiao Lei, et al. Vibration image recognition method based on gray-gradient cooccurrence matrixand kernel-based fuzzy clustering[J]. Journal of Vibration and Shock, 2012, 31(21): 73-76. (in Chinese with English abstract)
[21] 焦蓬蓬,郭依正,劉麗娟,等. 灰度共生矩陣紋理特征提取的Matlab實(shí)現(xiàn)[J]. 計算機(jī)技術(shù)與發(fā)展,2012,22(11):169-171.Jiao Pengpeng, Guo Yizheng, Liu Lijuan, et al. Implementation of gray level co-occurrence matrix texture feature extraction using Matlab[J]. Computer Technology and Development, 2012, 22(11): 169-171. (in Chinese with English abstract)
[22] 張建勛,李濤,孫權(quán),等. 豬眼肌B超圖像紋理特征提取與分類[J]. 重慶理工大學(xué)學(xué)報(自然科學(xué)),2013,27(2):74-78. Zhang Jianxun, Li Tao, Sun Quan, et al. Texture feature extraction and classification of pork loin ultrasonography images[J]. Journal of Chongqing University of Technology (Natural Science), 2013, 27(2): 74-78. (in Chinese with English abstract)
[23] 譚春超,楊潔明. 煤與矸石圖像灰度信息和紋理特征的提取研究[J]. 工礦自動化,2017,43(4):27-31. Tan Chunchao, Yang Jieming. Research on extraction of image gray information and texture feature of Coal and gangue image[J]. Industry and Mine Automation, 2017, 43(4): 27-31. (in Chinese with English abstract)
[24] 馬小軍,程篤學(xué),王立剛,等. 利用超聲波圖像活體預(yù)測北京黑豬肌內(nèi)脂肪含量[J]. 畜牧獸醫(yī)學(xué)報,2012,43(10):1511-1518. Ma Xiaojun, Cheng Duxue, Wang Ligang, et al. Prediction of intramuscular fat percentage in live beijing black pig using real-time ultrasound image[J]. Acta Veterinaria et Zootechnica Sinica, 2012, 43(10): 1511-1518. (in Chinese with English abstract)
[25] 馬小軍. 豬肌內(nèi)脂肪含量候選基因研究及預(yù)測模型構(gòu)建[D]. 北京:北京畜牧獸醫(yī)研究所研究生院,2012. Ma Xiaojun. Candidate GeneStudy and Predicting Model Constrution for Porcine Intramuscular Fat Percentage[D]. Beijing: Institution of Animal Science of CAAS, 2012. (in Chinese with English abstract)
[26] 張金霜,張明武,曾慶怡,等. 生豬肌內(nèi)脂肪含量超聲預(yù)測方案[J]. 廣東農(nóng)業(yè)科學(xué),2012,(21):128-131. Zhang Jinshuang, Zhang Mingwu, Zeng Qingyi, et al. Prediction of intramuscular fat in live swine using real-time ultrasound[J]. Guangdong Agricultural Sciences, 2012, (21): 128-131. (in Chinese with English abstract)
[27] 袁才珺,石丹,劉東權(quán),等. 一種豬肌內(nèi)脂肪含量測定的方法及其改進(jìn)[J]. 現(xiàn)代計算機(jī),2013,(27):31-36. Yuan Caijun, Shi Dan, Liu Dongquan, et al. An improved algorithm of pig's intramuscular fat detection[J]. Modern Computer, 2013, (27): 31-36. (in Chinese with English abstract)
[28] 錢榮,李慶崗,王重龍. B超活體預(yù)測豬肉肌內(nèi)脂肪含量研究進(jìn)展[J]. 畜牧與獸醫(yī),2015,47(12):147-149. Qian Rong, Li Qinggang, Wang Chonglong. Reserach advances in prediction of intramuscular fat in live swine using B-mode ultrasound[J]. Animal Husbandry and Veterinary Medicine, 2015, 47(12): 147-149. (in Chinese with English abstract)
[29] Ragland K D, Christian L L, Baas T J, et al. Efficacy of using Realtime ultrasound to predict intramuscular fat in the longissimus muscle of live swine[J]. Swine Research Report, 1997: 50.
Ultrasonic nondestructive examination of intramuscular fat using ultrasonic for live Congjiang pig
Zhang Xiong1, Zhang Yong2※, Shang Yishun1, Shi Kaizhi1, Zhang Yongjun3, Wang Jing1, Chen Yi3
(1.550005; 2.550025; 3.550025)
As one of the most important evaluating indicators of pork quality traits, the intramuscular fat (IMF) content has an influence on tenderness, flavor and succulence of the meat. Excessive and long-term selective breeding of high lean percentage and fast growth rate has resulted in generally lower IMF content in pigs. For traditional detection method, samples used for determination of IMF content usually come from slaughtering, which is difficult to operate and costs high. Congjiang pigs belongs to the characteristic local small breeds in China, and is well known for its small-sized body, slow growth, early sexual maturity, and low genetic diversity. The IMF percentage of Congjiang pigs reaches the domestic breeds standard level, but the population variation of IMF content is rather larger, with variation coefficient of 31.71%, suggesting efforts should be made to strengthen the breeding and improve group uniformity. The aim of the study was to predict the IMF percentage in longissimus muscle of live Congjiang pig using real-time ultrasound image. In this research, the body weight (BW), backfat thickness (BFT), loin muscle deepness (LMD) and two longitudinal real-time ultrasound images were collected across the 10th to 11th rib and 5 cm off-midline on live pigs from 110 Congjiang pigs. 31 candidate image parameters of gray gradient and 4 direction (0, 45, 90, 135 angle) graylevel cooccurrence matrix within a defined region (50*50 pixel region) located at the center of longissimus muscleacross the 10th to 11th rib for each ultrasound image were obtained using image analysis software (Matlab R2015b). After slaughter, a slice of longissimus muscle from left carcass across the 10th to 11th rib was cut off immediately for determining the IMF percentage by the petroleum ether extraction method. Each test was repeated three times, the mean value as the final IMF content. The model to predict longissimus muscle IMF percentage was developed using multivariatelinear regression analysis with carcass longissimus muscle IMF percentage as dependent variables and BW, BFT, LMD and image parameters as independent variables. 42 Congjiang pigs were anew chosen for model validation by linear regression and correlation analysis of measured IMF and predicting IMF percentage. The result of regression analysis indicated that three independent variables which contained BFT and two image parameters of average gray (H6) and gradient entropy (H12) were significant in last model (<0.05). The predictive equation is PIMF=6.443+0.064BFT+0.031H6–7.421H12, with determinate coefficient2of 0.369. The determinate coefficient2between the predictive value obtained by model and measured valueof the validation set was 0.381. The root mean square error between predictive value and measured value of the validationset was0.686. Correlation analysis showed that the pearson correlation coefficients and spearman correlation coefficients were 0.592 and 0.640 (<0.001), respectively. Therefore,the regression model constructed in this study could be used to predict the living body of Congjiang pigs. Meanwhile, the experimental model provides a more convenient and effective nondestructive detection method for breeding with high IMF percentage of Congjiang pigs, which can reduce the breeding cost and shorten the breeding process, and promote the development of miniature pig’s characteristic industry.
ultrasonic imaging; nondestructive examination; models; congjiang pigs; intramuscular fat; breeding
張 雄,張 勇,尚以順,史開志,張永軍,王 婧,陳 怡. 面向從江香豬選育的肌內(nèi)脂肪活體超聲無損測定[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(7):187-191. doi:10.11975/j.issn.1002-6819.2018.07.024 http://www.tcsae.org
Zhang Xiong, Zhang Yong, Shang Yishun, Shi Kaizhi, Zhang Yongjun, Wang Jing, Chen Yi. Ultrasonic nondestructive examination of intramuscular fat using ultrasonic for live Congjiang pig[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 187-191. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2018.07.024 http://www.tcsae.org
2017-09-07
2018-01-31
貴州省生豬現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(GZCYTX2016-0902);貴州省科技支撐計劃項(xiàng)目(黔科合支撐[2016]2510號);貴州省科技廳農(nóng)科院聯(lián)合基金(黔科合LH字[2015]7063號)
張 雄,男(漢族),研究實(shí)習(xí)員,碩士,主要從事地方豬遺傳改良與種質(zhì)資源創(chuàng)新研究。Email:1318704989@qq.com
張 勇,男(漢族),副教授,博士,主要從事動物遺傳育種教學(xué)與科研工作。Email:13618506188@139.com
10.11975/j.issn.1002-6819.2018.07.024
S828; S813.3
A
1002-6819(2018)-07-0187-05