徐國偉,陸大克,劉聰杰,王賀正,陳明燦,李友軍
?
干濕交替灌溉和施氮量對(duì)水稻內(nèi)源激素及氮素利用的影響
徐國偉1,2,陸大克1,劉聰杰1,王賀正1,陳明燦1,李友軍1
(1. 河南科技大學(xué)農(nóng)學(xué)院,洛陽 471003; 2. 揚(yáng)州大學(xué)江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室,揚(yáng)州 225009)
為探討干濕交替灌溉與施氮水平對(duì)水稻根系內(nèi)源激素水平及氮肥利用的影響,以連粳7號(hào)為材料,采用防雨棚土培試驗(yàn),研究3個(gè)灌溉方式:淺水層灌溉、輕度干濕交替灌溉、重度干濕交替灌溉與3個(gè)氮肥水平(0、240 和360 kg/hm2)對(duì)水稻根系內(nèi)源激素(玉米素及玉米素核苷(Z+ZR)、生長素(IAA)、脫落酸(ABA))、葉片氮代謝酶活性(硝酸還原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT))、植株氮素累積量及氮肥利用效率的影響及其耦合效應(yīng)。研究結(jié)果表明:在相同施氮水平下,輕度干濕交替灌溉促進(jìn)根系Z+ZR、IAA合成,提高葉片中NR、GS及GOGAT活性,氮肥吸收利用率顯著提高(<0.05);重度干濕交替灌溉則抑制根系Z+ZR、IAA合成,降低葉片NR、GS及GOGAT活性,植株氮素累積量及氮肥利用效率顯著降低(<0.05),而根系A(chǔ)BA含量則明顯增加(<0.05);在相同灌溉方式下,根系Z + ZR、IAA含量、葉片氮代謝酶活性及氮肥累積量在保持水層及輕度干濕交替下隨著施氮量的增加而增加,而在重度干濕交替灌溉下則隨著施氮量的增加先增加后降低,中氮處理明顯提高氮肥利用效率(<0.05)。相關(guān)分析表明:根系合成的Z + ZR、IAA及葉片中氮代謝酶活性與氮肥吸收利用率呈顯著(<0.05)或極顯著(<0.01)的正相關(guān)關(guān)系,而脫落酸含量則與氮肥吸收利用率呈極顯著的負(fù)相關(guān)關(guān)系(<0.01)。根系合成的Z + ZR、IAA及葉片中氮代謝酶供氮效應(yīng)為正效應(yīng),抽穗后,輕度干濕交替灌溉供水效應(yīng)及耦合效應(yīng)為正效應(yīng),而重度干濕交替灌溉則為負(fù)效應(yīng)。該研究對(duì)探索水氮耦合機(jī)理,為水稻高產(chǎn)高效栽培實(shí)踐提供理論及科學(xué)依據(jù)。
灌溉;氮肥;作物;水稻;干濕交替灌溉;水氮耦合;內(nèi)源激素;氮代謝酶
隨著人口的增加、工業(yè)的迅猛發(fā)展、環(huán)境污染的加重以及全球氣候的變化,用于灌溉的水資源將會(huì)愈加匱乏,嚴(yán)重威脅作物特別是水稻的生產(chǎn)[1-2]。為應(yīng)對(duì)水資源短缺問題,科學(xué)家發(fā)明了眾多水分高效利用技術(shù),其中干濕交替灌溉即是一項(xiàng)行之有效的節(jié)水灌溉技術(shù)。干濕交替灌溉田間水分狀況由淹水轉(zhuǎn)變?yōu)橄鄬?duì)輕度水分脅迫,土壤含氧量增加,有利于產(chǎn)量的形成及水資源的高效利用[3-6]。該技術(shù)已在亞洲主要水稻生產(chǎn)國大面積推廣應(yīng)用,具有良好的經(jīng)濟(jì)與生態(tài)效益[7-10]。至2015年,中國化肥的使用量已經(jīng)達(dá)到6022萬t,其中氮肥的使用量為2362萬t[11]。過高的施氮量已經(jīng)引起嚴(yán)重的環(huán)境污染、土壤惡化、病蟲害發(fā)生及稻米品質(zhì)下降[12-13]。如何進(jìn)一步提高水氮資源利用率已經(jīng)成為當(dāng)前研究的熱點(diǎn)。施氮水平、施氮時(shí)期和灌溉方式等對(duì)作物生長發(fā)育的影響可通過作物體內(nèi)激素含量變化而起作用,通過調(diào)節(jié)根系形態(tài)生理及構(gòu)型[14],從而影響地上部作物生長發(fā)育及養(yǎng)分吸收利用。水稻的氮代謝開始于根細(xì)胞對(duì)土壤中硝酸鹽和銨鹽的吸收,通過其特定的轉(zhuǎn)運(yùn)蛋白吸收礦質(zhì)營養(yǎng)元素進(jìn)入表皮細(xì)胞,對(duì)于谷粒充實(shí)與氮的利用至關(guān)重要[15-17]。Wang等[18]研究表明,隨土壤含水率的降低,作物根系迅速感知,并通過內(nèi)源激素調(diào)節(jié)作物地上部生理功能,如:葉片氣孔導(dǎo)度和光合速率降低、作物葉片的生長緩慢等。Takei等[19]表明,根系中激素合成受到氮素營養(yǎng)水平的調(diào)控,養(yǎng)分充足有利于根系分生組織和地上部生長,促進(jìn)養(yǎng)分吸收,延緩植株衰老。李洪娜等[20]研究表明,隨著施氮量的增加,植株體內(nèi)促進(jìn)型激素顯著增加,但ZR/GA(玉米素核苷與赤霉素比值)、ABA/GA(脫落酸與赤霉素比值)比值逐漸減低,氮肥利用率顯著降低。前人對(duì)根系內(nèi)源激素變化及葉片氮代謝活性的影響較多的集中在水、肥、品種等單因子上,關(guān)于水氮互作對(duì)于根系激素及氮代謝酶活性的影響及其與氮肥吸收利用的關(guān)系研究不夠深入,且大多集中在蘋果、煙草、棉花等旱作作物及果樹上[20-23],這些植物養(yǎng)分及水分運(yùn)籌方式與水稻完全不同。本試驗(yàn)通過對(duì)土壤水分的嚴(yán)格控制,研究全生育期不同干濕交替灌溉與施氮條件對(duì)水稻根系激素含量、葉片氮代謝酶活性的影響及其耦合效應(yīng),以此探索水氮耦合機(jī)理,闡明這些差異與氮素吸收利用之間的關(guān)系,這對(duì)于資源高效利用和生產(chǎn)管理技術(shù)體系均具有十分重要的理論和實(shí)際意義。
試驗(yàn)于2015—2016年5—10月在河南科技大學(xué)試驗(yàn)農(nóng)場(chǎng)進(jìn)行。供試品種為常規(guī)粳稻品種連粳7號(hào)。試驗(yàn)地年降水量640 mm,年平均溫度15.1 ℃,年日照時(shí)數(shù)2300~2600 h,年輻射量491.5 kJ/cm2,氣候?qū)贉貛О霛駶櫚敫珊荡箨懶约撅L(fēng)氣候。試驗(yàn)采用土培池栽種方式,塑料大棚擋雨。每個(gè)土培池長9 m、寬1.5 m、深0.4 m,土壤為黏壤土,其有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)14.9 g/kg,堿解氮65.3 mg/kg,有效磷5.9 mg/kg,速效鉀115.6 mg/kg。
試驗(yàn)設(shè)3種灌溉方式:保持淺水層(分蘗末期進(jìn)行曬田,收獲前一周斷水,其余生育期保持1~2 cm淺水層)、輕度干濕交替灌溉(分蘗末期進(jìn)行曬田,收獲前一周斷水,其余生育期先灌1~2 cm水層,至土壤水勢(shì)降到﹣20 kPa再灌淺水層,如此反復(fù))、重度干濕交替灌溉(分蘗末期進(jìn)行曬田,收獲前一周斷水,其余生育期先灌1~2 cm水層,至土壤水勢(shì)降到﹣40 kPa再灌淺水層,如此反復(fù)),土培池內(nèi)用負(fù)壓計(jì)監(jiān)測(cè)土壤水勢(shì),陶土頭底部置于15 cm土層處,生育期間用塑料大棚擋雨。全生育期氮肥設(shè)置為3個(gè)水平(分別為0、240和360 kg/hm2,即:0N、MN、HN),氮肥運(yùn)籌為基肥:分蘗肥(移栽后7 d):穗肥(幼穗分化始期)= 4∶1∶5,各處理磷、鉀肥均一致,300 kg/hm2過磷酸鈣(含P2O513.5%)和195 kg/hm2氯化鉀(含K2O 52%)分別于移栽前一次性施入。試驗(yàn)共設(shè)9個(gè)處理,每個(gè)處理重復(fù)3次,共27個(gè)小區(qū),隨機(jī)區(qū)組排列。試驗(yàn)采用大田育秧:每年5月8日播種,6月10移栽,株行距均為20 cm,每穴栽插2個(gè)基本苗。全生育期嚴(yán)格監(jiān)控水分及病蟲草害,其余管理同當(dāng)?shù)馗弋a(chǎn)田一致。
1.3.1 根系激素含量測(cè)定
取根時(shí)期及方法參考徐國偉等[16],根系中Z+ZR、IAA和ABA的提取與測(cè)定參照何鐘佩[24]與Bollmark等[25]介紹的酶聯(lián)免疫法,激素含量的計(jì)算按Yang等[26]方法。
1.3.2 葉片氮代謝酶活性測(cè)定
于不同生育期,各處理取20張葉片(生長基本一致的主莖完全展開的頂葉),用于氮代謝酶活性測(cè)定。硝酸還原酶活性(NR)測(cè)定參照李合生[27]離體法;谷氨酰胺合成酶(GS)測(cè)定參照王小純等[28]方法;谷氨酸合酶(GOGAT)測(cè)定參照Zhang等[29]方法。
1.3.3 氮含量測(cè)定及氮肥利用率的計(jì)算
于不同生育期,各處理取5穴,剪去根后,按不同器官分成葉片、莖鞘和穗(抽穗后),烘干稱質(zhì)量后粉碎,用濃H2SO4-H2O2消煮,凱氏法測(cè)定不同器官氮含量[27],參照張自常等[30]、Xue等[31]等方法計(jì)算氮素累積量及氮肥的利用效率。
1.3.4 各因素效應(yīng)的計(jì)算公式[32-33]
供氮效應(yīng)是指同一水分下氮肥的效應(yīng);控水效應(yīng)指同一氮肥下水分處理后效應(yīng);耦合效應(yīng)是不同水分及氮肥處理后效應(yīng):
供氮效應(yīng)=[(土壤水分脅迫與氮肥處理–土壤水分脅迫與無氮肥處理)+(正常水分與氮肥處理–正常水分與無氮肥處理)]/2
控水效應(yīng)=[(土壤水分脅迫與氮肥處理–正常水分與氮肥處理)+(土壤水分脅迫與無氮肥處理–正常水分與無氮肥處理)]/2
耦合效應(yīng)=[(土壤水分脅迫與氮肥處理–正常水分與無氮肥處理)–(正常水分與氮肥處理–正常水分與無氮肥處理)–(土壤水分脅迫與無氮肥處理–正常水分與無氮肥處理)]/2
用SAS/STAT (version 6.12,SAS Institute,Cary,NC,USA)統(tǒng)計(jì)分析,LSD法多重比較數(shù)據(jù),SigmaPlot 10.0進(jìn)行圖表繪制。
在2015和2016年試驗(yàn)中,根系激素含量及葉片氮代謝酶活性在灌溉方式、氮肥水平間存在極顯著差異(<0.01),灌溉方式與施氮水平間存在互作效應(yīng)(表1)。其余指標(biāo)年度間均無差異,故文中數(shù)據(jù)以2 a試驗(yàn)結(jié)果的平均值表示。
表1 干濕交替灌溉耦合施氮下根系激素含量及葉片氮代謝酶活性的方差分析
注:NS表示差異不顯著(>0.05)。*與**分別表示﹤0.05與﹤0.01。所有指標(biāo)均為抽穗期測(cè)定數(shù)據(jù)。Y表示年度間,W表示不同灌溉方式,N表示氮肥水平。
Note: NS, not significant (>0.05). * and** represents<0.05 and P<0.01 respectively. The indicator data were determined at heading stage. Y, W and N represents year, irrigation regime and nitrogen level, respectively.
2.2.1 干濕交替灌溉耦合施氮對(duì)根系玉米素及玉米素核苷、生長素含量的影響
根系中玉米素及玉米素核苷(Z + ZR)和生長素(IAA)含量隨著生育進(jìn)程表現(xiàn)為先增加后降低的趨勢(shì),在抽穗期達(dá)到峰值(圖1a和圖1b)。在相同施氮水平下,與保持淺水層相比,輕度干濕交替灌溉根系Z + ZR和IAA含量顯著增加,如抽穗期,根系中Z + ZR和IAA含量平均增加8.7%和13.5%(<0.05),而重度干濕交替灌溉則顯著性降低根系Z + ZR和IAA含量,如抽穗期Z + ZR和IAA含量平均降低25.1%和27.9%(<0.05),說明輕度干濕交替灌溉有利于根系Z + ZR和IAA含量的提高,而重度干濕交替灌溉則抑制Z + ZR和IAA的合成。在相同水分管理下,不同氮肥水平對(duì)根系Z + ZR和IAA含量的影響不同:根系Z + ZR和IAA含量在保持水層及輕度干濕交替下隨著施氮量的增加而增加,而在重度干濕交替灌溉下,根系Z + ZR和IAA含量隨著施氮量的增加先增加后降低,說明高氮并不能顯著性提高根系Z + ZR和IAA含量。從分析可知,采用輕度干濕交替灌溉與增施氮肥可以提高根系Z + ZR和IAA含量。
注:0N:不施氮肥;MN:施N 240 kg·hm–2;HN:施N 360 kg·hm–2;0kPa:保持淺水層;-20kPa:輕干濕交替灌溉;-40kPa:重干濕交替灌溉;同一生育期不同小寫字母表示各處理在0.05水平上差異顯著,下同;
2.2.2 干濕交替灌溉耦合施氮對(duì)根系脫落酸含量的影響
根系A(chǔ)BA含量隨生育進(jìn)程而逐漸提高(圖2)。在相同的施氮水平下,根系中ABA含量在輕度干濕交替灌溉下有所增加,但與對(duì)照保持水層無顯著差異(>0.05),而重度干濕交替灌溉則顯著提高根系A(chǔ)BA含量(<0.05),如抽穗期,ABA含量分別增加162.1(0N)、147.1(MN)及360.2 nmol/g(HN);在相同水分管理下,不同氮肥水平對(duì)根系A(chǔ)BA含量的影響不一:在保持水層及輕度干濕交替下,根系A(chǔ)BA含量隨著施氮量的增加而降低。值得注意的是,在重度干濕交替灌溉下,適度增施氮肥(MN)能夠起到“以肥調(diào)水”的作用,降低根系A(chǔ)BA含量,而重施氮肥(HN)則加劇了土壤水分脅迫,根系A(chǔ)BA含量顯著性提高(<0.05)。
圖2 干濕交替灌溉耦合施氮對(duì)根系脫落酸含量的影響
2.2.3 干濕交替灌溉耦合施氮對(duì)根系內(nèi)源激素耦合效應(yīng)的影響
連粳7號(hào)根系Z+ZR及IAA的供氮效應(yīng)均表現(xiàn)為正效應(yīng)(表2),說明施用氮肥有利于根系細(xì)胞分裂素及生長素的合成;輕度干濕交替灌溉的控水效應(yīng)為正效應(yīng),說明其促進(jìn)根系Z+ZR及IAA含量的增加,而重度干濕交替灌溉的控水效應(yīng)則為負(fù)效應(yīng),說明其抑制根系Z+ZR及IAA的合成,不同生育期表現(xiàn)一致;根系Z+ZR及IAA在分蘗中期及穗分化期的耦合效應(yīng)整體表現(xiàn)為正效應(yīng)(重度干濕交替灌溉耦合高氮除外),在抽穗期及成熟期輕度干濕交替灌溉表現(xiàn)為正效應(yīng),而重度則表現(xiàn)為負(fù)效應(yīng),說明適宜的水氮耦合有利于根系Z+ZR及IAA的合成。
連粳7號(hào)根系A(chǔ)BA的供氮效應(yīng)在不同氮肥間表現(xiàn)不一,MN下供氮效應(yīng)為負(fù)效應(yīng),說明不同灌溉方式下增施適宜氮肥能夠降低根系中ABA含量,HN下輕度干濕交替供氮效應(yīng)為負(fù)效應(yīng),而重度干濕交替灌溉則為正效應(yīng),說明重度水分脅迫下增施高氮促進(jìn)根系A(chǔ)BA的合成;根系A(chǔ)BA的耦合效應(yīng)與供氮效應(yīng)一致;根系A(chǔ)BA的控水效應(yīng)均為正效應(yīng),說明水分脅迫促進(jìn)根系A(chǔ)BA含量的增加,水分脅迫的程度越高,控水效應(yīng)越明顯。
2.3.1 對(duì)葉片氮代謝酶活性的影響
從圖3可以看出,葉片氮代謝酶活性隨著生育進(jìn)程先提升后降低,但3種酶達(dá)到峰值的時(shí)間不一:葉片GS與GOGAT活性在抽穗期最高,而NR在幼穗分化始期達(dá)到峰值。
表2 干濕交替灌溉耦合施氮對(duì)根系激素耦合效應(yīng)的影響
注:同一生育期同一行不同小寫字母表示各處理在0.05水平上差異顯著,下同。
Note: Values within the same growth period and the same line followed by different lowercase letters are significantly different at 0.05 level, the same below.
在相同施氮水平下,與保持水層相比,輕度干濕交替灌溉提高了3種酶的活性,如幼穗分化始期:在0N、MN、HN水平下,葉片中NR活性分別增加了26.5%、15.2%及14.7%;GS活性分別增加了9.1%、15.2%、24.1%;GOGAT活性分別增加了5.8%、17.1%、14.8%;而重度干濕交替灌溉則抑制3種酶的活性,如抽穗期:在0N、MN、HN水平下,葉片中NR活性分別降低了6.0、2.6、12.7g/h×g;GS活性分別降低了36.1、25.3、41.6g/h×g;GOGAT活性分別降低了1.4、2.7與5.9g/h×g。
在同一灌溉方式下,不同施氮量對(duì)葉片氮代謝酶活性的影響不同:在保持水層及輕度干濕交替下葉片氮代謝酶活性隨著施氮量的提高而增加,但3種代謝酶活性在MN與HN間無顯著差異(>0.05),而在重度干濕交替灌溉下,3種代謝酶活性隨著施氮量的增加先增加后降低,如抽穗期:與MN相比,HN處理葉片中NR、GS與GOGAT分別降低了0.8、13.1、1.8g/h×g,說明高氮降低了葉片氮代謝酶活性。從分析可知,輕度干濕交替灌溉促進(jìn)葉片氮代謝酶活性的提升,而重施氮肥降低了3種代謝酶活性。
圖3 干濕交替灌溉耦合施氮對(duì)葉片氮代謝酶活性的影響
2.3.2 對(duì)葉片氮代謝酶耦合效應(yīng)的影響
連粳7號(hào)葉片氮代謝酶的供氮效應(yīng)均表現(xiàn)為正效應(yīng)(表3),說明施用氮肥有利于葉片中氮代謝酶活性的提高;葉片氮代謝酶的控水效應(yīng)在不同水分處理間并不一致:輕度干濕交替灌溉的控水效應(yīng)在均為正效應(yīng),說明其促進(jìn)葉片中氮代謝酶活性的提高,而重度干濕交替灌溉的控水效應(yīng)在抽穗后則為負(fù)效應(yīng),說明其抑制氮代謝酶活性的大??;葉片氮代謝酶的耦合效應(yīng)與控水效應(yīng)一致,說明適宜的水氮耦合有利于葉片氮代謝酶活性的提升。
表3 干濕交替灌溉耦合施氮對(duì)葉片氮代謝酶耦合效應(yīng)的影響
2.4.1 對(duì)水稻氮素吸收的影響
不同水氮處理對(duì)水稻氮素積累量的影響不一(表4)。隨著生育進(jìn)程,植株氮素積累量逐漸提高。在保持淺水層及輕度干濕交替灌溉下,水稻植株中氮素的積累量隨著施氮量的提高而顯著增加,如:抽穗期,MN與HN處理氮肥積累量比對(duì)照0N平均增加144.3%(MN)及164.0%(HN),而重度干濕交替灌溉下,植株中氮素積累量則先增加后有所降低,說明重度水分下重施氮肥并不能明顯增加植株氮素積累;在相同氮肥水平下,成熟前輕度干濕交替灌溉氮素累積量與對(duì)照保持水層無明顯差異,而成熟期則顯著性增加(0N除外);重度干濕交替灌溉顯著降低各個(gè)生育期植株中氮素累積量。
表4 干濕交替灌溉耦合施氮對(duì)水稻氮素積累量的影響
注:同一生育期不同小寫字母表示各處理在0.05水平上差異顯著,下同;
Note: Values within the same growth period followed by different lowercase letters are significantly different at 0.05 level, the same below.
2.4.2 對(duì)水稻產(chǎn)量及氮肥利用效率的影響
在同一施氮條件下,輕度干濕交替灌溉后連粳7號(hào)產(chǎn)量有所增加(表5),而重度干濕交替灌溉則顯著降低,平均降低28.8%;同一水分條件下,施氮明顯增加連粳7號(hào)的產(chǎn)量,但在MN與HN處理間無明顯差異(重度干濕交替灌溉除外),說明高氮并不能顯著增加水稻產(chǎn)量。從分析可知,輕度干濕交替灌溉耦合中度施氮下連粳7號(hào)水稻產(chǎn)量最高。
表5 干濕交替灌溉耦合施氮對(duì)水稻產(chǎn)量及氮肥利用效率的影響
隨著施氮量的增加,水稻氮肥利用效率(吸收利用率、農(nóng)學(xué)利用率及偏生產(chǎn)力)顯著降低(表5)。與保持水層相比較,輕度干濕交替灌溉顯著提高氮肥吸收利用率,而重度干濕交替灌溉則顯著降低氮肥利用效率,氮肥吸收利用率、農(nóng)學(xué)利用率及偏生產(chǎn)力分別降低51.2%、63.0%及36.5%,從分析可知,輕度干濕交替灌溉耦合中氮有利于氮肥利用率的提高。
不同生育期根系合成的玉米素及玉米素核苷、生長素含量及與氮肥吸收利用率呈顯著或者極顯著的正相關(guān)關(guān)系(= 0.621*~0.806**,表6),同樣葉片中氮代謝酶活性(NR、GS、GOGAT)與氮肥吸收利用率呈顯著或者極顯著的正相關(guān)關(guān)系(= 0.629*~0.831**,NR抽穗期除外),而脫落酸含量則與氮肥吸收利用率呈極顯著的負(fù)相關(guān)關(guān)系(= –0.849**~ –0.825**),表明根系激素含量及葉片氮代謝酶活性與氮肥吸收利用關(guān)系密切。
表6 根系激素含量及葉片氮代謝酶活性與氮肥吸收利用率的相關(guān)分析
注:*與**分別表示<0.05與<0.01。
Note: * and** represents<0.05 and<0.01 respectively.
激素在作物的生長發(fā)育中起著重要的調(diào)控作用,它作為信號(hào)分子通過輸導(dǎo)組織在時(shí)空上調(diào)控作物發(fā)育的眾多過程[14]。一般認(rèn)為IAA、Z和ZR為促進(jìn)型激素,ABA為抑制型激素。作物根系能夠感知土壤水分變化狀況,當(dāng)作物根系處于水分脅迫時(shí),根系迅速感知,以合成化學(xué)信號(hào)的形式向地上部傳遞,調(diào)控作物地上部生理功能[34-35]。較多研究認(rèn)為,隨土壤含水率的降低,根系及葉片脫落酸含量增加,玉米素及玉米素核苷、生長素含量明顯減少,葉片氣孔導(dǎo)度和光合速率降低[18-19]。也有研究認(rèn)為,水分脅迫下作物根系及葉片內(nèi)源激素含量與品種類型有關(guān)[36]。本研究表明,輕度干濕交替灌溉增加根系Z+ZR、IAA含量、抑制ABA合成,而重度干濕交替灌溉則相反。一方面適度干濕交替后,土壤氧氣濃度增加,減少H2S等還原性有毒物質(zhì)對(duì)根系的毒害作用,另外,適度干濕交替灌溉后,水稻地上部葉片光合質(zhì)(葉片光合速率、葉綠素?zé)晒鈪?shù)、光合氮素利用率等)得到明顯的改善[30, 36-37],能為地下根系的生長發(fā)育提供較多的同化物,水稻根系活力明顯增強(qiáng)[16],有利于根系Z+ZR、IAA的合成,而Z+ZR量的提高可以拮抗根系合成ABA,從而降低根系A(chǔ)BA含量[34-36],重度干濕交替灌溉后根系活性則顯著性降低,說明根系生理功能受到明顯影響,抑制Z+ZR、IAA的合成。
趙平等[38]研究認(rèn)為,氮鉀營養(yǎng)充足能夠促進(jìn)根系分生組織和地上部的生長,促進(jìn)細(xì)胞分裂素的合成,加快分解ABA含量,從而延緩植株衰老,而養(yǎng)分供應(yīng)不足則相反,而熊溢偉等[39]研究認(rèn)為,寧粳1號(hào)和兩優(yōu)培九在主要生育期,根系激素含量在高施氮量情況下反而有所降低,可見研究結(jié)論并不一致。本研究表明,根系Z + ZR和IAA含量在保持水層及輕度干濕交替下隨著施氮量的增加而增加,而ABA含量則減少,根系中激素的合成及其向上運(yùn)轉(zhuǎn)可能受到氮素營養(yǎng)水平的調(diào)控,合成的激素是傳遞植株地下和地上部氮素營養(yǎng)狀況的信號(hào)[33-34]。本試驗(yàn)表明,在重度干濕交替灌溉下,根系Z + ZR和IAA含量隨著施氮量的增加先增加后降低,重施氮肥反而降低根系Z + ZR和IAA含量,促進(jìn)ABA顯著性提高,說明在重度干濕交替灌溉下,降低氮肥“以肥調(diào)水”的作用[16, 30],重施氮肥反而使得土壤水勢(shì)進(jìn)一步降低,根系合成大量ABA以減少氣孔的開度,降低葉片的蒸騰,從而減少水分的進(jìn)一步散失,以維持正常的生理活動(dòng)。張歲岐等[40]在玉米上也觀察到相同的現(xiàn)象。
水稻的氮代謝開始于根細(xì)胞對(duì)土壤中硝酸鹽和銨鹽的吸收,通過特定轉(zhuǎn)運(yùn)蛋白吸收的氮素必須經(jīng)過一系列代謝酶參與的反應(yīng)與轉(zhuǎn)化,才能被作物吸收與利用[41]。NR是氮素還原同化過程中的限速酶及第一個(gè)酶,GS- GOGAT循環(huán)是氮代謝的中心,是作物體內(nèi)NH4+同化為酰胺態(tài)氮的主要途徑[41-43]。增施氮肥能夠提高氮素同化關(guān)鍵酶硝酸還原酶、谷氨酰胺合成酶、谷氨酸合成酶及谷氨酸脫氫酶的活性,降低蛋白質(zhì)水解酶的活性,顯著促進(jìn)功能葉和莖稈的氮素運(yùn)轉(zhuǎn)[16-17,41-43]。本研究在保持水層及輕度干濕交替灌溉下也得到相同的結(jié)論,但值得注意的是在重度干濕交替灌溉下,氮代謝酶活性在中氮(240 kg/hm2)下最高,高氮(360 kg/hm2)反而顯著降低氮代謝酶活性,主要是由于重度干濕交替灌溉下水稻根系活性明顯降低[16],水稻根系氧化力、根系吸收面積及根系細(xì)胞分裂素含量均與葉片中氮代謝酶活性呈極顯著正相關(guān)[44],限制其向地上部輸送水分、養(yǎng)分的能力,抑制葉片中酶的活性,水稻不同生育期氮素積累量明顯減少,氮素利用率嚴(yán)重降低,這提示我們?cè)谏a(chǎn)實(shí)踐中,適宜的土壤水勢(shì)下增施氮肥可以維持氮代謝關(guān)鍵酶活性、促進(jìn)稻株氮代謝水平,有利于氮素的高效吸收與利用。
旱地作物氮代謝酶的活性隨灌水量的增加而顯著升高[44-46]。不同灌溉方式下水稻葉片氮代謝酶活性有何差異?本研究表明,輕度干濕交替灌溉后葉片氮代謝酶活性顯著增強(qiáng),而重度干濕交替灌溉下則相反,表明氮代謝酶活性與土壤水分狀況密切相關(guān),適度土壤水勢(shì)下,根際含氧量提高,根系氧化力較高,其吸收養(yǎng)分水分的能力較強(qiáng),有利于氮代謝酶活性的維持,促進(jìn)各器官氮素大量累積與運(yùn)轉(zhuǎn),氮素利用率明顯提高。重度干濕交替則不利于根系活性的提高,根系早衰嚴(yán)重[16],降低其吸收養(yǎng)分的能力,不利于氮素的積累與運(yùn)轉(zhuǎn),抑制氮肥的高效利用??梢娫谏a(chǎn)實(shí)踐中,通過適宜的干濕交替灌溉,保持較高的根系活性,提高葉片氮代謝酶活性,對(duì)于水稻氮素高效利用具有重要的意義。
如何進(jìn)一步提高氮肥利用效率?國內(nèi)外學(xué)者從稻田氮素?fù)p失的途徑及機(jī)理著手,提出了眾多的技術(shù)途徑[47-49]。能否選用直接的指標(biāo)來評(píng)價(jià)氮肥利用率?Sun等[17]認(rèn)為,可將抽穗期劍葉氮代謝活性作為評(píng)價(jià)水稻氮效率高低的綜合指標(biāo),李敏等[50]研究表明提高抽穗后單莖根系質(zhì)量,將是水稻高產(chǎn)和氮高效協(xié)調(diào)統(tǒng)一的可靠途徑,劉立軍等[51]表明根系傷流量、根系活躍吸收表面積及根系活力高的水稻品種將更有利于氮肥利用效率的提高。本研究通過不同氮肥水平及干濕交替灌溉處理,研究根系內(nèi)源激素水平及葉片氮代謝酶活性差異與氮素利用之間的關(guān)系,結(jié)果表明根系合成的細(xì)胞分裂素、生長素含量及葉片中氮代謝酶活性(NR、GS、GOGAT)與氮肥吸收利用率呈顯著或極顯著正相關(guān),而脫落酸含量則與氮肥吸收利用率呈極顯著負(fù)相關(guān)。由此可見,適度促進(jìn)地上部葉片氮代謝酶活性與地下部根系促進(jìn)型激素的合成,能夠延緩植株衰老,進(jìn)一步提高植株氮素吸收、積累及同化,從而提高氮肥的利用效率。在生產(chǎn)實(shí)踐中,可以通過適宜的水肥調(diào)控,協(xié)調(diào)植株地上與地下部生長發(fā)育,對(duì)于水稻氮素高效利用具有重要意義。
適度促進(jìn)地上部葉片氮代謝酶活性與地下部根系促進(jìn)型激素的合成,可提高植株氮素積累及同化,將有利于氮肥利用效率的提高。
1)不同干濕交替灌溉耦合施氮處理顯著影響水稻根系內(nèi)源激素含量。輕度干濕交替灌溉耦合中氮促進(jìn)根系生長素、玉米素及玉米素核苷合成,抽穗期含量平均增加8.7%和13.5%(<0.05),協(xié)同植株地上地下部生長,氮肥利用效率最高,農(nóng)學(xué)利用率及偏生產(chǎn)力分別為15.3與43.5 kg/kg;重度干濕交替灌溉則降低根系生長素、玉米素及玉米素核苷含量,抽穗期含量平均降低27.9%和25.1%和(<0.05),顯著降低氮肥利用率,農(nóng)學(xué)利用率及偏生產(chǎn)力分別為3.4與17.6 kg/kg。
2)不同干濕交替灌溉耦合施氮處理顯著影響水稻葉片氮代謝酶活性。輕度干濕交替灌溉提高葉片氮代謝酶活性,與保持水層相比,如幼穗分化始期:葉片中NR活性分別增加了26.5%(0N,施氮0)、15.2%( MN,施氮240 kg/hm2)及14.7%(HN,施氮360 kg/hm2);而重度干濕交替灌溉則抑制3種酶的活性,如抽穗期:葉片中NR活性分別降低了6.0(0N)、2.6(MN)、12.7(HN)g/h×g。
3)根系合成的細(xì)胞分裂素、玉米素及玉米素核苷含量及葉片中氮代謝酶活性與氮肥吸收利用率呈顯著(<0.05)或極顯著(<0.01)正相關(guān)(= 0.621*~0.831**),而脫落酸含量則與氮肥吸收利用率呈極顯著(<0.01)負(fù)相關(guān)(= –0.849**~ –0.825**);
[1] 康紹忠. 嶄新的農(nóng)業(yè)科技革命與21世紀(jì)我國節(jié)水農(nóng)業(yè)的發(fā)展[J]. 干旱地區(qū)農(nóng)業(yè)研究,1998,16(1):11-17Kang Shaozhong. New agricultural sci-technological revolution and development of Chinese water-saving agriculture in 21st century[J]. Agricultural Research in the Arid Areas, 1998, 16(1): 11-17 (in Chinese with English abstract)
[2] 姚鋒先. 不同水氮管理對(duì)水稻生長和水氮效率影響的生理機(jī)制研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2011 Yao Fengxian. Studies on Physiological Mechanism of Rice Growth and Water and Nitrogen Use Efficiency under Different Water and Nitrogen Regimes[D]. Wuhan: Huazhong agriculture university, 2011 (in Chinese with English abstract)
[3] Peng S B. Water resources strategy and agricultural development in China [J]. Journal of Experimental Botany, 2011, 6: 1709-1713
[4] Nalley L, Linquist B, Kovacs K, et al. The economic viability of alternative wetting and drying irrigation in Arkansas rice production [J]. Agronomy Journal, 2015, 107(2): 579-587
[5] 鐘楚,曹小闖,朱練峰,等. 稻田干濕交替對(duì)水稻氮素利用率的影響與調(diào)控研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(19):139-147 Zhong Chu, Cao Xiaochuang, Zhu Lianfeng, et al. A review on effects and regulation of paddy alternative wetting and drying on rice nitrogen use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(19): 139-147 (in Chinese with English abstract)
[6] Wang Z Q, Zhang W Y, Beebout S S, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates [J]. Field Crops Research, 2016, 193, 54-69
[7] Kukal S S, Aggarwal G C. Pudding depth and intensity effects in rice-wheat system on a sandy loam soil: II water use and crop performance [J]. Soil Tillage Research, 2003, 74, 37-45
[8] Bouman B A. A conceptual framework for the improvement of crop water productivity at different spatial scales [J]. Agricultural Systems, 2007, 93, 43-60
[9] Rahman M R, Bulbul S H. Effect of alternate wetting and drying (AWD) irrigation for Boro rice cultivation in Bangladesh [J]. Agriculture, Forestry and Fisheries, 2014, 3(2): 86-92
[10] Pan J F, Liu Y Z, Zhong X H, et al. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China [J]. Agricultural Water Management,2017, 184, 191-200
[11] 中華人民共和國國家統(tǒng)計(jì)局. 國家數(shù)據(jù)[Z]. 2015. http: //data.stats.gov.cn/easyquery.htm?cn=C01
[12] Zhang W F, Dou Z X, He P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China [J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8375–8380
[13] 朱兆良,金繼運(yùn). 保障我國糧食安全的肥料問題[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2013,19(4):259-273 Zhu Zhaoliang, Jin Jiyun. Fertilizer use and food security in China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(4): 259-273 (in Chinese with English abstract)
[14] 鮑娟,劉金鑫,陳范駿,等. 植物激素在氮磷養(yǎng)分調(diào)節(jié)根形態(tài)建成中的作用[J]. 植物生理學(xué)通訊,2009,45(7):706-710Bao Juan, Liu Jinxin, Chen Fanjun, et al. Roles of phytohormones in nitrogen and phosphorus-regulated root morphogenesis[J]. Plant Physiology Communications, 2009, 45(7): 706-710 (in Chinese with English abstract)
[15] Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (.) [J]. Journal of Experimental Botany, 2007, 58: 2319-2327
[16] 徐國偉,王賀正,翟志華,等. 不同水氮耦合對(duì)水稻根系形態(tài)生理、產(chǎn)量與氮素利用的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):132-141Xu Guowei, Wang Hezheng, Zhai Zhihua, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 132-141 (in Chinese with English abstract)
[17] Sun Y J, Ma J, Sun Y Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research, 2012, 127: 85-98
[18] Wang C R, Yang A F, Yin H Y, et al. Influence of water stress on endogenous hormone contents and cell damage of maize seedlings[J]. Journal of Integrative and Plant Biology, 2008, 50(4): 427-434
[19] Takei K, Takahashi T, Sugiyama T, et al. Multiple routes communicating nitrogen availability from roots to shoots: A signal transduction pathway mediated by cytokinin[J]. Journal of Experimental Botany, 2002, 53(370): 971-977
[20] 李洪娜,許海港,任怡華,等. 不同施氮水平對(duì)矮化富士蘋果幼樹生長、氮素利用及內(nèi)源激素含量的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2015,21(5):1304-1311 Li Hongna, Xu Haigang, Ren Yihua, et al. Effect of different N application rates on plant growth,15N-urea utilization and hormone content of dwarf apple trees[J]. Plant Nutrition and Fertilizer science, 2015, 21(5): 1304-1311 (in Chinese with English abstract)
[21] 李洪娜,季萌萌,彭玲,等. SH6中間砧不同埋土深度對(duì)蘋果幼樹內(nèi)源激素和氮素利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2014,20(6):1460-1467 Li Hongna, Ji Mengmeng, Peng Ling, et al. Effect of different SH6 buried depths on hormone and15N-urea utilization of dwarf apple trees[J]. Plant Nutrition and Fertilizer Science, 2014, 20(6): 1460-1467 (in Chinese with English abstract)
[22] 王國英. 不同形態(tài)氮素及植物激素對(duì)煙草生長、養(yǎng)分吸收和分配的影響[D].石家莊:河北農(nóng)業(yè)大學(xué),2002 Wang Guoying. Effects of Different Nitrogen Forms and Combined with Plant Hormone on Growth, Nutrient Uptake and Their Distribution in Tobacco Plants[D]. Shijiazhuang: Hebei agriculture university, 2002 (in Chinese with English abstract)
[23] 陳德華,何鐘佩,徐立華,等. 高產(chǎn)棉花葉片內(nèi)源激素與氮磷鉀吸收積累的關(guān)系及其對(duì)棉鈴增重機(jī)理的研究[J]. 作物學(xué)報(bào),2000,26(6):659-665 Chen Dehua, He Zhongpei, Xu Lihua, et al. Studies on the relationship between endogenous hormone of leaf and accumulation of nitrogen, phosphorus and potassium of plant as well as the cause of boll weight raised in high yield cotton[J]. Acta Agronomy Sinica, 2000, 26(6): 659-665 (in Chinese with English abstract)
[24] 何鐘佩. 農(nóng)作物化學(xué)控制實(shí)驗(yàn)指導(dǎo)[M]. 北京:北京農(nóng)業(yè)大學(xué)出版社,1991.
[25] Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings [J]. Journal of Plant Physiology, 1988, 132: 262-265
[26] Yang J C, Zhang J H, Wang Z Q, et al. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice[J]. Plant Growth Regulation, 2003, 41: 185-195
[27] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京:高等教育出版社,2000.
[28] 王小純,熊淑萍,馬新明,等. 不同形態(tài)氮素對(duì)專用型小麥花后氮代謝關(guān)鍵酶活性及籽粒蛋白質(zhì)含量的影響[J].生態(tài)學(xué)報(bào),2005,25(4):802-807 Wang Xiaochun, Xiong Shuping, Ma Xinming, et al. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars[J]. Acta Ecologia Sinica, 2005, 25(4): 802-807 (in Chinese with English abstract)
[29] Zhang C F, Peng S B, Benneti J. Glutamine synthetase and its isoforms in rice spikelets and rachis during grain development[J]. Journal of Plant Physiology, 2000, 156(2): 230-233
[30] 張自常,李鴻偉,曹轉(zhuǎn)勤,等. 施氮量和灌溉方式的交互作用對(duì)水稻產(chǎn)量和品質(zhì)影響[J]. 作物學(xué)報(bào),2013,33(4):84–82 Zhang Zichang, Li Hongwei, Cao Zhuanqin, et al. Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice[J]. Acta Agronomy Sinica, 2013, 33(4): 84–82 (in Chinese with English abstract)
[31] Xue YG, Duan H, Liu L J, et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice[J]. Crop Science, 2013, 53: 271-284
[32] 陳新紅. 土壤水分與氮素對(duì)水稻產(chǎn)量和品質(zhì)的影響及其生理機(jī)制[D]. 揚(yáng)州:揚(yáng)州大學(xué),2004Chen Xinhong. Effects of soil Moisture and Nitrogen Nutrient on Grain Yield and Quality of Rice and Their Physiological Mechanism[D]. Yangzhou: Yangzhou university, 2004 (in Chinese with English abstract)
[33] 徐國偉,陸大克,孫會(huì)忠,等. 干濕交替灌溉與施氮耦合對(duì)水稻根際環(huán)境的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):186-194Xu Guowei, Lu Dake, Sun Huizhong, et al. Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment and coupling effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 186-191 (in Chinese with English abstract)
[34] Ha S, Vankova R, Yamaguchi-Shinozaki K, et al. Cytokinins: Metabolism and function in plant adaptation to environmental stresses[J]. Trends in Plant Science, 2012, 17:172-179
[35] Peuke A D, Jeschke W D, Hartung W. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. III. Long-distance transport of abscisic acid depending on nutrition and salt stress[J]. Journal of Experimental Botany, 2003, 45(275): 741-747
[36] 周宇飛,王德權(quán),陸樟鑣,等. 干旱脅迫對(duì)持綠性高粱光合特性和內(nèi)源激素 ABA、CTK含量的影響[J]. 中國農(nóng)業(yè)科學(xué),2014,47(3):655-663 Zhou Yufei, Wang Dequan, Lu Zhangbiao, et al. Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green-stayed sorghum[J]. Scientia Agricultura Sinica, 2014, 47(3): 655-663 (in Chinese with English abstract)
[37] 徐國偉,陸大克,王賀正,等. 干濕交替灌溉與施氮量對(duì)水稻葉片光合性狀的耦合效應(yīng)[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2017,23(5):1225-1237Xu Guowei, Lu Dake, Wang Hezheng, et al. Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves[J]. Plant Nutrition and Fertilizer Science, 2017, 23(5): 1225-1237 (in Chinese with English abstract)
[38] 趙平,林克惠,鄭毅. 氮鉀營養(yǎng)對(duì)煙葉衰老過程中內(nèi)源激素與葉綠素含量的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2005,11(3):379-384 Zhao Ping, Lin Kehui, Zheng Yi. Effect of N and K nutrition on chlorophyll content and endogenous hormones in the process of tobacco senescence[J]. Plant Nutrition and Fertilizer Science, 2005, 11(3): 379-384 (in Chinese with English abstract)
[39] 熊溢偉. 氮肥對(duì)不同水稻品種根系形態(tài)生理與產(chǎn)量的影響[D]. 揚(yáng)州:揚(yáng)州大學(xué),2016 Xiong Yiwei. Effects of Nitrogen Fertilizer on Grain Yield and Root Morphology Physiology in Different Rice Varieties[D]. Yangzhou: Yangzhou university, 2016 (in Chinese with English abstract)
[40] 張歲岐,山侖. 土壤干旱條件下氮素營養(yǎng)對(duì)玉米內(nèi)源激素含量影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2003,14(9):1503-1506 Zhang Suiqi, Shan Lun. Effects of nitrogen nutrition on endogenous hormone content of maize under soil drought conditions[J]. Chinese journal of applied ecology, 2003, 14(9): 1503-1506 (in Chinese with English abstract)
[41] Han M, Okamoto M, Beatty P H, et al. The genetics of nitrogen use efficiency in crop plants. Annual review of Genetics, 2015, 49(1): 269-289
[42] 王月福,于振文,李尚霞,等. 氮素營養(yǎng)水平對(duì)冬小麥氮代謝關(guān)鍵酶活性變化和籽粒蛋白質(zhì)含量的影響[J]. 作物學(xué)報(bào),2002,28(6):743-748 Wang Yuefu, Yu Zhenwen, Li Shangxia, et al. Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat[J]. Acta Agronomy Sinica, 2002, 28(6): 743-748 (in Chinese with English abstract)
[43] 谷巖,胡文河,徐百軍,等. 氮素營養(yǎng)水平對(duì)膜下滴灌玉米穗位葉光合及氮代謝酶活性的影響[J]. 生態(tài)學(xué)報(bào),2013,33(23):7399-7407 Gu Yan, Hu Wenhe, Xu Baijun, et al. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation[J]. Acta Ecologica Sinica, 2013, 33(23): 7399-7407 (in Chinese with English abstract)
[44] 儲(chǔ)光. 不同水分、養(yǎng)分利用效率水稻品種的根系特征及其調(diào)控技術(shù)[D]. 揚(yáng)州:揚(yáng)州大學(xué),2016 Chuang Guang. Roots Traits for Rice Varieties with Different Water and Nitrogen Use Efficiencies and Their Regulation Techniques[D]. Yangzhou: Yangzhou university, 2016 (in Chinese with English abstract)
[45] Kaur A, Sheoran I S and Singh R. Effect of water stress on the enzymes of nitrogen metabolism in mung bean (Vignaradiata Wilczeck) nodules[J]. Plant, cell and Environment, 1985, 8(3): 195-200
[46] 曹慧,王孝威,鄒巖梅,等. 外源NO對(duì)水分脅迫下平邑甜茶幼苗中幾種氮代謝酶的影響[J]. 園藝學(xué)報(bào),2009,36(6):781-786 Cao Hui, Wang Xiaowei, Zou Yanmei, et al. Effects of exogenous nitric oxide on chlorophyll fluorescence parameters and photosynthesis rate inseedling under water stress[J]. Acta Horticul Sin, 2009, 36(6): 781-786 (in Chinese with English abstract)
[47] Liu L J, Chen T T, Wang Z Q, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice[J]. Field Crops Research, 2013,154 (8): 226–235
[48] Wang Z Q, Zhang W Y, Beebout S S, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates[J]. Field Crops Research, 2016,193 (3): 54–69
[49] Xue YG, Duan H, Liu L J, et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice[J]. Crop Science, 2013, 53: 271-284
[50] 李敏,張洪程,楊雄,等. 水稻高產(chǎn)氮高效型品種的根系形態(tài)生理特征[J]. 作物學(xué)報(bào),2012,38(4): 648-656 Li Min, Zhang Hongcheng, Yang Xiong, et al. Root morphological and physiological characteristics of rice cultivars with high Yield and high Nitrogen use efficiency[J]. Acta Agronomy Sinica, 2012, 38(4): 648-656 (in Chinese with English abstract)
[51] 劉立軍,王康君,卞金龍,等. 水稻產(chǎn)量對(duì)氮肥響應(yīng)的品種間差異及其與根系形態(tài)生理的關(guān)系[J]. 作物學(xué)報(bào),2014,40(11):1999-2007 Liu Lijun, Wang Kangjun, Bian Jinlong, et al. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology[J]. Acta Agronomy Sinica, 2014, 40(11): 1999-2007 (in Chinese with English abstract)
Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization
Xu Guowei1,2, Lu Dake1, Liu Congjie1, Wang Hezheng1, Chen Mingcan1, Li Youjun1
(1.471003,; 2.225009,)
Soil moisture and nitrogen nutrient are the main factors affecting rice (L.) production.Grainyield of rice has steadily increased worldwide in the past years, partly owing to the enhancement in nutrient inputs from fertilizer, especially nitrogen fertilizer application. Irrigationof alternate wetting and dryingis an effective water-saving irrigation technique, which has provided idealeconomic and ecological benefits. It is widely applied in major rice-producing countries in Asia, suchas China, Philippines, Vietnam, India, and Bangladesh. The inefficient use of freshwater and nitrogen resources is a major problem in rice production in China. Thus, it is significant to improve the efficiency of water and fertilizer resourcesutilization in agricultural production.In order to investigate the effects of irrigationof alternate wetting and drying and nitrogen coupling on endogenous hormones in root, nitrogen utilization and coupling effect,a soil-grown experiment with mid-seasonrice cultivar of Lianjing 7was conducted in 2015 and 2016 with 3 nitrogen application rates, namely, 0 (no nitrogen applied), 240 (normal amount, MN), and 360 kg/ha(high amount), and 3 irrigation regimes, namely, submerged irrigation (0 kPa), alternate wetting and moderate drying (?20 kPa), and alternate wetting and severe drying (?40 kPa). Our data revealed a significant interaction between irrigation regimes and nitrogen applications, with a similar result in 2015 and 2016. Under the same nitrogen levels, alternate wetting and moderate drying promoted the contents of Z+ZRand IAA in roots,which were significantly enhanced by 8.7% and 13.5% at heading stage respectively, and also increased the activities of NR (nitrate reductase), GS (glutamine synthetase) and GOGAT in leaves at main growth stages in comparison with submerged irrigation;and meanwhile nitrogen absorption and utilization was increased significantly, N accumulation under the MN and HN treatments was significantly enhanced by 144.3% and 164.0% at heading stage respectively, when compared with no nitrogen. By contrast, alternate wetting and severe drying inhibited Z+ZRand IAA contents in root, whichwere significantly reduced by 25.1% and 27.9% at heading stage respectively, and depressedNR, GS and GOGAT activity in leaves and nitrogen accumulation;and meanwhile nitrogen use efficiency decreased remarkably, and recovery efficiency, agronomic efficiency and partial factor productivity of nitrogen fertilizer decreased by 51.2%, 63% and 36.5% respectively, while the ABA content in roots increased significantly, and consistent performance could be observed at the different growth stages. MN treatment significantly increased the nitrogen use efficiency, and recovery efficiency, agronomic efficiency and partial factor productivity of nitrogen fertilizer were 52.6%, 15.3 kg/kg and 43.5kg/kg under the alternate wetting and moderate dryingrespectively. Under the same irrigation regime, the contents of Z+ZRand IAA in roots and nitrogen metabolism enzyme in leaves were increased with nitrogen application under submerged irrigation and irrigation of alternate wetting and moderate drying, while promoted firstly and then reduced under alternate wetting and severe drying. MN treatment obviously increased nitrogen use efficiency, which indicated that heavy nitrogen application decreased nitrogen utilization efficiency. Correlation analysis indicated that there was significant or extremely significant positive correlation between the content of Z+ZRand IAA in roots, nitrogen metabolism enzyme activity in leaves and nitrogen use efficiency, while remarkably negative correlation was found between ABA content in roots and nitrogen utilization efficiency. Nitrogen effect was positive in Z+ZRand IAA content in roots, nitrogen metabolism enzyme activity in leaves, and water supply and interaction effects were positive under alternate wetting and moderate drying after heading stage, while negative effect was found under alternate wetting and severe drying after heading stage. This study will explore the mechanism of water-nitrogeninteraction, which will provide theoretical and scientific evidence for the rice cultivation of high yield and high efficiency.
irrigation; nitrogen; crops; rice; alternate wetting and drying irrigation; water and nitrogen interaction; endogenous hormones; nitrogen metabolism enzyme
徐國偉,陸大克,劉聰杰,王賀正,陳明燦,李友軍. 干濕交替灌溉和施氮量對(duì)水稻內(nèi)源激素及氮素利用的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):137-146. doi:10.11975/j.issn.1002-6819.2018.07.018 http://www.tcsae.org
Xu Guowei, Lu Dake, Liu Chongjie, Wang Hezheng, Chen Mingcan, Li Youjun. Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 137-146. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.018 http://www.tcsae.org
2017-10-26
2018-02-28
國家自然科學(xué)基金項(xiàng)目(U1304316);江蘇省作物栽培生理重點(diǎn)實(shí)驗(yàn)室開放基金(027388003K11009);河南省教育廳科學(xué)技術(shù)研究重點(diǎn)項(xiàng)目(13A210266);河南科技大學(xué)學(xué)科提升計(jì)劃A (13660002)資助
徐國偉,男,漢族,博士,副教授,主要從事作物栽培生理研究。Email:gwxu2007@163.com
10.11975/j.issn.1002-6819.2018.07.018
S511
A
1002-6819(2018)-07-0137-10