趙 湛,田春杰,吳亞芳,黃賀東
?
盤吸式水稻排種器吸種動力學過程模擬及參數(shù)優(yōu)化
趙 湛,田春杰,吳亞芳,黃賀東
(江蘇大學農(nóng)業(yè)工程研究院,鎮(zhèn)江 212013)
準確控制盤吸式排種器的吸種位置是提高水稻育秧播種精度的關(guān)鍵因素,吸盤的吸種位置能夠根據(jù)種盤內(nèi)籽粒數(shù)量的變化進行自適應調(diào)節(jié)則是穩(wěn)定排種器連續(xù)作業(yè)性能的重要保證。該文通過多球擬合建立了2種橢球體水稻籽粒模型,采用標準–湍流模型和Euler氣固兩相流模型進行計算流體動力學和離散元(CFD-DEM)耦合,完成了排種器的吸種動力學過程仿真。根據(jù)籽粒的空間分布特點,采用均勻分布模型和矩估計法計算了籽粒的空間分布范圍和離散系數(shù),獲取了垂直往復振動激勵下的籽粒離散運動狀態(tài)和穩(wěn)定特性,確定了理想的種層厚度范圍。以能夠有效吸附籽粒為條件,仿真獲取了不同種層厚度下的臨界吸種位置,分析了吸種距離的變化規(guī)律、籽粒形狀對吸種性能的影響以及造成漏吸和重吸的原因。受到籽粒相互碰撞擠壓等因素影響,CFD-DEM仿真獲取的吸種距離小于靜止狀態(tài)下的籽粒吸附臨界距離,考慮到實際振動種盤內(nèi)種群運動的隨機性更強,提出在仿真獲取的臨界吸種位置基礎(chǔ)上,適當降低調(diào)節(jié)距離以提高吸盤的整體吸種性能。結(jié)合振動種盤內(nèi)種層厚度的實時監(jiān)測技術(shù),以PLC為控制器設(shè)計了排種器吸種位置的自動控制裝置,并在排種器性能試驗臺上以壓差、吸種位置調(diào)節(jié)距離、種盤振動頻率、種層厚度為因素進行正交試驗,通過對吸種合格率的數(shù)學回歸建模和優(yōu)化得到:當吸孔直徑為2.5 mm、種盤振幅為4.0 mm時,理想的壓差為4.4 kPa、種盤振動頻率為10.6 Hz、吸種位置調(diào)節(jié)距離為2.7 mm。根據(jù)優(yōu)化結(jié)果進行吸種性能試驗,當種層厚度在15~25 mm范圍變化時,排種器的吸種合格率達到94.5%。研究結(jié)果可以為提高盤吸式排種器的自動化水平和連續(xù)作業(yè)性能提供借鑒。
機械化;優(yōu)化;模型;育秧排種器;盤吸式;EDEM-CFD耦合;吸種位置;控制方法
育秧是水稻生產(chǎn)的重要環(huán)節(jié),育秧質(zhì)量的優(yōu)劣直接影響著苗期品質(zhì)、移栽后的生長和產(chǎn)量。隨著水稻品種的改良、高產(chǎn)水稻種植的迅速推廣,提出了每穴1~2粒精密育秧的農(nóng)藝要求[1-2],現(xiàn)有的槽輪式、窩眼輪式、型孔式等排種器的播種精度和均勻性無法保證、傷種現(xiàn)象嚴重[3-5]。近年來,許多學者開展了氣吸式排種器的研究工作[6-11],其主要優(yōu)點是播種精度高、傷種率低和適應性強。盤吸式排種器是水稻育秧播種的重要裝備,它主要由振動種盤和正負壓吸盤組成[12-13],種盤通過振動使種群產(chǎn)生向上的拋擲運動而相互分離,以減少內(nèi)摩擦力,根據(jù)育秧盤結(jié)構(gòu),在吸盤面板上加工多組吸孔,通過負壓吸力將籽粒吸附在吸孔上,然后將吸盤移至育苗盤上方,進行正負壓轉(zhuǎn)換,籽粒在重力和正壓氣流場作用下落入育苗盤中。
目前,盤吸式排種器的研究包括結(jié)構(gòu)優(yōu)化設(shè)計、氣流場分布規(guī)律、籽粒受力分析以及吸種性能試驗等方面[12-17],結(jié)果表明:準確控制吸盤與離散種群的相對距離是提高吸種精度的重要因素,相對距離過大,籽粒不能進入吸種氣流場中,漏吸率增加;相對距離過小又會造成重吸率的增加,種群還容易與吸盤發(fā)生急劇碰撞,造成籽粒損傷和吸孔堵塞。排種器作業(yè)時,振動種盤內(nèi)的籽粒數(shù)量始終處于動態(tài)變化過程,即隨著吸排種作業(yè)的進行,籽粒的數(shù)量連續(xù)減少,向種盤內(nèi)添加種子后,籽粒的數(shù)量又迅速增加,這就需要對吸盤的吸種位置進行自動調(diào)節(jié)。因此,本文將振動種盤激勵下的種群與負壓氣流場進行耦合仿真吸種動力學過程,分析水稻籽粒的離散運動特性、空間分布規(guī)律及排種器的吸種性能,提出吸種位置的控制方法,根據(jù)建立的吸種位置與種層厚度變化關(guān)系,在排種器試驗臺上進行了吸種性能試驗和工作參數(shù)優(yōu)化。
CFD-DEM耦合是在每個時間步長中首先通過CFD對流場進行計算,獲得顆粒所在網(wǎng)格單元內(nèi)的流體條件,采用曳力模型計算出每個顆粒所受流體作用力,然后根據(jù)DEM計算出顆粒的運動過程,并以動量匯的形式更新CFD中的顆粒位置、速度等信息,進行下一步迭代計算,這一方法在農(nóng)業(yè)物料的混合、篩分清選等研究領(lǐng)域運用較多[18-23],針對氣吸式排種器吸種運動的研究報道較少。氣固耦合方法是CFD-DEM計算的核心,它主要包括Lagrangian和Euler 2種模型[24-25],其中Lagrangian模型適用于分析單相或稀相固體顆粒的運動,考慮到吸種過程中,籽粒密集分散在吸種口附近,會與氣流場會產(chǎn)場復雜的交互作用,故本文選用Euler耦合模型。
根據(jù)顆粒對流場的影響,Euler模型中引入了體積分數(shù)項,由于籽粒不會做高加速度或高速旋轉(zhuǎn)運動,氣流對顆粒的影響主要體現(xiàn)為曳力,可以通過計算曳力的動量匯進行氣固兩相的耦合,除了能夠計算流體相和固相之間的動量交換,還能夠分析固體顆粒對流體相的影響。由于吸孔附近氣流雷諾數(shù)>>4 000,處于高雷諾數(shù)的紊流狀態(tài),因此采用Navier-Stokes方程和標準-湍流方程構(gòu)成的封閉方程組計算氣流場,顆粒阻力系數(shù)取值為0.44,壁面使用無滑移條件,通過壁面函數(shù)修正法計算距離壁面位置的氣流速度、湍動能和耗散率。
吸種過程中,籽粒在振動種盤中處于離散狀態(tài),采用EDEM軟件仿真籽粒的運動特性,籽粒與籽粒、籽粒與種盤之間通過Hertz-Mindlin無滑動模型計算碰撞接觸力,該模型在水稻籽粒的篩分、輸送等方面有成功的應用[26-30]。
水稻籽粒通常為橢球體顆粒,不同品種的形狀存在一定差異,為了分析籽粒形狀對吸種過程的影響,本文采用多球擬合法建立了2種水稻籽粒模型,如圖1所示,籽粒I和II的三軸尺寸分別為2.85 mm × 1.55 mm × 1.35 mm和3.75 mm × 1.60 mm × 1.05 mm,設(shè)定力學參數(shù)[31-33]:密度為1 150 kg/m3、剪切模量為23 MPa、泊松比為0.25、恢復系數(shù)為0.42、靜摩擦系數(shù)為0.56、滾動摩擦系數(shù)為0.05、千粒質(zhì)量分別為26.5和28.2 g;排種器的種盤和吸盤材料均選用7075鋁合金,密度為2 800 kg/m3、剪切模量為72 000 MPa、泊松比為0.33;籽粒與鋁合金的碰撞恢復系數(shù)為0.48、靜摩擦系數(shù)為0.35、滾動摩擦系數(shù)為0.02。
圖1 水稻籽粒模型
實際使用的吸盤面板為矩形結(jié)構(gòu),長寬尺寸為610 mm × 280 mm,為了與448穴缽體毯狀育秧盤相匹配,在吸盤面板上加工了32×14正方形排列的圓形吸孔,吸孔直徑2.5 mm,中心距為19 mm。由于種盤和吸盤均為平板結(jié)構(gòu),籽粒在垂直往復振動激勵下具有相似的離散運動特性,因此,為了提高計算效率,仿真建立了縮小的矩形吸盤模型,長寬尺寸為140 mm × 80 mm,設(shè)計了7×4的圓形吸孔。
CFD-DEM仿真過程中,首先建立吸種氣流場的三維流道模型,然后進行非結(jié)構(gòu)網(wǎng)格劃分,由于吸孔尺寸遠小于吸盤尺寸,且在吸孔附近的氣流速、壓強等變化顯著,因而在此區(qū)域進行了局部網(wǎng)格加密,提高計算精度。以吸盤頂面為氣流出口面,以吸盤面板向外延伸50 mm作為氣流入口面,設(shè)定入口面為標準大氣壓力1,出口面為恒定壓力2,壓差為Δ=1–2。采用Fluent軟件中的Simple壓力速度耦合方法進行氣流場計算。在EDEM中建立種盤模型,尺寸為170 mm × 100 mm,種盤作垂直往復振動,根據(jù)前期性能試驗結(jié)果[12],設(shè)定振動頻率為11 Hz、振幅為4 mm,通過控制生成籽粒數(shù)量使種盤內(nèi)的種層厚度在10~35 mm范圍內(nèi)變化,計算時間步長為4×10–6s,約為Rayleigh時間的20%。
當吸孔直徑為2.5 mm、壓差Δ為5 kPa、種層厚度為20 mm時的吸種仿真過程如圖2所示:首先,給吸盤施加壓差,迭代運算收斂后建立吸種氣流場,同時在振動種盤內(nèi)生成籽粒(時間為0.5 s),種盤振動5 s后種群達到近似周期運動狀態(tài),如圖2a所示;此時,吸盤以0.04 m/s的垂直速度向種盤運動,到達設(shè)定位置后保持靜止一定時間進行吸種,如圖2b所示;在振動激勵下,種群與吸孔的距離會隨著種盤位移作周期變化,受到的氣流場吸力也隨之變化,當吸力大于重力時,籽粒被吸附于吸孔,如圖2c所示;然后吸盤以0.04 m/s的垂直速度上移,完成整個吸種過程,如圖2d所示。
圖2 CFD-DEM吸種仿真過程
定義吸盤保持靜止吸種狀態(tài)的時間為吸種時間,吸盤面板與種盤振動中心的垂直位移為吸種位置。
籽粒能夠進入有效負壓氣流場中是實現(xiàn)吸種的根本條件,根據(jù)仿真過程可知,吸種總是在種群被拋擲到高點的瞬間完成,且被吸附的是處于種群上層的籽粒,因此,籽粒在振動種盤內(nèi)的離散運動特性和空間分布規(guī)律是決定吸盤吸種位置和性能的重要參數(shù)。
為了描述籽粒的離散運動特性,定義種層厚度、質(zhì)心垂直位移0和離散系數(shù)v分別為
式中為籽粒數(shù)量;z為第個籽粒的垂直位移,m;V為第個籽粒的體積,m3;p為種盤底面積,m2;為籽粒容積率,測量獲得2種籽粒模型在自然堆積下的取值范圍為0.6 ~0.65;()為時刻籽粒的空間分布范圍,它是隨種盤振動的時間變量。
當種層厚度分別為10、20、30 mm時,質(zhì)心垂直位移0的變化如圖3所示。由于種盤的振動強度v=?2/g大于1,種群會被拋離種盤底板,并發(fā)生周期碰撞,0呈現(xiàn)與種盤同頻率的近似周期運動,幅值約為5 mm,略大于種盤振幅。
1. 種層厚度為10 mm 2. 種層厚度為20 mm 3. 種層厚度為30 mm 4. 種盤位移
1. Seeds thickness is 10 mm 2. Seeds thickness is 20 mm 3. Seeds thickness is 30 mm 4. Seeds tray displacement
注:振動頻率為11 Hz;振幅為4 mm。
Note: Vibrational frequency is 11 Hz, and amplitude is 4 mm.
圖3 種群質(zhì)心垂直位移與種盤位移變化規(guī)律
Fig.3 Variation of vertical displacement of seeds mass center and tray displacement
分析不同時刻籽粒的空間分布特點發(fā)現(xiàn),它呈現(xiàn)以0為中心的[–,]均勻分布規(guī)律。本文首先采用矩估計法計算時刻的參數(shù),然后計算籽粒的空間分布范圍= 2和離散系數(shù)v,并取10個穩(wěn)定振動周期的v,計算出其均值v和標準差E。v越大表明籽粒離散程度約高,E越小表明離散狀態(tài)的穩(wěn)定性越好,v和E的變化如圖4所示。
種層厚度在10~30mm范圍內(nèi),v隨的增加而迅速降低,當大于30 mm時,v緩慢下降至約1.5,籽粒接近于密集堆積狀態(tài),說明隨著種層厚度的增加,通過振動使籽粒相互離散越來越困難,籽粒間的擠壓、碰撞、摩擦作用力加劇,這會增加吸種難度;在10~15 mm范圍內(nèi),E隨增加而迅速降低,說明種層厚度較小時,籽??臻g分布不均勻,離散狀態(tài)的穩(wěn)定性差。適當?shù)碾x散程度和穩(wěn)定的離散狀態(tài)有利于提高吸種性能[12,34],因此,15~25 mm應該是理想的種層厚度范圍。根據(jù)質(zhì)心垂直位移0和離散系數(shù)均值v,可以得到種群在拋擲高點時的上層籽粒平面坐標p為
確定吸盤的吸種位置就是合理控制吸孔與上層籽粒平面p的距離,即吸種距離,=–p。仿真過程中,以0.5 mm為步長逐步降低吸盤位置,以所有吸孔都能夠精確吸附籽粒為判斷條件,得到臨界吸種位置0。當吸孔直徑為2.5 mm、壓差Δ為5 kPa、吸種時間為2 s,臨界吸種位置0隨種層厚度的變化曲線如圖5所示。
注:吸孔直徑為25 mm,壓差為5 kPa,吸種時間為2 s。
由圖5可知,隨著種層厚度的增加,上層籽粒平面坐標p隨之增大,相應的臨界吸種位置0也隨之增大。由于籽粒離散系數(shù)v隨的增加而減小,使得0的增速逐步減緩;根據(jù)2.1節(jié)建立的2種籽粒模型的0存在微小差異,這主要受到千粒質(zhì)量、幾何形狀等物理特性的影響。由于籽粒在水平姿態(tài)下的迎風面積和所受氣流吸力最大[35],籽粒被吸附后以水平姿態(tài)為主;增加吸孔直徑和壓差Δ均能夠增大籽粒受到的氣流場吸力,但由于籽粒受力與吸種距離的平方呈反比例關(guān)系,導致在2~2.5 mm、Δ在3~5 kPa范圍,0的變化小于1 mm。
當吸種位置大于0時,籽粒不能進入有效的吸種氣流場,當為2.5 mm、Δ為4 kPa、比0增加1 mm時,仿真結(jié)果發(fā)現(xiàn),籽粒的漏吸率顯著增加;當吸種位置小于0時,則會造成重吸率的增加,即1個吸孔吸附多個籽粒,種群還會與吸盤面板發(fā)生碰撞,容易造成籽粒損傷和吸孔堵塞。泄漏氣流場是造成重吸的重要因素,籽粒的橢圓率越小,形狀越接近于球體,被吸附后與吸孔的間隙越小,可以降低泄漏的氣流場影響,有利于提高單粒吸種率,反之,隨著籽粒橢球率的增大,重吸率也隨之增加。當比0減小2 mm時,籽粒I可以實現(xiàn)單粒精確吸種,而籽粒II則出現(xiàn)了重吸情況。
計算圖5獲取的臨界吸種位置0和上層籽粒平面坐標Z仿真結(jié)果,可以看出隨著種層厚度的變化,吸種距離也存在一定差異:當為10 mm時,約為2.5 mm,這是由于種層厚度較小,籽??臻g分布密度低、運動隨機性強,需要減小,以增加籽粒進入負壓氣流場的機率;當為15~25 mm時,籽粒運動穩(wěn)定、離散均勻,有利于精確吸附,也隨之增加到約3.5~4.0 mm;當大于30 mm時,籽粒離散困難,相互作用力增加,吸種所需要的吸力隨之增大,造成又降低到約2.0~3.0 mm。但總體而言,通過CFD-DEM耦合仿真獲取的吸種距離均小于文獻[35]給出的靜止狀態(tài)下的籽粒吸附臨界距離,這主要時由籽粒的運動特性所決定。籽粒振動運動過程中,上層籽粒不可能處于相同的姿態(tài)和水平位置,受到氣流場的吸力存在差異,籽粒之間還存在相互的碰撞擠壓,這些因素增加了吸種的不確定性和難度。要使每個吸孔都能夠有效吸附籽粒,需要適當減小吸種距離,以提高整體吸種性能。
仿真過程中也發(fā)現(xiàn),精確吸種、漏吸和重吸所對應的吸種位置會在一個小范圍內(nèi)波動,并且考慮到實際種盤要大于仿真種盤模型,種群運動受到的干擾和隨機性也會隨著種盤尺寸的增大而增加,因此,實際排種器的吸種位置應小于仿真獲取的臨界吸種位置0,定義兩者的距離為吸種位置調(diào)節(jié)距離H,H的取值需要通過試驗進行優(yōu)化。
綜上分析可知,準確控制吸種位置是提高盤吸式排種器吸種精度的關(guān)鍵因素,需要根據(jù)種盤內(nèi)籽粒數(shù)量的變化進行調(diào)節(jié),從而穩(wěn)定排種器的連續(xù)作業(yè)性能。
為了驗證仿真臨界吸種位置的合理性、分析實際工作環(huán)境對吸種位置的影響、進一步優(yōu)化作業(yè)參數(shù),在自行研制的盤吸式水稻育秧排種器試驗臺上進行吸種性能試驗,試驗臺由種盤、吸盤、風機、壓力表、電磁換向閥組、控制系統(tǒng)和機架等組成,如圖6所示。它由風機提供氣壓源,由PLC控制電磁換向閥的通斷組合實現(xiàn)吸盤內(nèi)腔正負氣流場的轉(zhuǎn)換,通過變頻器調(diào)節(jié)風機轉(zhuǎn)速以改變風壓大小,壓差通過壓力表測量。電機通過曲軸連桿機構(gòu)驅(qū)動種盤沿垂直方向作直線往復運動,矩形吸盤安裝于“十”字交叉滑臺模組,可以實現(xiàn)水平和垂直運動。吸種時,吸盤以0.04 m/s的勻速從種盤上方20 cm位置垂直向下運動,通過PLC調(diào)節(jié)吸盤運動時間,實現(xiàn)吸種位置的控制,時間控制精度為0.01 s,的控制誤差小于0.6 mm。課題組采用懸臂梁稱質(zhì)量傳感器測量種盤內(nèi)種群的沖擊力,已經(jīng)實現(xiàn)了振動狀態(tài)下種群質(zhì)量(種層厚度)的實時監(jiān)測,測量結(jié)果通過PLC采集,誤差小于4.0%[33,36]。
1. 風機 2. PLC 3. 種盤 4. “十”字滑臺 5. 壓力表 6. 吸盤
1. Fan 2. PLC 3. Tray 4. Cross sliding table 5. Pressure gauge
6. Suction plate
圖6 盤吸式水稻排種器試驗臺
Fig.6 Precision seeder test-rig using vacuum rectangular plate for rice seedling
采用“常優(yōu)”超級稻進行吸種性能試驗,將籽粒近似擬合為橢球體,測量獲得其三軸尺寸的統(tǒng)計值為3.45 mm × 1.58 mm × 1.15 mm,千粒質(zhì)量為27 g,吸孔直徑為2.5 mm、種盤振幅為4 mm。根據(jù)水稻排種器作業(yè)參數(shù)范圍,設(shè)定壓差和種盤振動頻率分別為3~4 kPa和10~12 Hz。隨著吸排種作業(yè)的進行,振動種盤內(nèi)的籽粒數(shù)量總是處于動態(tài)變化過程,根據(jù)籽粒離散運動特性分析結(jié)果,選擇種層厚度的范圍為15~25 mm。在PLC中建立圖5所示的臨界吸種位置0隨種層厚度的變化模型,計算不同種層厚度下的吸盤的臨界吸種位置0,考慮到實際吸種作業(yè)的干擾性和隨機性,吸盤的實際吸種位置在臨界吸種位置0的基礎(chǔ)上,向種盤方向微調(diào)一定距離H,即=0–H。
為了避免吸盤在吸種位置時,籽粒與吸盤面板發(fā)生急劇碰撞而造成籽粒損傷,調(diào)節(jié)距離H的范圍設(shè)定為0~5 mm。排種器可以實現(xiàn)在PLC的控制下,根據(jù)實時監(jiān)測的種層厚度自動調(diào)節(jié)吸種位置。因此,選擇壓差Δ、種盤振動頻率、種層厚度和吸種位置調(diào)節(jié)距離H為因素,根據(jù)高產(chǎn)水稻每穴1~2粒精密育秧的農(nóng)藝要求,以每個吸孔吸附1~2個粒子為合格,進行四因素三水平正交試驗,吸種時間為5 s,試驗結(jié)果如表1所示。吸種合格率=/′100%,其中和分別為實驗過程中總的吸孔數(shù)量和吸附2~3個籽粒時的吸孔數(shù)量。
表1 正交試驗設(shè)計與結(jié)果
根據(jù)試驗結(jié)果,采用DPS建立吸種合格率的二次多項式回歸方程為
= 45.30+22.36Δ+6.727H?2.414Δ2?0.356 0H2
?0.071 7Δ+0.008 4?0.484 2H(5)
經(jīng)檢驗,方程的值小于0.01、值大于6 400、決定系數(shù)2大于0.999 8,表明模型顯著、擬合度高。根據(jù)建立的回歸方程,DPS優(yōu)化獲得壓差Δ為4.4 kPa、頻率為10.6 Hz、吸種位置調(diào)節(jié)距離H為2.7 mm時吸種合格率最高。從回歸方程可以看出,壓差和吸種位置調(diào)節(jié)距離是影響吸種合格率的主要因素,由于排種器作業(yè)過程中,壓差和種盤振動頻率通常設(shè)定為優(yōu)化的作業(yè)參數(shù),不需要進行實時調(diào)整,吸盤的吸種位置主要取決于圖5建立的臨界吸種位置0模型和試驗優(yōu)化的吸種位置調(diào)節(jié)距離H。根據(jù)優(yōu)化結(jié)果進行吸種性能試驗,種層厚度在15~25 mm范圍變化時,通過自動調(diào)節(jié)吸種位置,排種器的吸種合格率可以達到94.5%。
1)采用CFD-DEM耦合實現(xiàn)了盤吸式排種器水稻籽粒吸種過程仿真,得到種層厚度在15~25 mm范圍時的籽粒離散運動狀態(tài)穩(wěn)定,籽粒分布空間隨著種層厚度的增加而增大,吸盤的臨界吸種位置也隨之增大,但增速逐步減緩。
2)準確控制吸種位置是提高吸種精度的關(guān)鍵因素,當吸種位置大于臨界吸種位置時,籽粒不能進入有效吸種氣流場,會導致漏吸率增加,當吸種位置小于臨界吸種位置時,則會造成重吸率的增加,且籽粒的橢球率越大,泄漏氣流場造成籽粒重吸現(xiàn)象越顯著。
3)受到籽粒離散運動的隨機性、相互碰撞擠壓等因素影響,CFD-DEM仿真獲取的吸種距離小于靜止狀態(tài)下的籽粒吸附臨界距離;實際排種器種盤內(nèi)種群運動受到的干擾和隨機性更強,可以通過適當降低吸盤的吸種位置,以提高整體吸種性能。
4)在排種器試驗臺進行吸種性能正交試驗,通過吸種合格率的數(shù)學回歸建模和優(yōu)化得到:吸孔直徑為2.5 mm、種盤振幅為4 mm時,理想的壓差為4.4 kPa、種盤振動頻率為10.6 Hz、吸種位置調(diào)節(jié)距離為2.7 mm。當種層厚度在15~25 mm范圍時,排種器的吸種合格率達到94.5%。
[1] 孫濤,商文楠,曹海峰,等.同播種粒數(shù)對水稻生育及其產(chǎn)量的影響[J].中國農(nóng)學通報,2005,21(7):134-137. Sun Tao, Shang Wennan, Cao Haifeng, et al. Effects of different seeding quantity on rice growing and yield[J]. Chinese Agricultural Science Bulletin, 2005, 21(7): 134-137. (in Chinese with English abstract)
[2] Jiang Xinlu, Li Xuyi, Chi Zhongzhi, et al. Research on potted-tray grown rice seedling transplanting by machine[J]. Agricultural Science & Technology, 2014, 15(11): 1923-1927.
[3] 俞亞新,趙勻,張斌.水稻精密播種器的研究現(xiàn)狀與展望[J].農(nóng)機化研究,2007(9):5-8. Yu Yaxin, Zhao Yun, Zhang Bin. Review for the research of the rice precision seeder[J]. Journal of Agricultural Mechanization Research, 2007(9): 5-8. (in Chinese with English abstract)
[4] 周海波,馬旭,姚亞利.水稻秧盤育秧播種技術(shù)與裝備的研究現(xiàn)狀及發(fā)展趨勢[J].農(nóng)業(yè)工程學報,2008,24(4):301-306. Zhou Haibo, Ma Xu, Yao Yali. Research advances and prospects in the seeding technology and equipment for tray nursing seedlings of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(4): 301-306. (in Chinese with English abstract)
[5] 許劍平,謝宇峰,徐濤.國內(nèi)外播種機械的技術(shù)現(xiàn)狀及發(fā)展趨勢[J].農(nóng)機化研究,2011,33(2):234-237. Xu Jianping, Xie Yufeng, Xu Tao. The present technic status and developing tendency of the domestic and abroad drill[J]. Journal of Agricultural Mechanization Research, 2011, 33 (2): 234-237. (in Chinese with English abstract)
[6] Karayel D. Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean[J]. Soil & Tillage Research, 2009, 104(1): 121-125.
[7] Yazgi A, Degirmencioglu A. Optimisation of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology[J]. Biosystems Engineering, 2007, 97 (3): 347-356.
[8] 翟建波,夏俊芳,周勇.氣力式雜交稻精量穴直播排種器設(shè)計與試驗[J].農(nóng)業(yè)機械學報,2016,47(1):75-82. Zhai Jianbo, Xia Junfang, Zhou Yong. Design and experiment of pneumatic precision hill-drop drilling seed metering device for hybrid rice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 75-82. (in Chinese with English abstract)
[9] Movahedi E, Rrzvani M, Hemmat A. Design, development and evaluation of a pneumatic seeder for automatic planting of seeds in cellular trays[J]. Journal of Agricultural Machinery,2014,4 (1): 65-72.
[10] Rathinakumari A C, Kumaran G S, Mandhar S C. Design and development of tray type vacuum seeder and tray type[J]. Applied Horticulture, 2005, 7 (1): 49-51.
[11] 張順,夏俊芳,周勇,等.氣力滾筒式水稻直播精量排種器排種性能分析與田間試驗[J].農(nóng)業(yè)工程學報,2017,33(3):14-23. Zhang Shun, Xia Junfang, Zhou Yong, et al.Field experiment and seeding performance analysis of pneumatic cylinder-type precision direct seed-metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 14-23. (in Chinese with English abstract)
[12] 陳進,龔智強,李耀明,等.超級稻穴盤育苗精密播種裝置研究[J].農(nóng)業(yè)機械學報,2015,46(1):73-78. Chen Jin, Gong Zhiqiang, Li Yaoming, et al.Experimental study on nursing seedlings of super rice precision seeder device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 73-78. (in Chinese with English abstract)
[13] 劉彩玲,宋建農(nóng),王繼承,等.吸盤式精密播種裝置氣力吸種部件流場仿真分析[J].中國農(nóng)業(yè)大學學報,2010,15(1):116-120. Liu Cailing,Song Jiannong, Wang Jicheng,et al. Analysis of flow field simulation on vacuum seed-metering components of precision metering device with sucker[J]. Journal of China Agricultural University, 2010, 15(1): 116-120. (in Chinese with English abstract)
[14] 張敏,吳崇友,張文毅.吸盤式水稻育秧播種器吸孔氣流場仿真分析[J].農(nóng)業(yè)工程學報,2011,27(7):162-167. Zhang Min, Wu Chongyou, Zhang Wenyi. Airflow field simulation on suction nozzle of cupule-type disseminator for rice seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 162-167. (in Chinese with English abstract)
[15] 王朝輝,馬旭,賈瑞昌.工作參數(shù)對超級稻育秧播種部件吸種性能的影響[J].農(nóng)業(yè)工程學報,2009,25(8):88-92. Wang Zhaohui, Ma Xu, Jia Ruichang. Effects of working parameters on seed suction performance of seeder device for super hybrid rice seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(8): 88-92. (in Chinese with English abstract)
[16] Guarella P, Pellerano A, Psscuzzi S. Experimental and theoretical performance of a vacuum seeder nozzle for vegetable seeds[J]. Journal of Agricultural Engineering Research, 1996, 64(1): 29-36.
[17] Gaikwad B B, Sirohi N P S.Design of a low-cost pneumatic seeder for nursery plug trays[J]. Biosystems Engineering, 2008, 99(3): 322-329.
[18] 蔣恩臣,孫占峰,潘志洋,等.基于CFD-DEM的收獲機分離室內(nèi)谷物運動模擬與試驗[J].農(nóng)業(yè)機械學報,2014,45(5):73-78. Jiang Enchen, Sun Zhanfeng, Pan Zhiyang, et al. Numerical simulation based on CFD-DEM and experiment of grain moving laws in inertia separation chamber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 73-78. (in Chinese with English abstract)
[19] 劉立意,郝世楊,張萌,等.基于CFD-DEM的稻谷通風阻力數(shù)值模擬與試驗[J].農(nóng)業(yè)機械學報,2015,46(8):27-33. Liu Liyi, Hao Shiyang, Zhang Meng, et al. Numerical simulation and experiment on paddy ventilation resistance based on CFD-DEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 27-33. (in Chinese with English abstract)
[20] Lei X L, Liao Y T, Liao Q X. Simulation of seed motion in seed feeding device with DEM-CFD coupling approach for rapeseed and wheat[J].Computers and Electronics in Agriculture, 2016, 131: 29-39.
[21] Fries L, Antonyuk S, Heinrich S, et al. DEM-CFD modeling of a fluidized bed spray granulator [J]. Chemical Engineering Science, 2011, 66(11): 2340-2355.
[22] Xiana R F, Hermann N. Simulation of particles and sediment behaviour in centrifugal field by coupling CFD and DEM[J]. Chemical Engineering Science, 2013, 94(3): 7-19.
[23] 韓丹丹,張東興,楊麗,等.內(nèi)充氣吹式玉米排種器工作性能EDEM-CFD模擬與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(13):23-31. Han Dandan, Zhang Dongxing, Yang Li, et al.EDEM-CFD simulation and experiment of working performance of inside-filling air-blowing seed metering device in maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 23-31. (in Chinese with English abstract)
[24] Kafui D K, Johnson S, Thornton C, et al. Parallelization of a Lagrangian–Eulerian DEM/CFD code for application to fluidized beds[J]. Powder Technology, 2011, 207(1–3): 270-278.
[25] 孫晨,陳凌珊,湯晨旭. 氣固兩相流模型在流場分析中的研究進展[J]. 上海工程技術(shù)大學學報,2011,25(1):49-53. Sun Chen, Chen Lingshan, Tang Chenxu. Study and development of gas-solid two-phase flow model in flow field analysis[J]. Journal of Shanghai University of Engineering Science, 2011, 25(1): 49-53. (in Chinese with English abstract)
[26] Li Hongchang, Li Yaoming, Gao Fang, et al. CFD-DEM simulation of material motion in air-and-screen cleaning device[J]. Computers and Electronics in Agriculture, 2012, 88: 111-119.
[27] Tijskens E, Ramon H, Baerdemaeker De J. Discrete element modelling for process simulation in agriculture[J].Journal of Sound and Vibration, 2003, 266: 493-514.
[28] 馬征,李耀明,徐立章.農(nóng)業(yè)工程領(lǐng)域顆粒運動研究綜述[J].農(nóng)業(yè)機械學報,2013,44(2):22-29. Ma Zheng, Li Yaoming, Xu Lizhang. Summarize of particle movements research in agricultural engineering realm[J].Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 22-29. (in Chinese with English abstract)
[29] 劉月琴,趙滿全,劉飛,等.基于離散元的氣吸式排種器工作參數(shù)仿真優(yōu)化[J].農(nóng)業(yè)機械學報,2016,47(7):65-73. Liu Yueqin, Zhao Manquan, Liu Fei, et al. Simulation and optimization of working parameters of air suction metering device based on discrete element[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 65-73. (in Chinese with English abstract)
[30] 賈富國,姚麗娜,韓燕龍,等.基于離散元法的糙米勻料盤仿真優(yōu)化設(shè)計[J].農(nóng)業(yè)工程學報,2016,32(4):235-241. Jia Fuguo, Yao Lina, Han Yanlong, et al. Simulation and optimal design of uniform plate of brown rice based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 235-241. (in Chinese with English abstract)
[31] 徐立章,李耀明. 水稻谷粒沖擊損傷臨界速度分析[J].農(nóng)業(yè)機械學報,2009,40(8):54-57. Xu Lizhang, Li Yaoming. Critical speed of impact damage on a rice kernel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 54-57. (in Chinese with English abstract)
[32] Varnamkhasti M G, Mobli H, Jafari A, et al. Some physical properties of rough rice grain[J]. Journal of Cereal Science, 2008, 47(3): 496-501.
[33] Zhao Zhan, Wu Yafang, Yin Jianjun, et al. Monitoring method of rice seeds mass in vibrating tray for vacuum-panel precision seeder[J]. Computers and Electronics in Agriculture, 2015, 114: 25-31.
[34] 李耀明,趙湛,陳進,等.氣吸振動式排種器種盤內(nèi)種群運動的離散元分析[J].農(nóng)業(yè)機械學報,2009,40(3):56-59. Li Yaoming, Zhao Zhan, Chen Jin, et al. Discrete element method simulation of seeds motion in vibrated bed of precision vacuum seeder [J].Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3): 56-59.(in Chinese with English abstract)
[35] 龔智強,陳進,李耀明,等.吸盤式精密排種裝置吸種過程氣流場中種子受力研究[J].農(nóng)業(yè)機械學報,2014,45(6):92-97. Gong Zhiqiang, Chen Jin, Li Yaoming, et al. Seed force in airflow field of vacuum tray precision seeder device during suction process of seeds [J].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 92-97. (in Chinese with English abstract)
[36] 周洪如,吳亞芳,李洪昌,等.排種器振動種盤內(nèi)種群質(zhì)量實時監(jiān)測方法[J].農(nóng)機化研究,2017,39(12):20-25. Zhou Hongru, Wu Yafang, Li Hongchang, et al. Real-time monitoring method of seeds mass in reciprocating vibration rray [J].Journal of Agricultural Mechanization Research, 2017, 39(12): 20-25.(in Chinese with English abstract)
Dynamic simulation of seed pick-up process and parameter optimization on vacuum plate seeder for rice
Zhao Zhan, Tian Chunjie, Wu Yafang, Huang Hedong
(212013,)
The key factor to improve seeds pick-up accuracy of vacuum plate seeder is to control the suction position accurately. During the working progress, the number of seeds in vibrating tray is always changing. So, it is an important guarantee for improving the continuous working performance of seeder that the suction position of vacuum plate can be adjusted automatically according to the variation of seeds in vibrating tray. In the paper, 2 different ellipsoid paddy seeds models were established using multi-sphere fitting method, and the contact forces were calculated using Hertz-Mindlin model. Then, the kinetics simulations of seeds pick-up process were completed using CFD-DEM (computational fluid dynamics- discrete element method) coupling method which includes the standard-turbulence model and Euler gas-solid two-phase model. According to the spatial distribution variation law of seeds in vibrating tray at different time, their distribution region and discrete coefficients were calculated using the uniform distribution model and the moment estimate algorithm. Discrete motion states and stability characteristics of seeds under excitation of vertical reciprocating vibration were obtained, and the reasonable range of seeds layer thickness was determined. Seeds pick-up processes were finished when the seeds were thrown up to the high point by vibrating tray, and the absorbed seeds were generally in the upper layer. Under the conditions that seeds could be picked up accurately, the critical suction position in different seeds layer thickness was determined, and then the variation of pick-up distance, the influence of seeds shape on the pick-up performance, and the reasons leading to seeds single pick-up, missing pick-up and repeated pick-up were analyzed. It was obtained that the repeated pick-up ratio will increase with the increasing of seeds ellipticity which leads to the strong leakage flow field. Under the influence of collision and extrusion between seeds, the pick-up distance received by simulations is less than the value at static condition. Considering the influence of uncertain motion state of seeds in actual vibrating tray is much stronger, a modification method of suction position was proposed to improve the overall seeds pick-up performance of vacuum plate. That is to properly reduce the regulated distance based on the critical suction position received by simulation. Combined with the real-time monitoring method of seeds mass, an adaptive control device of suction position of vacuum plate was designed using PLC (programmable logic controller) as the controller. Using the established suction position control model, and taking differential pressure, regulated distance of suction position, vibration frequency of tray and seeds layer thickness as factors, each nozzle picking-up 1-2 seeds as evaluating indicator, the orthogonal tests were carried out on precision seeder test-rig with the diameter of suction nozzle of 2.5 mm and vibration amplitude of tray of 4 mm. The mathematical regression equation of seeds pick-up qualified index was established based on orthogonal tests results, and it was shown that the differential pressure and regulated distance of suction position were the 2 major factors that affected operating performance. By optimizing the established mathematical regression equation, the ideal working parameters were received including differential pressure of 4.4 kPa, vibration frequency of 10.6 Hz, and regulated distance of suction position of 2.7 mm. Under the above optimization parameters, further seeds pick-up tests were carried out with the seeds layer thickness varying in the range of 15-25 mm, and the results indicated that the seeds pick- up qualified index could reach about 94.5%. The proposed control method of suction position according to the variation of seeds layer thickness in vibrating tray can provide references for improving automation level and operating performance of vacuum plate precision seeder.
mechanization; optimization; models; precision seeder; vacuum plate; EDEM-CFD coupling; suction position; control method
趙 湛,田春杰,吳亞芳,黃賀東. 盤吸式水稻排種器吸種動力學過程模擬及參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學報,2018,34(7):38-44. doi:10.11975/j.issn.1002-6819.2018.07.005 http://www.tcsae.org
Zhao Zhan, Tian Chunjie, Wu Yafang, Huang Hedong. Dynamic simulation of seed pick-up process and parameter optimization on vacuum plate seeder for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 38-44. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.005 http://www.tcsae.org
2017-10-20
2018-02-05
國家自然科學基金資助項目(51775246、51305169);江蘇高校優(yōu)勢學科建設(shè)工程資助項目(PADP)
趙 湛,副研究員,主要從事農(nóng)業(yè)機械系統(tǒng)監(jiān)測與控制技術(shù)研究。Email:zhaozhan@ujs.edu.cn
10.11975/j.issn.1002-6819.2018.07.005
S223.2
A
1002-6819(2018)-07-0038-07