王士林,何雄奎,宋堅(jiān)利,仲崇山,王志翀,齊 鵬,凌 云
?
雙極性接觸式航空機(jī)載靜電噴霧系統(tǒng)荷電與噴霧效果試驗(yàn)
王士林1,何雄奎1※,宋堅(jiān)利1,仲崇山2,王志翀1,齊 鵬1,凌 云1
(1. 中國(guó)農(nóng)業(yè)大學(xué)理學(xué)院,北京 100193; 2. 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083)
該文針對(duì)航空施藥植保無(wú)人機(jī)設(shè)計(jì)了雙極性接觸式航空機(jī)載靜電噴霧系統(tǒng),分別對(duì)該系統(tǒng)噴施靜電油劑和水的荷電與霧化效果進(jìn)行了測(cè)試。將該航空靜電噴霧系統(tǒng)搭載于3WQF120-12型油動(dòng)單旋翼植保無(wú)人機(jī)噴施靜電油劑,并使用該植保無(wú)人機(jī)自帶噴霧系統(tǒng)分別噴施靜電油劑和常規(guī)水基化藥劑,對(duì)比了3種施藥方式的沉積分布均勻性和對(duì)小麥蚜蟲、銹病的防治效果。試驗(yàn)結(jié)果表明:當(dāng)噴霧液為水時(shí),靜電噴霧系統(tǒng)的靜電電壓和極性不會(huì)改變水的霧滴譜;當(dāng)噴霧液為靜電油劑時(shí),正電荷使霧滴粒徑減小,負(fù)電荷使霧滴粒徑增大,且靜電噴頭的霧滴相對(duì)粒譜寬度隨靜電電壓的增加而增大;噴霧液的荷質(zhì)比與靜電電壓正相關(guān),相同靜電電壓和輸出電極下水的荷質(zhì)比大于靜電油劑,同一靜電電壓下負(fù)輸出霧化噴頭藥液的荷質(zhì)比高于正輸出。小麥大田試驗(yàn)表明:使用靜電噴霧系統(tǒng)噴施靜電油劑的霧滴沉積分布均勻性最好,其單位面積沉積量為0.048 6g/cm2,沉積量的標(biāo)準(zhǔn)偏差為0.015g/cm2,變異系數(shù)為30.43%;使用無(wú)人機(jī)自帶噴霧系統(tǒng)噴施靜電油劑和常規(guī)水基化藥劑的單位面積沉積量分別為0.051 3和0.035 6g/cm2,標(biāo)準(zhǔn)偏差分別為0.019和0.016g/cm2,變異系數(shù)分別為42.57%和45.54%;噴施靜電油劑的2個(gè)處理對(duì)麥蚜和銹病的防治效果和藥效期均明顯高于水基化藥劑,使用靜電噴霧系統(tǒng)的測(cè)試在藥后7 d對(duì)蚜蟲防治效果為87.92%,明顯高于無(wú)人機(jī)自帶噴霧系統(tǒng)噴施靜電油劑76.43%的防治效果。該靜電噴霧系統(tǒng)配合噴施靜電油劑可提高沉積分布均勻性,增加防治的持效期和效果。
無(wú)人機(jī);噴霧;農(nóng)藥;荷質(zhì)比;霧滴譜;沉積
近年來隨著科學(xué)技術(shù)的進(jìn)步和規(guī)模化農(nóng)業(yè)的發(fā)展,航空植保無(wú)人機(jī)(unmanned aerial vehicle,UAV)受到廣泛的關(guān)注并取得了迅速的發(fā)展[1-2]。相比于大型農(nóng)用飛機(jī),植保無(wú)人機(jī)不需要機(jī)場(chǎng)跑道并可進(jìn)行遙控作業(yè)飛行、靈活機(jī)動(dòng)性強(qiáng)、應(yīng)對(duì)突發(fā)災(zāi)害能力強(qiáng),能有效減少施藥過程中農(nóng)藥對(duì)人的危害和對(duì)環(huán)境的污染,且適用于水田、丘陵、山地等地面機(jī)械無(wú)法進(jìn)入的地塊進(jìn)行田間快速的低空低量噴霧作業(yè)[3-8]。因此,植保無(wú)人機(jī)在中國(guó)農(nóng)作物病蟲害防治過程中具有廣闊的應(yīng)用前景,也必然會(huì)發(fā)揮越來越重要的作用。
目前,針對(duì)植保無(wú)人機(jī)的研究主要集中于無(wú)人機(jī)自主導(dǎo)航、變量噴霧系統(tǒng)、作業(yè)參數(shù)對(duì)霧滴沉積和防治效果的影響等方面[9-13]。這些研究為農(nóng)業(yè)航空施藥技術(shù)奠定了堅(jiān)實(shí)的基礎(chǔ),因此中國(guó)的植保無(wú)人機(jī)的機(jī)型和數(shù)量呈現(xiàn)出幾何倍數(shù)的增長(zhǎng),航空植保的作業(yè)面積也取得了大幅的增加。但航空噴霧仍然存在霧化效果差、藥液飄移量大、沉積分布不均勻等特點(diǎn)[5,14]。如何減少植保無(wú)人機(jī)施藥過程中霧滴的飄移,提高藥液沉積分布均勻性仍是一個(gè)難點(diǎn)。
隨著精準(zhǔn)農(nóng)業(yè)的發(fā)展,植保無(wú)人機(jī)精準(zhǔn)航空施藥技術(shù)研究也逐步成為研究熱點(diǎn)[15]。而植保無(wú)人機(jī)航空施藥作業(yè)的最大缺點(diǎn)是受氣候影響較大,藥液飄移損失嚴(yán) 重[16]、沉積分布不均勻[14],航空靜電噴霧技術(shù)是實(shí)現(xiàn)精準(zhǔn)航空施藥技術(shù)的有效途徑之一。在靜電噴霧的過程中,利用高壓靜電在噴頭和靶標(biāo)之間建立靜電場(chǎng),荷電霧滴在靜電力和其他外力的共同作用下定向高效地沉積到作用靶標(biāo)上[17-18]。因此,農(nóng)藥?kù)o電噴霧技術(shù)及機(jī)具在歐美國(guó)家已經(jīng)被廣泛應(yīng)用于大田、果園和溫室等作物的植保作業(yè)[19-20]。20世紀(jì)60年代美國(guó)最先將靜電噴霧技術(shù)應(yīng)用于大型有人駕駛飛機(jī)的農(nóng)藥航空作業(yè),并先后探索了極性交替充電、雙極性充電和電暈放電的充電方式[21]。其中,雙極性感應(yīng)荷電航空噴霧系統(tǒng)的設(shè)計(jì)有效的減少了機(jī)體累積的殘留電荷,為航空靜電噴霧技術(shù)清除了障 礙[22]。航空靜電噴霧系統(tǒng)問世以來,在美國(guó)進(jìn)行了大量的田間試驗(yàn),如Krik對(duì)比了航空靜電噴霧系統(tǒng)與傳統(tǒng)噴霧方式作業(yè)效果并證明了航空靜電噴霧的優(yōu)勢(shì)[23]。美國(guó)的農(nóng)用航空靜電噴霧技術(shù)以有人駕駛固定翼飛機(jī)為主[17],而在中國(guó)等亞洲國(guó)家航空施藥主要采用小型植保無(wú)人機(jī),很難將國(guó)外技術(shù)直接移植應(yīng)用于植保作業(yè)。目前中國(guó)航空靜電噴霧技術(shù)還處于試驗(yàn)階段,廉琦[24]設(shè)計(jì)了多旋翼無(wú)人機(jī)靜電噴霧系統(tǒng),試驗(yàn)發(fā)現(xiàn)此無(wú)人機(jī)靜電噴霧可提高霧滴的沉積密度。茹煜等[25-26]先后設(shè)計(jì)了航空雙噴嘴靜電噴頭并針對(duì)XY8D型無(wú)人機(jī)整體設(shè)計(jì)了靜電噴霧系統(tǒng),其研究結(jié)果表明航空靜電噴霧明顯增加了藥液在水稻靶標(biāo)各層上的沉積,但對(duì)抑制霧滴飄移的作用不大。
為改善航空施藥過程中霧滴沉積分布以提高病蟲害的防治效果,本文針對(duì)航空施藥植保無(wú)人機(jī)設(shè)計(jì)了雙極性接觸式靜電噴霧系統(tǒng),該系統(tǒng)包含正、負(fù)2個(gè)輸出電極,可分別使其對(duì)應(yīng)的藥箱內(nèi)噴霧液帶上正、負(fù)電荷。測(cè)試了該靜電噴霧系統(tǒng)分別噴施靜電油劑和水的荷電與霧化效果;將該航空靜電噴霧系統(tǒng)搭載于3WQF120-12型油動(dòng)單旋翼植保無(wú)人機(jī),噴施超低容量靜電油劑,并使用該植保無(wú)人機(jī)自帶噴霧系統(tǒng)分別噴施靜電油劑和常規(guī)水基化藥劑,對(duì)比了3種施藥方式的沉積分布均勻性和對(duì)小麥蚜蟲、銹病的防治效果。
靜電噴霧目前有3種充電方法:電暈充電法、感應(yīng)充電法和接觸充電法。相比而言,接觸式充電法充電最充分、充電效果最好[27],因此選用接觸式充電法設(shè)計(jì)航空機(jī)載靜電噴霧系統(tǒng)。接觸式充電法是將靜電高壓發(fā)生器的電極直接置于藥液中使其帶電,藥液經(jīng)過噴頭的霧化作用而形成帶有單極性電荷的霧滴。與地面靜電噴霧裝置不同,航空靜電噴霧系統(tǒng)需搭載于飛行器上于空中作業(yè),難以形成有效的接地而引起電荷在機(jī)體積累甚至?xí)斐娠w機(jī)表面電荷產(chǎn)生電暈放電。為有效釋放機(jī)體累積的殘留電荷,較早研制的航空靜電噴霧噴霧系統(tǒng)常攜帶一條較長(zhǎng)的導(dǎo)線用于接地。接地導(dǎo)線嚴(yán)重影響了操作人員對(duì)植保無(wú)人機(jī)的操控,與此同時(shí)無(wú)人機(jī)旋翼產(chǎn)生的氣流很有可能會(huì)揚(yáng)起導(dǎo)線造成極大的安全隱患。美國(guó)在有人駕駛固定翼飛機(jī)上采取的雙極性感應(yīng)荷電方式有效的解決了機(jī)體電荷累積的問題,但該系統(tǒng)價(jià)格昂貴且無(wú)法直接用于小型的植保無(wú)人機(jī)。對(duì)此,借鑒了雙極性荷電的方式設(shè)計(jì)了適用于小型植保無(wú)人機(jī)的雙極性接觸式靜電噴霧系統(tǒng)。該靜電噴霧系統(tǒng)將藥液裝于兩個(gè)獨(dú)立的藥箱中并分別與高壓靜電發(fā)生裝置的正、負(fù)輸出電極相連,從2個(gè)獨(dú)立的藥箱霧化出的霧滴帶有2種不同的電荷,當(dāng)帶電霧滴沉降至作物冠層的附近時(shí)受作物表面感應(yīng)電荷吸附而沉積到作物葉片。
雙極性接觸式航空機(jī)載靜電噴霧系統(tǒng)由電源、充電器、靜電高壓發(fā)生裝置(含電源開關(guān)和調(diào)壓器)、正負(fù)輸出電極、藥箱、離心泵、遠(yuǎn)程遙控開關(guān)和離心噴頭組成,本研究設(shè)計(jì)的靜電噴霧系統(tǒng)的靜電高壓發(fā)生裝置原理以及具體結(jié)構(gòu)組成見圖1。靜電高壓發(fā)生裝置為該系統(tǒng)的關(guān)鍵部件,其由2個(gè)電壓相同,極性相反的靜電高壓電源串聯(lián)組成。正極性電源的負(fù)極與負(fù)極性電源的正極之間通過一個(gè)緩沖電感器相連。因此,正負(fù)高壓電源、空氣、大地之間形成一個(gè)電荷轉(zhuǎn)移的閉合回路,確保在飛機(jī)上的靜電平衡,從而減少對(duì)無(wú)人機(jī)飛控系統(tǒng)的影響,保證植保無(wú)人機(jī)的安全運(yùn)行。高壓靜電發(fā)生器由12V/2AH的鋰電池供電,其正、負(fù)輸出電極分別伸入各自對(duì)應(yīng)的藥箱底部與藥液相連組成正極和負(fù)極儲(chǔ)液裝置。其中與正輸出電極相連的藥液被充上正電荷,與負(fù)輸出電極相連的藥液被充上負(fù)電荷。與常規(guī)噴霧相比,靜電噴霧要求霧滴的粒徑更小,因此該系統(tǒng)配備了霧化效果更細(xì)、更均勻的離心噴頭。靜電噴霧系統(tǒng)的正輸出噴霧單元(含泵和離心噴頭)和負(fù)輸出噴霧單元分別由各自的電源獨(dú)立供電,同一噴霧單元的電源同時(shí)給其對(duì)應(yīng)的離心泵和離心噴頭的電機(jī)供電。帶有正電荷或負(fù)電荷的藥液分別在各自對(duì)應(yīng)的離心泵作用下被輸送至電機(jī)驅(qū)動(dòng)的離心霧化盤,從而在離心力的作用下霧化成細(xì)小的荷電霧滴后沉降到作用靶標(biāo)。
1. 靜電發(fā)生器電源 2. 靜電發(fā)生裝置 3. 電壓表 4. 調(diào)壓旋鈕 5. 靜電發(fā)生器開關(guān) 6. 藥箱 7. 正輸出電極 8. 負(fù)輸出電極 9. 輸液管 10. 離心泵 11. 噴桿12. 噴霧單元電源 13. 控制器 14. 電機(jī) 15. 離心霧化盤 16. 電磁隔離型開關(guān) 17. 靜電開關(guān) 18. 正輸出噴霧單元開關(guān) 19. 負(fù)輸出噴霧單元開關(guān) 20. 總開關(guān)
接觸式靜電噴霧法對(duì)噴霧系統(tǒng)的絕緣性要求較高,為了防止在噴霧液管路運(yùn)輸和霧化的過程中產(chǎn)生漏電,因此該靜電噴霧系統(tǒng)所選用的藥箱、輸液管、噴桿和霧化盤均為絕緣材料。靜電噴霧系統(tǒng)的靜電高壓發(fā)生器和正、負(fù)輸出霧化單元的開關(guān)由電磁隔離型開關(guān)控制,該開關(guān)共含4個(gè)控制鍵,分別為靜電噴霧系統(tǒng)總開關(guān)、靜電高壓發(fā)生器開關(guān)、負(fù)輸出霧化單元開關(guān)和正輸出霧化單元開關(guān)。這樣植保無(wú)人機(jī)的飛控系統(tǒng)和靜電噴霧系統(tǒng)的控制完全獨(dú)立,可將該靜電噴霧系統(tǒng)在不干涉植保無(wú)人機(jī)飛控的條件下直接搭載于植保無(wú)人機(jī)進(jìn)行噴霧作業(yè),增加了該靜電噴霧系統(tǒng)對(duì)植保無(wú)人機(jī)的適用性。靜電噴霧系統(tǒng)各部件的基本參數(shù)見表1。
表1 靜電噴霧系統(tǒng)基本參數(shù)
目前植保無(wú)人機(jī)航空施藥主要是以水基化藥劑噴霧作業(yè),而航空施藥技術(shù)采用低量和超低容量噴霧的方式,霧滴粒徑小,藥液的比表面積大,水基化藥劑存在較嚴(yán)重的蒸發(fā)。而超低容量靜電油劑(electrochargeable liquid,ED)閃點(diǎn)高、揮發(fā)率低,是適用于農(nóng)藥?kù)o電噴霧技術(shù)專用的均相油溶液劑型[28]。本文針對(duì)小麥田常見病蟲害選取吡蟲啉和三唑酮為農(nóng)藥有效成分制備了3%吡蟲啉·三唑酮超低容量靜電油劑,該靜電油劑以油酸甲酯為溶劑,N,N–二甲基甲酰胺、N–甲基吡咯烷酮和環(huán)己酮為助溶劑,十二烷基苯磺酸鈣為靜電劑,其中吡蟲啉含量為0.5%,三唑酮含量為2.5%。對(duì)此靜電油劑的各項(xiàng)理化性質(zhì)進(jìn)行了測(cè)定,測(cè)定結(jié)果見表2,可知該3%吡蟲啉·三唑酮超低容量靜電油劑可用于航空靜電噴霧。
表2 靜電油劑的理化性質(zhì)測(cè)定結(jié)果和質(zhì)量指標(biāo)要求
由于該靜電噴霧裝置的離心噴頭形成的霧錐區(qū)域較大,為了減少噴霧液的流失,所以選用網(wǎng)狀目標(biāo)法測(cè)定該靜電噴霧系統(tǒng)在不同的靜電電壓下噴施靜電油劑和水的荷質(zhì)比(charge-mass ratio,CMR)[29]。荷質(zhì)比的測(cè)量示意圖見圖2。使用絕緣支架將靜電噴霧系統(tǒng)絕緣固定于空中,噴霧系統(tǒng)的正、負(fù)輸出電極對(duì)應(yīng)的噴霧單元分居絕緣支架兩側(cè);金屬篩網(wǎng)使用絕緣支架懸掛于空中用于接收沉降的荷電霧滴,各層金屬篩網(wǎng)之間使用導(dǎo)線相連,于網(wǎng)狀接收裝置正下方放置一個(gè)集液槽用于收集噴霧液;精密電流表一極與金屬篩網(wǎng)相連另一極接地。當(dāng)靜電噴霧系統(tǒng)的正輸出噴霧單元或負(fù)輸出噴霧單元的噴頭對(duì)準(zhǔn)網(wǎng)狀接收裝置噴霧時(shí),荷電霧滴群落沉降到網(wǎng)狀接收裝置并將電荷轉(zhuǎn)移到金屬網(wǎng),隨即與地面構(gòu)成回路而產(chǎn)生微電流。每個(gè)測(cè)試完畢后同時(shí)記錄噴霧時(shí)間()內(nèi)噴出藥液的質(zhì)量()和精密微電流表的示數(shù)電流(并計(jì)算出不同測(cè)試組的荷質(zhì)比,每個(gè)測(cè)試組重復(fù)3次計(jì)算平均值。荷質(zhì)比的計(jì)算見式(1)。
/=/(1)
式中為靜電荷電量,C;為釋放電流強(qiáng)度,A;為測(cè)量時(shí)間,s;為噴霧液質(zhì)量,kg。
1. 噴頭 2. 泵 3. 藥箱 4. 靜電發(fā)生裝置 5. 絕緣支架 6. 集液槽 7. 絕緣支架 8. 金屬篩網(wǎng) 9. 精密電流表
使用DP-02型噴霧激光粒徑分析儀(珠海歐美克儀器有限公司)測(cè)定該靜電噴霧系統(tǒng)在不同的靜電電壓下分別噴施自來水和3%吡蟲啉·三唑酮靜電油劑的霧滴譜,測(cè)定過程中正、負(fù)輸出噴霧單元的流量均為180 mL/min,每個(gè)測(cè)試重復(fù)3次并計(jì)算平均值。將靜電噴霧系統(tǒng)絕緣固定于激光粒徑分析儀旁,待測(cè)霧化單元的離心噴頭水平固定于激光粒徑分析儀測(cè)試區(qū)域正上方50 cm處,分別測(cè)定不同靜電電壓下正、負(fù)輸出噴霧單元噴施自來水和3%吡蟲啉·三唑酮靜電油劑的霧滴體積中值中徑(volume medium diameter,VMD)并計(jì)算相對(duì)粒譜寬度(relative span, RS),RS的計(jì)算方法見式(2)。
(2)
式中DV90為霧滴體積累加至總體積90%時(shí)粒徑,m;DV10為霧滴體積累加至總體積10%時(shí)粒徑,m;VMD為霧滴的體積中值中徑,m。
使用搭載于3WQF120-12型油動(dòng)單旋翼無(wú)人機(jī)上的靜電噴霧系統(tǒng)噴施3%吡蟲啉·三唑酮靜電油劑,并與3WQF120-12原噴霧系統(tǒng)(配備2個(gè)LU120-01噴頭)分別噴施靜電油劑和常規(guī)水基化制劑進(jìn)行對(duì)比。試驗(yàn)中選用的常規(guī)制劑為20%吡蟲啉可溶性液劑和25%三唑酮可濕性粉劑,使用自來水將2種制劑稀釋為吡蟲啉和三唑酮質(zhì)量百分?jǐn)?shù)為1∶5的3%吡蟲啉·三唑酮水基化噴霧液。規(guī)定各處理的單位面積噴霧量為5 L/hm2,靜電噴霧系統(tǒng)的靜電電壓為30 kV。為確定沉積分布試驗(yàn)無(wú)人機(jī)的作業(yè)參數(shù),在垂直于無(wú)人機(jī)飛行航線方向布置3行油敏紙或水敏紙用于接收沉降霧滴,每個(gè)布樣行的長(zhǎng)度為 10 m,行內(nèi)布樣點(diǎn)間距為0.3 m,3個(gè)布樣行間距分別為5 m。無(wú)人機(jī)以不同飛行參數(shù)在布樣行中間位置正上方噴霧飛過,噴霧完成后分析不同布樣點(diǎn)油敏紙或水敏紙上的霧滴密度。霧滴密度的獲取參考Zhu Heping等[30]的方法,各布樣點(diǎn)的霧滴密度為3行的平均值,取霧滴密度大于15個(gè)/cm2的樣本點(diǎn)范圍為有效噴幅[31],最終根據(jù)所測(cè)噴幅、噴霧系統(tǒng)的噴頭數(shù)量和流量確定各處理的飛行作業(yè)參數(shù)。試驗(yàn)最終所確定各處理的編號(hào)和植保無(wú)人機(jī)具體飛行參數(shù)如表3所示。
表3 田間測(cè)試無(wú)人機(jī)的飛行參數(shù)
沉積分布測(cè)試在中國(guó)農(nóng)業(yè)科學(xué)院新鄉(xiāng)試驗(yàn)基地進(jìn)行,各處理均在40 m×70 m的開花期小麥田內(nèi)進(jìn)行。在測(cè)試小區(qū)的中間區(qū)域水平布置3行直徑為70 mm的中速定性濾紙,濾紙的布樣高度與小麥植株相同。每個(gè)布樣行內(nèi)布置5片濾紙,布樣濾紙行內(nèi)間距為1.0 m,布樣行間距為10 m。待噴霧作業(yè)完成且濾紙干燥后分別收集裝入自封袋低溫密封保存。選取吡蟲啉為待測(cè)物質(zhì)測(cè)定濾紙上的噴霧液的沉積量,將自封袋中的濾紙于實(shí)驗(yàn)室內(nèi)加入10 mL乙腈充分洗脫,經(jīng)0.22m有機(jī)膜過濾后使用安捷倫1 200 LC-6410三重四級(jí)桿液質(zhì)聯(lián)用儀(美國(guó),安捷倫公司)分析各濾紙洗脫液中吡蟲啉的峰面積,通過峰面積計(jì)算單位面積吡蟲啉的沉積量和分布均勻性,吡蟲啉的含量分析采用外標(biāo)法繪制標(biāo)準(zhǔn)曲線來定量。液質(zhì)聯(lián)用儀的色譜條件為:安捷倫ZORBAX Eclipse Plus C18色譜柱(2.1 mm×50 mm,3.5m);柱溫30 ℃;進(jìn)樣量5L;流動(dòng)相:流動(dòng)相A相為乙腈,流動(dòng)相B相為0.1%的甲酸水,A∶B=70∶30,流速0.2 mL/min。質(zhì)譜條件為:電噴霧離子源ESI+;離子源溫度:298 ℃;毛細(xì)管電壓:4 000 V,采用多重反應(yīng)檢測(cè)(MRM)模式。吡蟲啉定性離子對(duì)為256/208.9(碎裂電壓:110 V,碰撞能量10 eV);定量離子對(duì)為256/175(碎裂電壓:110 V,碰撞能量15 eV);吡蟲啉保留時(shí)間為0.919 min。
在進(jìn)行噴霧藥液沉積分布特性的3個(gè)測(cè)試小區(qū)內(nèi)分別測(cè)定施藥后7、14 d對(duì)小麥蚜蟲和小麥銹病的防治效果。小麥蚜蟲防治效果的測(cè)定分別于3個(gè)處理區(qū)和對(duì)照區(qū)隨機(jī)選取5個(gè)調(diào)查點(diǎn),每個(gè)調(diào)查點(diǎn)選取20株小麥統(tǒng)計(jì)施藥前和施藥后7、14 d防治效果調(diào)查為施藥前和施藥后7、14 d分別在處理區(qū)和對(duì)照區(qū)隨機(jī)選5個(gè)調(diào)查點(diǎn),每個(gè)調(diào)查點(diǎn)統(tǒng)計(jì)50株小麥的頂部3片葉。根據(jù)GB/T 17 980.23-2000[32]的方法確定小麥葉片的病害等級(jí)和病情指數(shù),由此計(jì)算出各處理區(qū)的小麥銹病的最終防治效果。
應(yīng)用該航空靜電噴霧系統(tǒng)分別噴施自來水和靜電油劑的正、負(fù)輸出噴霧單元的霧化結(jié)果見表4。對(duì)比靜電電壓為0 kV時(shí)霧滴的初始粒徑可知,噴霧液為水和靜電油劑時(shí)正輸出噴霧單元產(chǎn)生霧滴的VMD分別為86.84和65.57m,負(fù)輸出噴霧單元產(chǎn)生霧滴的VMD分別為81.39和46.30m,噴施靜電油劑時(shí)霧滴的VMD均明顯小于噴施水時(shí)霧滴的VMD,在15~35 kV的靜電電壓下噴施靜電油劑霧滴的VMD同樣小于噴施水時(shí)霧滴的VMD值。這一結(jié)果可能是由于噴霧液的表面張力的差異引起的,該靜電油劑的表面張力為31.76 mN/m,而水的表面張力約為72 mN/m遠(yuǎn)大于靜電油劑。靜電油劑在霧化的過程中克服表面張力做的功小于水在霧化時(shí)克服表面張力所做的功,因此靜電油劑更容易霧化為較小的霧滴。
表4 靜電電壓對(duì)霧滴譜的影響
注:VMD為霧滴體積中值中徑,RS為相對(duì)粒譜寬度。表中數(shù)值為3次測(cè)量的平均值,同列不同字母表示差異顯著(<0.05)。
Note: VMD represents volume medium diameter; RS representsrelative span. Data in table are the average of three replicates. Different letters in the same column indicated significantly difference at<0.05 level.
對(duì)于正輸出噴霧單元:當(dāng)噴霧液為水時(shí)不同靜電電壓下霧滴的VMD和RS分別為86.84~88.80m和0.64~0.69均沒有顯著差異,說明在0~35 kV范圍內(nèi)靜電電壓不能改變水的霧滴譜;當(dāng)噴霧液為靜電油劑時(shí),靜電電壓在20~35 kV范圍內(nèi)的霧滴的VMD明顯小于靜電電壓為0 kV時(shí)霧滴的VMD,而靜電電壓為0~15 kV之間時(shí)霧滴的VMD沒有顯著性差異,靜電電壓同樣可以影響靜電油劑的RS,整體而言靜電油劑的RS隨著靜電電壓的增大呈增大趨勢(shì)。對(duì)于負(fù)輸出噴霧單元:當(dāng)噴霧液為水時(shí)不同靜電電壓下霧滴的VMD和RS分別81.39~84.04m和0.53~0.56,也沒有顯著差異,其結(jié)果與正輸出噴霧單元一致;當(dāng)噴霧液為靜電油劑時(shí),靜電電壓的存在時(shí)可以顯著增加霧滴的VMD,但是不同的靜電電壓(15~35 kV)之間霧滴的VMD沒有顯著性差異,說明靜電電壓的大小對(duì)霧滴VMD沒有影響,在15~35 kV靜電電壓下靜電油劑的RS隨著靜電電壓的增大呈增大趨勢(shì),尤其是當(dāng)靜電電壓大于25 kV時(shí)其RS明顯大于無(wú)靜電電壓時(shí)的RS。
荷質(zhì)比是衡量霧滴荷電效果的重要指標(biāo),荷質(zhì)比越高說明充電效果越好。從圖3可知:對(duì)于同一噴霧液來說,隨著靜電電壓的增加,正、負(fù)輸出噴霧單元所噴出的液體的荷質(zhì)比均增大,在相同靜電電壓下正、負(fù)輸出霧化單元所噴出水的荷質(zhì)比均大于其噴出靜電油劑的荷質(zhì)比。電介質(zhì)的極化和電導(dǎo)率是影響噴霧液的荷電效果的最主要因素,而介電常數(shù)是衡量極化程度的指標(biāo)。水是一種強(qiáng)極性電介質(zhì),其相對(duì)介電常數(shù)約為81,而靜電油劑的介電常數(shù)一般小于5;同時(shí)水的電導(dǎo)率約為110s/cm,而靜電油劑的電導(dǎo)率為0.058s/cm遠(yuǎn)小于水,因此水作為噴霧液時(shí)更容易積聚電荷以致水的荷質(zhì)比高于靜電油劑。
圖3 不同靜電電壓下噴霧液的荷質(zhì)比
無(wú)論噴霧液是水還是靜電油劑,負(fù)輸出噴霧單元噴霧液的荷質(zhì)比均大于正輸出噴霧單元的荷質(zhì)比。當(dāng)噴霧單元為負(fù)輸出時(shí),電子直接由負(fù)輸出電極移動(dòng)到與其相連藥箱內(nèi)的噴霧液中并使其帶上負(fù)電荷;而當(dāng)噴霧單元為正輸出時(shí),正輸出電極有過量的質(zhì)子,而質(zhì)子緊密的結(jié)合在原子核內(nèi)無(wú)法向與其相連藥箱內(nèi)噴霧液遷移,因此正輸出電極只能通過吸引藥箱內(nèi)噴霧液中的電子朝向其自身移動(dòng)而使藥箱中的藥液帶有正電荷。由此可知,負(fù)輸出電極充電方式為電子的主動(dòng)轉(zhuǎn)移,而正輸出電極充電方式為藥箱中電子的被動(dòng)遷移,其速率相對(duì)較慢。因此正、負(fù)輸出電極充電方式的不同決定了負(fù)輸出電極對(duì)藥箱內(nèi)噴霧液的充電效果好于正輸出電極。
使用外標(biāo)法對(duì)吡蟲啉的沉積進(jìn)行定量,確定吡蟲啉的峰面積()與質(zhì)量濃度()間線性方程為:=76 831– 444.83(2=0.995 4),吡蟲啉在濾紙上的平均回收率為85.9%~105.8%,相對(duì)標(biāo)準(zhǔn)偏差(RSD)為1.99%~7.39%。由該線性方程計(jì)算所得3個(gè)處理沉積效果的平均沉積量、沉積量的標(biāo)準(zhǔn)偏差和變異系數(shù)結(jié)果見表5。
表5 不同處理方式下藥液沉積分布特性
從試驗(yàn)結(jié)果可知,噴施靜電油劑的測(cè)試1和測(cè)試2的平均沉積量分別為0.048 6和0.051 3g/cm2,明顯大于噴施水基化藥劑測(cè)試3的0.035 6g/cm2,這是由于水基化藥劑霧化后的霧滴在沉降過程中產(chǎn)生嚴(yán)重的蒸發(fā),而靜電油劑由低揮發(fā)、高閃點(diǎn)的油酸甲酯和有機(jī)試劑組成,大大降低了藥液蒸發(fā)的可能性,因而提高了噴霧藥液的有效沉積率。同樣噴施靜電油劑的測(cè)試2的沉積量大于測(cè)試1,主要原因在于測(cè)試2中使用的單旋翼無(wú)人機(jī)自帶噴霧系統(tǒng)的噴頭為液力式噴頭,其產(chǎn)生的霧化粒徑明顯大于測(cè)試1靜電噴霧系統(tǒng)的離心噴頭產(chǎn)生的霧滴粒徑,較大的霧滴粒徑受側(cè)風(fēng)影響較小而導(dǎo)致飄移量的降低,因此測(cè)試2的平均沉積量大于測(cè)試1。對(duì)比3個(gè)測(cè)試組沉積量的標(biāo)準(zhǔn)偏差,使用靜電噴霧的測(cè)試1標(biāo)準(zhǔn)偏差最小為0.015g/cm2,因?yàn)殪F化后的帶電霧滴在靜電力的作業(yè)下相互排斥致使霧滴相互分散而提高沉積均勻性。同樣代表噴霧均勻性的變異系數(shù)結(jié)果方面,使用靜電噴霧系統(tǒng)的測(cè)試1的變異系數(shù)最小為30.43%,而使用植保無(wú)人機(jī)自帶噴霧系統(tǒng)的測(cè)試2和測(cè)試3的變異系數(shù)分別為42.57%和45.54%,明顯大于測(cè)試1,這也說明該靜電噴霧系統(tǒng)可以提高藥液沉積分布的均勻性。
3個(gè)測(cè)試組對(duì)小麥蚜蟲和銹病的防治結(jié)果見表6。對(duì)于小麥銹病的防治效果結(jié)果:噴施靜電油劑的測(cè)試1和測(cè)試2對(duì)小麥銹病在藥后7 d的防治效果沒有出現(xiàn)顯著性差異,但其防治效果均明顯高于噴施普通水基化藥劑的測(cè)試3,施藥后14 d的測(cè)試組對(duì)銹病防治效果的差異性與施藥后7 d一致。在施藥后7 d,測(cè)試1和測(cè)試2對(duì)銹病的防治效果接近70%,而測(cè)試3僅為52.11%;施藥后14 d結(jié)果顯示,測(cè)試1和測(cè)試2的對(duì)銹病的防治效果均在40%以上,測(cè)試3的防治效果為24.56%,明顯低于前2個(gè)測(cè)試。對(duì)于小麥蚜蟲的防治效果結(jié)果:噴施靜電油劑的兩個(gè)處理對(duì)小麥蚜蟲的防治結(jié)果也明顯高于噴施普通水基化藥劑的處理。在施藥后7 d,測(cè)試1對(duì)麥蚜的防治效果為87.92%明顯高于同樣噴施靜電油劑的測(cè)試2的76.43%,主要原因應(yīng)為靜電系統(tǒng)霧化效果好,沉降過程中受靜電力作用能夠吸附到植株各個(gè)部位,提高了藥液的覆蓋區(qū)域,因而增大了農(nóng)藥有效成分的觸殺和吸收面積。與常規(guī)水基化噴霧藥劑相比,靜電油劑在作物葉片上具有良好的耐雨水沖刷性、能夠增加藥液在作物葉片的滲透性,因而增加了對(duì)小麥病蟲害的防治效果和藥效期。
表6 施藥方式對(duì)小麥銹病和蚜蟲防治效果的影響
注:表中為5點(diǎn)防治效果的平均值。
Note: Data in table are the average of five replicates.
1)對(duì)于靜電噴霧系統(tǒng)的同一個(gè)輸出噴霧單元:噴霧液為靜電油劑霧滴的體積中值中徑(volume median diameter, VMD)明顯小于水的霧滴VMD;當(dāng)噴霧液為水時(shí),靜電噴霧系統(tǒng)的靜電電壓和正、負(fù)輸出對(duì)霧滴的VMD和相對(duì)粒譜寬度(relative span, RS)均不會(huì)產(chǎn)生顯著影響;而當(dāng)噴霧液為靜電油劑時(shí),正輸出電極的靜電電壓可以減小霧滴的VMD,負(fù)輸出電極的靜電電壓可以增大霧滴的VMD,隨著靜電電壓的增大,在2種輸出電極下霧滴的RS均呈增大趨勢(shì)。
2)隨著靜電電壓的增加,正、負(fù)輸出噴霧單元噴出液體的荷質(zhì)比均增大;相同靜電電壓和輸出電極下,噴霧液為水的荷質(zhì)比大于靜電油劑的荷質(zhì)比;在同一靜電電壓和噴霧液下,負(fù)輸出噴霧單元噴出藥液的荷質(zhì)比高于正輸出噴霧單元。
3)噴施靜電油劑的2個(gè)處理平均沉積量分別為 0.048 6和0.051 3g/cm2,明顯高于噴施水基化藥劑的 0.035 6g/cm2;使用靜電噴霧系統(tǒng)噴施靜電油劑的霧滴沉積分布均勻性最好,其沉積量的標(biāo)準(zhǔn)偏差為0.015g/cm2,變異系數(shù)為30.43%。
4)噴施靜電油劑的2個(gè)處理對(duì)小麥蚜蟲和銹病的防治效果和藥效期均明顯高于噴施普通水基化藥劑的處理。對(duì)噴施靜電油劑的2個(gè)處理:使用靜電噴霧系統(tǒng)的處理在施藥后7對(duì)蚜蟲防治效果為87.92%,明顯高于無(wú)人機(jī)自帶的系統(tǒng)噴施靜電油劑76.43%的防治效果,在施藥后14 d的2個(gè)處理對(duì)蚜蟲的防治效果沒有顯著性差異;在施藥后7和14 d,2個(gè)處理對(duì)小麥銹病的防治效果均沒有顯著性差異。
[1] 薛新宇,梁建,傅錫敏. 我國(guó)航空植保技術(shù)的發(fā)展前景[J]. 農(nóng)業(yè)技術(shù)與裝備,2008(5):72-74. Xue Xinyu, Liang Jian, Fu Ximin. Prospect of aviation plant protection in China[J]. Chinese Agricultural Mechanization, 2008(5): 72-74. (in Chinese with English abstract)
[2] 周志艷,臧英,羅錫文,等. 中國(guó)農(nóng)業(yè)航空植保產(chǎn)業(yè)技術(shù)創(chuàng)新發(fā)展戰(zhàn)略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):1-10. Zhou Zhiyan, Zang Ying, Luo Xiwen, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 1-10. (in Chinese with English abstract)
[3] 茹煜,金蘭,賈志成,等. 無(wú)人機(jī)靜電噴霧系統(tǒng)設(shè)計(jì)及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):42-47. Ru Yu, Jin Lan, Jia Zhicheng, et al. Design and experiment on electrostatic spraying system for unmanned aerial vehicle[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 42-47. (in Chinese with English abstract)
[4] Huang Yandong, Hoffmann W C, Lan Yubin, et al. Development of a spray system for an unmanned aerial vehicle platform[J]. Transactions of the ASABE, 2009, 25(6): 803-809.
[5] 張東彥,蘭玉彬,陳立平,等. 中國(guó)航空施藥技術(shù)研究進(jìn)展與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):53-59. Zhang Dongyan, Lan Yubin, Chen Liping, et al. Current status and future trends of agricultural aerial spraying technology in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 53-59. (in Chinese with English abstract)
[6] Fai?al B S, Costa F G, Pessin G, et al. The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides[J]. Journal of Systems Architecture, 2014, 60(4): 393-404.
[7] 薛新宇,蘭玉彬. 美國(guó)農(nóng)業(yè)航空技術(shù)現(xiàn)狀和發(fā)展趨勢(shì)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(5):194-201. Xue Xinyu, Lan Yubin. Agricultural aviation applications in USA[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(5): 194-201. (in Chinese with English abstract)
[8] 張國(guó)慶. 農(nóng)業(yè)航空技術(shù)研究述評(píng)與新型農(nóng)業(yè)航空技術(shù)研究[J]. 江西林業(yè)科技,2011(1):25-31. Zhang Guoqing. Review of agricultural aviation technologies and research of New-type agricultural aviation technologies[J]. Jiangxi Forestry Science and Technology, 2011(1): 25-31. (in Chinese with English abstract)
[9] 王玲,蘭玉彬,Clint Hoffmann W,等. 微型無(wú)人機(jī)低空變量噴藥系統(tǒng)設(shè)計(jì)與霧滴沉積規(guī)律研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(1):15-22. Wang Ling, Lan Yubin, Clint Hoffmann W, et al. Design of variable spraying system and influencing factors on droplets deposition of small UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 15-22. (in Chinese with English abstract)
[10] 邱白晶,王立偉,蔡?hào)|林,等. 無(wú)人直升機(jī)飛行高度與速度對(duì)噴霧沉積分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):25-32. Qiu Baijing, Wang Liwei, Cai Donglin, et al. Effect of flight altitude and speed of unmanned helicopter on spray deposition uniform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 25-32. (in Chinese with English abstract)
[11] 高圓圓,張玉濤,張寧,等. 小型無(wú)人機(jī)低空噴灑在小麥田的霧滴沉積分布及對(duì)小麥吸漿蟲的防治效果初探[J]. 作物雜志,2013,39(2):139-142. Gao Yuanyuan, Zhang Yutao, Zhang Ning, et al, Primary studies on spray droplet distribution and control effects of aerial spraying using unmanned aerial vehicle (UAV) against the corn borer[J]. Plant Protection, 2013, 39(2): 139-142. (in Chinese with English abstract)
[12] 秦維彩,薛新宇,周立新,等. 無(wú)人直升機(jī)噴霧參數(shù)對(duì)玉米冠層霧滴沉積分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):50-56. Qin Weicai, Xue Xinyu, Zhou Lixin, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 50-56. (in Chinese with English abstract)
[13] Qin Weicai, Qiu Baijing, Xue Xinyu, et al. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers[J]. Crop Protection, 2016, 85: 79-88.
[14] Wang Shilin, Song Jianli, He Xiongkui, et al. Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in China[J]. International Journal of Agricultural & Biological Engineering, 2017, 10(4): 22-31.
[15] Lan Yubin, Thomson S J, Huang Yanbo, et al. Current status and future directions of precision aerial application for site-specific crop management in the USA[J]. Computers & Electronics in Agriculture, 2010, 74(1): 34-38.
[16] 舒朝然,熊惠龍,陳國(guó)發(fā),等. 靜電噴藥技術(shù)應(yīng)用研究的現(xiàn)狀與發(fā)展[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2002,33(3):211-214. Shu Chaoran, Xiong Huilong, Chen Guofa, et al. Current situation and development of the research and application of the electrostatic spraying-dusting technique[J]. Journal of Shenyang Agricultural University, 2002, 33(3): 211-214.(in Chinese with English abstract)
[17] 張亞莉,蘭玉彬,Bradley K F,等. 美國(guó)航空靜電噴霧系統(tǒng)的發(fā)展歷史與中國(guó)應(yīng)用現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):1-7.Zhang Yali, Lan Yubin, Bradley K F, et al. Development of aerial electrostatic spraying systems in the United States and applications in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 1-7.(in Chinese with English abstract)
[18] Tavares R M, Cunha J P A R, Alves T C, et al. Electrostatic spraying in the chemical control of Triozoida limbata (Enderlein) (Hemiptera: Triozidae) in guava trees (Psidium guajava L.)[J]. Pest Management Science, 2017, 73(6): 1148-1153.
[19] 沈從舉,賈首星,湯智輝,等. 農(nóng)藥?kù)o電噴霧研究現(xiàn)狀與應(yīng)用前景[J]. 農(nóng)機(jī)化研究,2010,32(4):10-13.Shen Congju, Jia Shouxing, Tang Zhihui, et al. Research actuality and application prospects of pesticide electrostatic spraying[J]. Journal of Agricultural Mechanization Research, 2010, 32(4): 10-13. (in Chinese with English abstract)
[20] Tavares R M, Cunha J P, Alves T C, et al. Electrostatic spraying in the chemical control of triozoida limbata (enderlein) (hemiptera: triozidae) in guava trees (psidium guajava l.)[J]. Pest Management Science, 2017, 73: 1148-1153.
[21] Carlton J B.Techniques in electrostatic charging of sprays from aircraft[C]//Texas A&M University.Texas Agricultural Aviation Annual Conference and Short Course on Pest Control, 1968.
[22] Kihm K D, Kim B H, Mcfarland A R. Atomization, charge, and deposition characteristics of bipolarly charged aircraft sprays[J]. Atomization & Sprays, 1991, 4(463): 463-481.
[23] Kirk I W, Hoffmann W C, Carlton J B. Aerial electrostatic spray system performance[J]. Transactions of the ASAE, 2001, 44(5): 1089–1092
[24] 廉琦. 多旋翼無(wú)人機(jī)靜電噴霧系統(tǒng)的試驗(yàn)研究[D]. 大慶:黑龍江八一農(nóng)墾大學(xué),2016.
[25] 茹煜,鄭加強(qiáng),周宏平,等. 航空雙噴嘴靜電噴頭的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(12):58-61.Yu Ru, zheng Jiaqiang, Zhou Hongping, et al. Design and experiment of double-nozzle of aerial electrostatic sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(12): 58-61. (in Chinese with English abstract)
[26] 茹煜,金蘭,賈志成,等. 無(wú)人機(jī)靜電噴霧系統(tǒng)設(shè)計(jì)及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):42-47.Ru Yu, Jin Lan, Jia Zhicheng, et al. Design and experiment on electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 42-47. (in Chinese with English abstract)
[27] Law S E. Agricultural electrostatic spray application: a review of significant research and development during the 20th century[J]. Journal of Electrostatics, 2001,5(1): 25-42.
[28] 劉廣文. 現(xiàn)代農(nóng)藥劑型加工技術(shù)[M]. 化學(xué)工業(yè)出版社,2013:467-468.
[29] 陳志剛,孫英琨,儲(chǔ)金宇,等. 網(wǎng)狀目標(biāo)法測(cè)量霧滴或粉塵荷質(zhì)比的精度分析[J]. 排灌機(jī)械工程學(xué)報(bào),2006,24(4):40-43.Chen Zhigang, Sun Yingkun, Chu Jinyu, et al. Study of measuring precision for charge to mass ratio by mesh target[J]. Drainage & Irrigation Machinery, 2006, 24(4): 40-43. (in Chinese with English abstract)
[30] Zhu Heping, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposit distribution[J]. Computers & Electronics in Agriculture, 2011, 76(1): 38-43.
[31] 中國(guó)民用航空總局運(yùn)輸管理司. 中華人民共和國(guó)民用航空行業(yè)標(biāo)準(zhǔn):第1部分農(nóng)業(yè)航空作業(yè)質(zhì)量技術(shù)指標(biāo):MH/T1002-1995[S]. 北京:中國(guó)民用航空局,1995.
[32] GB/T17980.23-2000,中華人民共和國(guó)國(guó)家標(biāo)準(zhǔn):農(nóng)藥田間藥效試驗(yàn)準(zhǔn)則(一)殺菌劑防治禾谷類銹病(葉銹、條銹、稈銹)[S]. 北京:國(guó)家質(zhì)量技術(shù)監(jiān)督局,2000.
Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle
Wang Shilin1, He Xiongkui1※, Song Jianli1, Zhong Chongshan2, Wang Zhichong1, Qi Peng1, Ling Yun1
(1.100193,;2.100083,)
In recent years, pesticide application using unmanned aerial vehicle (UAV) has developed rapidly in China. It is very suitable for complex terrain, highly efficient, and capable of dealing with sudden disasters at low risk. Meanwhile, it can reduce the harm of pesticides to human and environmental pollution. However, aerial application is very sensitive to meteorological conditions, which leads to increase of spray drift and nonuniform deposition distribution. A bipolar contact charging electrostatic (BCCE) spraying system for UAV was designed. The electrostatic spray system consisted of power source of electrostatic generator, power source of spray unit, electrostatic generator unit (with power switch and voltage regulator), positive and negative output electrode, tanks, pumps, controller and centrifugal atomizers. The electrostatic generator unit was the key component of BCCE spraying system, which consisted of a negative output electrostatic generator and a positive output electrostatic generator in seriesconnection. The electrostatic generator unit could not only enhance the charging effort but also ensure the electric balance on UAV. The electrostatic spraying system included 2 separate tanks, which were connected to the positive and negative output electrodes of the high voltage electrostatic generator, respectively. So spraying liquid in different tanks was charged positively or negatively, and the charged liquid was atomized into droplets by centrifugal nozzles and then adsorbed onto the leaves of the crop. The output voltage of BCCE spraying system could be adjusted from 15 to 35 kV, and its pump pressure varied from 0.02 to 0.1 MPa. The charge-mass ratio (CMR) and droplet spectrum of spraying liquid for electro-chargeable liquid (ED) and water were measured in the laboratory. The result showed that the volume medium diameter (VMD) of ED was significantly smaller than that of water sprayed by atomizers of BCCE spraying system connected with the positive and the negative output electrode. For water spraying, using BCCE spraying system in different electrostatic voltage (EV), there were no significant differences in VMD and relative span (RS) in both output electrodes; meanwhile, the atomizer of positive voltage could reduce the VMD of ED, while atomizer of negative voltage could enhance the VMD of ED. When the spray liquid was ED, the RSs of droplet spectrum increased as the increase of EV supplied by the positive and negative output electrodes. The test of charging performance showed that the CMR of spray liquids charged by positive and negative output electrodes both increased with the increase of EV. Using the same EV and output electrode, the CMR of water was much higher than ED. With the same EV and spray liquid the CMR charged by negative output electrode was obviously higher than positive output electrode. Experiments were conducted in wheat field, the BCCE spraying system was carried by a single rotor motor UAV 3WQF120-12 to spray ED, and the original spraying system of 3WQF120-12 equipped with 2 LU120-01 nozzles spraying ED and water-based pesticide was chosen for the comparison on pesticide deposition and control effect of wheat aphid and rust. The field experiment result showed that the deposition amounts of both ED treatments were 0.048 6 and 0.051 3g/cm2, respectively, which were significantly higher than that of the water-based pesticide solution with 0.035 6g/cm2. The ED treatment sprayed by BCCE spraying system had the best uniformity in deposition with a standard deviation of 0.015g/cm2and a coefficient of variation of 30.43%. The control efficiency and pesticide persistence of 2 ED treatments on wheat aphid and rust were significantly higher than the conventional water-based treatment. There was no significant difference in control efficiency of rust, and in wheat aphid 14 days after treatment between 2 ED treatments. In addition, the control efficiency of wheat aphid 7 days after treatment for BCCE spraying system was 87.92%, which was significantly higher than that for the UAV’s original spraying system that was 76.43%. Therefore, the BCCE spraying system with ED can improve the uniformity of deposition and increase biological control effect.
unmanned aerial vehicle; spraying; pesticide; charge-mass ratio; droplet spectrum; deposition
王士林,何雄奎,宋堅(jiān)利,仲崇山,王志翀,齊 鵬,凌 云.雙極性接觸式航空機(jī)載靜電噴霧系統(tǒng)荷電與噴霧效果試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):82-89. doi:10.11975/j.issn.1002-6819.2018.07.011 http://www.tcsae.org
Wang Shilin, He Xiongkui, Song Jianli, Zhong Chongshan, Wang Zhichong, Qi Peng, Ling Yun.Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 82-89. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.011 http://www.tcsae.org
2017-11-02
2018-01-30
公益性行業(yè)科研專項(xiàng)(201503130);北京市科委項(xiàng)目(D1711000231700);現(xiàn)在農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-28-20)
王士林,博士生,主要從事植保機(jī)械與施藥技術(shù)研究。 Email:shilinag@163.com
何雄奎,教授,博士生導(dǎo)師,主要從事植保機(jī)械與施藥技術(shù)研究。Email:xiongkui@cau.edu.cn
10.11975/j.issn.1002-6819.2018.07.011
S252+.3
A
1002-6819(2018)-07-0082-08