• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于吡嗪-吡啶-酰腙配體的三個(gè)配合物的制備及其熒光和光催化性能

    2018-04-10 09:26:27徐周慶何亞玲李晴晴張培玲李慧軍
    關(guān)鍵詞:王元吡嗪配體

    徐周慶 何亞玲 李晴晴 張培玲 李慧軍*, 王 元*,

    In view of the pursuing “green life”,degradation of organic dyes has been given tremendous attention[1-2].In this regard,removing the poor biodegradable dyes from water has been attracting a great deal of attention and becoming a hot research topic[3-4].There have been considerable efforts in treating wastewater based on adsorption and separation[5-6],chemical treatment[7],and photocatalytic methods[8].Among these,photocatalysis offers a convenient and recyclable approach and has been applied in ecologically eliminating organic dyes and other noxious contaminants[9].Therefore,the construction of inexpensive,stable,and efficient materials with improved photocatalytic properties is extremely urgent.

    Recently,some results have demonstrated that metal-organic coordination polymers (MOCPs)are efficient photocatalysts on the degradation of organic dyes,water splitting,or photoreduction of CO2[10-11].How to form efficient,stable,photocatalytic MOCPs is still a big challenge.Because the ligand plays an important role in the construction of functional MOCPs,the rational design of organic ligand is the vital factor in the formation of the targeted MOCPs.Hydrazone,a kind of Schiff base ligand,have been attracting much attention because of their strong tendency to chelate to transition metals[12-13].Especially,the hydrazone asymmetrically decorated by different aza-aromatics possessing tridentate chelating and bridging coordinating sites may be a good cand-idate to construct novel MOCPs with unique structure characters and interesting properties[14-15].

    In view of these points,we employed N′-nicotinoylpyrazine-2-carbohydrazonamide(HL)as ligand to achieve three novel complexes:{[Zn3(L)2(SO4)2(H2O)4]·H2O}n(1),{[Cd2(L)2(SO4)(H2O)]·H2O}n(2)and{[Cd(L)I]·CH3OH}n(3).The photocatalytic research result indicates that complexes 1~3 are good candidates as photocatalysts in decomposing MB with the presence of H2O2.In addition,the luminescent propertiesof these three complexes have been studied in the solid state.

    Scheme 1 Structure of HL

    1 Experimental

    1.1 Materials and measurement

    All chemicals were commercially purchased except for HL which was synthesized according to the literature[15].Elemental analyses for carbon,hydrogen and nitrogen were performed on a Thermo Science Flash 2000 element analyzer.FT-IR spectra were obtained in KBr disks on a PerkinElmer Spectrum One FTIR spectrophotometer in 4 000~450 cm-1spectral range.Diffuse reflectance data were collected using a Shimadzu UV-3600 spectrophotometer, and the Kubelka-Munk function was used to estimate the optical band gap.The powder X-ray diffraction(PXRD)studies were performed with a Bruker AXS D8 Discover instrument(Cu Kα radiation,λ=0.154 184 nm,U=40 kV,I=40 mA)over the 2θrange of 5°~50°at room temperature.The photoluminescent properties were measured on an F-4500 FL Spectrophotometer.

    1.2 Preparations of the complexes 1~3

    {[Zn3(L)2(SO4)2(H2O)4]·H2O}n(1).A mixture of HL(0.05 mmol,12.1 mg),ZnSO4·7H2O (0.10 mmol,28.7 mg),absolute methyl alcohol(3 mL),H2O(3 mL)and N,N-dimethylacetamide(DMA)(2 mL)was placed in a Teflon-lined stainless steel vessel(20 mL),heated to 80℃for 3 days,and then cooled to room temperature at a rate of 5℃·h-1.Yellow block crystals of 1 were obtained and picked out,washed with distilled water and dried in air.Yield:18.4 mg,74.2%(based on HL).Elemental analysis:Calcd.for C22H22N12O13S2Zn3(%):C 28.63,H 2.40,N 18.21;Found(%):C 26.65,H 2.38,N 18.26.IR (KBr,cm-1):3 455,1 636,1 528,1 497,1 451 1 410,1 141,1 012.

    {[Cd2(L)2(SO4)(H2O)]·H2O}n(2).A mixture of HL(0.05 mmol,7.4 mg),CdSO4·8/3H2O (12.815 mg,0.1 mmol),absolute ethanol(2 mL)and H2O (6 mL)was placed in a sealed flask (20 mL),heated to 80℃for 3 days.White block crystals of 2 were obtained and picked out,washed with distilled water and dried in air.Yield:14.9 mg,71.0% (based on HL).Elemental analysis:Calcd.for C22H22Cd2N12O8S(%):C 31.48,H 2.64,N 20.02;Found(%):C 31.51,H 2.68,N 20.08.IR(KBr,cm-1):3 453,1 657,1 528,1 476,1 394,1 130,1 053,981.

    {[Cd(L)I]·CH3OH}n(3).A mixture of HL(0.05 mmol,7.4 mg),CdI2(18.3 mg,0.1 mmol),distilled H2O(4 mL),methyl alcohol(4 mL)and N,N-dimethylacetamide (DMA)(2 mL)were sealed in a 20 mL little bottle and heated at 80℃for 3 days.After the mixture was cooled to room temperature,yellow block crystals of 3 were obtained and picked out,washed with distilled water and dried in air.Yield:8.71 mg,68.1%(based on HL).Elemental analysis:Calcd.for C12H13CdIN6O2(%):C 28.12,H 2.56,N 16.39;Found(%):C 28.16,H 2.48,N 16.42.IR(KBr,cm-1):3 458,1 654,1 531,1 469,1 391,1 138,1 048,1 008.

    1.3 X-ray crystallography

    X-ray Single-crystal diffraction analysis of 1~3 was carried out on a Bruker SMART APEXⅡCCD diffractometer equipped with a graphite monochromated Mo Kα radiation(λ=0.071 073 nm)by using φωscan technique at room temperature.The structures were solved via direct methods (SHELXS-97)[16],and refined by the full-matrix least-squares method on F2with anisotropic thermal parameters for all non-H atoms(SHELXL-97).The empirical absorption corrections were applied by the SADABSprogram[17].The H-atoms of carbon were assigned with common isotropic displacement factors and included in the final refinement by the use of geometrical restraints.H-atoms of water molecules were first located by the Fourier maps and then refined by the riding mode.The crystallographic data for complexes 1~3 are listed in Table 1.Moreover,the selected bond lengths and bond angles are listed in Table 2.

    CCDC:1544978,1;1544980,2;1544979,3.

    Table 1 Crystal data and structural refinement of complexes 1~3

    Table 2 Selected bond lengths(nm)and angles(°)for complexes 1~3

    Continued Table 2

    1.4 Photocatalytic experiments

    To evaluate the photocatalytic activities of these three complexes,the photocatalytic degradation of methylene blue(MB)aqueous solution was performed at ambient temperature[18].The procedure wasasfollows:20 mg of the desolvated samples was dispersed into 100 mL of MB aqueous solution (12.75 mg·L-1),followed by the addition of four drops of hydrogen peroxide solution (H2O2,30%).The suspensions were magnetically stirred in the dark for over 1 h to ensure adsorption equilibrium of MB onto the surface of samples.A 300 W xenon arc lamp was used as a light source to irradiate the above solutions for 0,20,40,60,80,and 100 min.And the corresponding reaction solutions were filtered and the absorbance of MB aqueous solutions was then measured by a spectrophotometer.For comparison,the contrast experiment was completed under the same conditions without any catalyst.The characteristic peak(λ=664 nm)for MB was employed to monitor the photocatalytic degradation process.

    2 Results and discussion

    2.1 Crystal structures of complexes 1~3

    Single-crystal X-ray crystallographic analysis reveals that complex 1 crystallizes in the orthorhombic space group Aba2.The asymmetric unit of 1 consists of one and a half Znギions,one L-ligand,one SO42-anion and half lattice water molecule.The HL ligand indeed coordinate to two Znギions by the tridentate chelating site and the bridging pyridine nitrogen atom.As shown in Fig.1a,the Zn1 ion is coordinated by two N atoms and one carbonyl oxygen atom from one L-ligand,two oxygen atoms from two SO42-anions,thus creating distorted trigonal bipyramid coordination geometry.The Zn2 ion adopts a slightly distorted octahedral geometry coordinated to two N atoms from two L-ligands,two oxygen atoms from two SO42-anions and two coordinated water molecules.The Zn-O bond distances are in the range of 0.198 4(3)to 0.217 5(3)nm,and the Zn-N bond length is in the range of 0.200 2(4)~0.225 9(3)nm.The SO42-anion in 1 connects three Zn ギ ions adopting a μ3,η1η1η1-coordination mode.In this way,Znギ ions are connected by SO42-anions to form the inorganic layer motif in bc plane(Fig.1b).The L-ligands are decorated on both sides of the layer motif by the tridentate chelating site and the bridging pyridine nitrogen atom(Fig.1c).Moreover,the SO42-anions and the lattice O7 water molecules join adjacent layers through the hydrogen-bonding interactions (N3…O5iii0.301 3(5)nm,∠N3-H3A-O5iii=158.3°,O6…O7iv0.278 3(5)nm,∠O6-H6A…O7iv=168.8°,and O6…O5ii0.269 5(4)nm,∠O6-H6B…O5ii=150.5°)giving rise to 3D supramolecular network(Fig.1d and 1e).

    Fig.1 Crystal structure of complex 1:(a)coordination environment of center ions;(b)inorganic layer motif;(c)2Dplane structure;(d)hydrogen bonds;(e)3D supramolecular network connected by π-π stacking

    X-ray single crystal structure analysis reveals that 2 crystallizes in the triclinic space group P1.The asymmetric unit of crystal 2 consists of two sixcoordinated Cdギions,two L-ligands,one SO42-anion,one coordinated water molecule and one lattice water molecule.As shown in Fig.2a,the sixcoordinated Cd1 ion is surrounded by two L-ligands through the tridentate chelating sites(Cd-N 0.221 7(8)~0.254 1(7)nm,Cd-O 0.223 6(6)~0.230 9(7)nm),and the Cd2 is coordinated to three N atoms from three L-ligands,two oxygen atoms from two SO42-anions and one coordinated water molecule(Cd-N 0.230 1(8)~0.236 7(8)nm,Cd-O 0.228 3(6)~0.243 8(6)nm).As shown in Fig.2b,one[(Cd2)2(μ2-SO4)2]unitjoinsadjacent six Cd1 by six L-ligands and each Cd1 connects three[(Cd2)2(μ2-SO4)2]units to form a layer motif(Fig.2c).Furthermore,the N7-containing pyrazine rings and N12-containing pyridyl rings in adjacent layer motifs are nearly parallel to each other,which can provide the chance for the formation ofπ…πinteractions with the C-to-centroid distance being 0.352 7(2)and 0.373 0(5)nm.All theseπ…πinteractions extend adjacent layers into 3D supramolecular network as shown in Fig.2d.

    Single-crystal X-ray crystallographic analysis reveals that complex 3 crystallizes in the monoclinic space group P21/c and its asymmetric unit consists of one Cdギion,one L-ligand,one I-anion and one lattice methyl alcohol molecule.The Cdギion is coordinated by two N atoms and one oxygen atom of one ligand,one N atom from another ligand and one iodide anion resulting in a distorted quadrangular pyramid geometry.The measured Cd-O distance is 0.225(4)nm,Cd-N distance is in the range of 0.222 2(5)~0.251 5(6)nm,and Cd-I distance is 0.269 54(13)nm,respectively.The bond angle around the Cdギcenter lies in the range of 68.06(17)°~149.17(12)°.The HL ligand coordinates to two Cdギions by the tridentate chelating site and the bridging pyridine nitrogen atom,which give rise to the formation of the zigzag 1D chain(Fig.3b).Furthermore,the zigzag 1D chain are connected by the intermolecular hydrogen bonds N3-H3B…O1ii,N3-H3A…O2 and the O2-H2A…O1iinto extended plane structure(Fig.3c and 3d).

    Fig.2 Crystal structure of complex 2:(a)ORTEPdrawing of 2 with 30%thermal ellipsoids;(b)connection mode of mononuclear and dinuclear unit;(c)2D structure;(d)3D supramolecular architecture connected by π-π stacking

    Fig.3 Crystal structure of complex 3:(a)ORTEPdrawing of 3 with 30%thermal ellipsoids;(b)zigzag 1D chain;(c)hydrogen bonds interaction;(d)2D supramolecular architecture connected by hydrogen bonds

    2.2 PXRD patterns and photoluminescent properties

    In order to evaluate the phase purity of 1~3,powder X-ray diffraction experiments have been performed at room temperature (Fig.4).Their high purity solid state phases were confirmed by the good match of the patterns for the as-synthesized samples and simulated ones from the single-crystal data.

    Luminescent properties of MOCPs based on d10metal ions are of special interest due to their prospective applications in electroluminescent displays,nonlinear optical(NLO)devices and so on[19].The combination of organic linkers and metal centers in MOCPs provides an efficient route to a new type of photoluminescent materials with potential applications because of their structure-and metal-dependent emission.In this context,solid-state photoluminescent behavior of HL as well as complexes 1~3 are examined in the solid state at room temperature.

    As shown in Fig.4d,the HL ligand are nearly non-fluorescent in the range of 400~650 nm for excitation wavelength of 370 nm at ambient temperature[20].The intense emissionsoccur at 450 and 490 nm for complexes 1 and 2 with the excitation wavelength of 370 nm.The emissions are neither metal-to-ligand charge transfer (MLCT)nor ligand-to-metal transfer(LMCT)in nature since Znギis difficult to oxidize or reduce due to its d10configuration[21].Thus,they may be assigned to intraligand (π*→n orπ*→π)emission.The enhancement of luminescence in d10complexes may be attributed to ligand chelation to the metal center,which effectively increases the rigidity of the ligand and reduces the loss of energy by radiationless decay[22].In comparison,complex 3 shows relatively weak emission bands.This significantly weakened intensity of the emission is probably attributed to the quenching effect of iodide ions[23].The observation indicates that the complexes of 1 and 2 may be candidates for potential photoactive materials.

    Fig.4 PXRD patterns of complex 1(a),2(b),3(c)and emission spectra of the ligand and complexes 1~3 at room temperature(d)

    The fluorescence property means the transition from the excited state to the ground state at the same energy level.While the photocatalytic property requires the excited electrons stay at the surface of the material long enough to participate surface oxidationreduction reaction.Therefore,the fluorescence properties and photocatalytic properties are theoretically reverse process.In general,materials with good photocatalytic performance will not be too strong fluorescence.By the above points,the photocatalytic properties of complexes 1~3 need to be investigated.

    2.3 Photocatalysis property

    The band gap of complexes 1~3 was measured by a solid state ultraviolet-visible (UV-Vis)diffuse reflectance measurement method at room temperature.In a plot of K-M function versus energy,the band gap Egis defined as the intersection point among the energy axis and line extrapolated of the linear portion[24].The K-M function,F=(1-R)2/(2R)(R is the reflectance of an infinitely thick layer at a given wavelength),can be converted from measured diffuse reflectance data.As shown in Fig.5,the Egvalues for complexes 1~3 are 2.20,1.65 and 2.05 eV,respectively.The reflectance spectra show that there exist the optical band gap and semiconductive behaviors in complexes 1~3,and these complexes can be employed as potential semiconductive materials(the Egof asemiconductor is1~3 eV)[25].

    In order to evaluate the photocatalytic effectiveness of the complexes 1~3,the photocatalytic degradation of MB aqueous solution was performed at ambient temperature.As can be seen in Fig.6,the characteristic absorption peak of MB (664 nm)were gradually reduced with time increasing from 0 to 100 min.Besides,the changes in the plot of Ct/C0versus irradiation time are shown in Fig.7a to clarify the photocatalytic results(wherein Ctis the concentration at time t of the MB solution and C0is the concentration at time t=0 of the MB solution).From Fig.7a,the degradation rate of MB reaches 24%without any photocatalyst,while it increases to 83%,92%and 85%,respectively,when complexes 1,2 and 3 are added to the mixture as catalyst.

    Fig.5 (a)UV-Vis absorption spectra of complexes 1~3;(b)Kubelka-Munk-transformed diffuse reflectance of complexes 1~3

    Fig.6 Absorption spectra of the solution of MB without catalyst(a),or with complex 1(b),2(c)and 3(d)as catalyst,respectively

    Fig.7 (a)Photodegradation of MB with complexes 1~3;(b)Recycling experiments using complexes 1~3 for the photocatalytic degradation of MB solution

    The efficiency of the photocatalyst is a function of the balance between charge separation,interfacial electron transfer,and charge recombination.In general,a narrow band gap leads to the ease of the charge separation,so the photocatalytic degradation rate of MB should follow the reverse order of band gaps of the complexes.As calculated,the band gaps of complexes 1~3 are 2.20,1.65,and 2.05 eV,respectively.The Egof 1~3 follows the sequence:2<1≈3,and the reverse sequence of band gaps agrees with the degradation rate of MB.In addition,the stabilities of these three complexes are investigated by measuring the powder PXRD patterns after photocatalytic reactions.The PXRD patterns are consistent with those of the original ones,which confirm that these complexes keep their skeleton well after the photocatalytic process.The photocatalytic research result indicates that complexes 1~3 are good candidates as photocatalysts in decomposing MB with the presence of H2O2and may have possible application in decomposing other dyestuff.

    Further studies about the stability and reproducibility are also carried out(Fig.7b),and the results show that compounds 1~3 do not exhibit a significant decrease after four runs in the same photocatalytic tests (83%for 1,93%for 2,and 85%for 3 for the first cycles,82%for 1,92%for 2,and 85%for 3 for the second cycles,83%for 1,92%for 2,and 84%for 3 for the third cycles,80%for 1,90%for 2,and 82%for 3 for the fourth cycles),which manifest that the compounds 1~3 as photocatalysts are very stable and possess good reproducibility.

    3 Conclusions

    In summary,an asymmetric triazolate derivative,N′-nicotinoylpyrazine-2-carbohydrazonamide(HL),was employed to achieve three novel MOCPs{[Zn3(L)2(SO4)2(H2O)4]·H2O}n(1),{[Cd2(L)2(SO4)(H2O)]·H2O}n(2)and{[Cd(L)I]·CH3OH}n(3).The structure of these complexes was characterised by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analyses and infrared spectra.The photocatalytic experiment rusult indicates that complexes 1~3 are good candidates as photocatalysts in decomposing MB with the presence of H2O2.

    [1]Yang H,He X W,Wang F,et al.J.Mater.Chem.,2012,22:21849-21851

    [2]Waranusantigul P,Pokethitiyook P,Kruatrachue M,et al.Environ.Pollut.,2003,125:385-392

    [3]Xu X Y,Chen Q C,Yu Y D,et al.Inorg.Chem.,2016,55:75-82

    [4]Herm Z R,Wiers B M,Mason JA,et al.Science,2013,340:960-964

    [5]Lin R B,Chen D,Lin Y Y,et al.Inorg.Chem.,2012,51:9950-9955

    [6]Liu J Q,Wang W J,Luo Z D,et al.Inorg.Chem.,2017,56:10215-10219

    [7]Neupane G P,Tran M D,Yun SJ,et al.ACSAppl.Mater.Interfaces,2017,9:11950-11958

    [8]Luo L,Lin H S,Li L,et al.Inorg.Chem.,2014,53:3464-3470

    [9]Yu X,Fan X,Li Z,et al.Dalton Trans.,2017,46:11898-11904

    [10]Jiang D L,Li J,Xing CS,et al.ACSAppl.Mater.Interfaces,2015,34:19234-19242

    [11]Lee Y Y,Moon J H,Choi Y S,et al.J.Phys.Chem.C,2017,121:5137-5144

    [12]Hussain N,Bhardwaj VK.Dalton Trans.,2016,45:7697-7707

    [13]Wang Y N,Yang Q F,Li G H,et al.Dalton Trans.,2014,43:11646-11657

    [14]Xu J,Zhou T,Xu Z Q,et al.J.Mol.Struct.,2017,1128:448-454

    [15]Xu Z,Mao X,Zhang P,et al.J.Mol.Struct.,2017,1128:665-673

    [16]Sheldrick GM.SHELXL97,Program for the Crystal Structure Refinement,University of G?ttingen,Germany,1997.

    [17]Sheldrick G M.SADABS,University of G?ttingen,Germany,1996.

    [18]Xu C,Rangaiah GP,Zhao X S.Ind.Eng.Chem.Res.,2014,53:14641-14649

    [19]Dong Y B,Wang P,Ma JP,et al.J.Am.Chem.Soc.,2007,129:4872-4873

    [20]Jin JC,Wang Y Y,Liu P,et al.Cryst.Growth Des.,2010,10:2029-2035

    [21]Xiao D R,Li Y G,Wang E B,et al.Inorg.Chem.,2007,46:4158-4166

    [22]Shen S L,Zhao X,Zhang X F,et al.J.Mater.Chem.B,2017,5:289-295

    [23]McFadden PD,Frederick K,Argüello L A,et al.ACSAppl.Mater.Interfaces,2017,9:10061-10068

    [24]XU Zhou-Qing(徐周慶),HE Ya-Ling(何亞玲),LI Hui-Jun(李慧軍),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2017,33:897-904

    [25]LIHui-Jun(李慧軍),YAN Ling-Ling(閆玲玲),WANG Yuan(王元),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32:1831-1838

    猜你喜歡
    王元吡嗪配體
    走近王元
    中國(guó)數(shù)學(xué)界元老——王元
    少兒科技(2022年4期)2022-04-14 23:48:10
    基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
    新型三卟啉醚類配體的合成及其光學(xué)性能
    La solitude et la joie
    濃香型“山莊老酒”中吡嗪類物質(zhì)的分析研究
    4H,8H-雙呋咱并[3,4-b:3',4'-e]吡嗪的合成及熱性能
    吡嗪-2,3,5,6-四甲酸及4,4′-聯(lián)吡啶與ds-金屬配合物合成、結(jié)構(gòu)及發(fā)光性質(zhì)
    基于Schiff Base配體及吡啶環(huán)的銅(Ⅱ)、鎳(Ⅱ)配合物構(gòu)筑、表征與熱穩(wěn)定性
    系列含4,5-二氮雜-9,9′-螺二芴配體的釕配合物的合成及其性能研究
    99热国产这里只有精品6| 不卡视频在线观看欧美| 在线观看人妻少妇| 亚洲国产色片| 亚洲 欧美一区二区三区| 中文精品一卡2卡3卡4更新| av福利片在线| 久久久亚洲精品成人影院| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 韩国高清视频一区二区三区| 亚洲色图综合在线观看| 激情五月婷婷亚洲| 亚洲欧美成人综合另类久久久| 成人免费观看视频高清| 十八禁高潮呻吟视频| 另类精品久久| 国产视频首页在线观看| 制服诱惑二区| 国产成人精品在线电影| 免费看av在线观看网站| 国产免费视频播放在线视频| av在线观看视频网站免费| 国产精品.久久久| 国产午夜精品一二区理论片| 国产欧美日韩一区二区三区在线| 成年人午夜在线观看视频| 卡戴珊不雅视频在线播放| 黄色怎么调成土黄色| 亚洲国产欧美在线一区| 一级毛片 在线播放| 久久久久视频综合| 日韩大片免费观看网站| 黑人高潮一二区| 国产精品三级大全| 大片电影免费在线观看免费| 777米奇影视久久| 精品一区二区免费观看| 99热网站在线观看| 成人国产麻豆网| 久久这里只有精品19| 久久精品久久久久久噜噜老黄| 国产熟女午夜一区二区三区| 亚洲天堂av无毛| 看非洲黑人一级黄片| 我的女老师完整版在线观看| 日韩大片免费观看网站| 18禁裸乳无遮挡动漫免费视频| 在线观看三级黄色| 色哟哟·www| 国产精品三级大全| 多毛熟女@视频| 少妇的丰满在线观看| 国产激情久久老熟女| 男女高潮啪啪啪动态图| 97在线视频观看| 中文字幕最新亚洲高清| 国产亚洲欧美精品永久| 亚洲国产欧美在线一区| av又黄又爽大尺度在线免费看| 女人精品久久久久毛片| 日韩制服丝袜自拍偷拍| 亚洲欧美日韩另类电影网站| 欧美精品亚洲一区二区| 亚洲精品成人av观看孕妇| 51国产日韩欧美| 一级黄片播放器| 亚洲精品中文字幕在线视频| 乱人伦中国视频| 老女人水多毛片| 精品亚洲乱码少妇综合久久| 欧美成人精品欧美一级黄| 久久久久久人妻| 久久精品久久久久久久性| 成人二区视频| 免费黄色在线免费观看| 黄网站色视频无遮挡免费观看| 青春草国产在线视频| 如何舔出高潮| 999精品在线视频| 久热久热在线精品观看| 亚洲国产欧美日韩在线播放| 黑人巨大精品欧美一区二区蜜桃 | 久久99一区二区三区| 大陆偷拍与自拍| 日本黄大片高清| 日韩人妻精品一区2区三区| 欧美日韩成人在线一区二区| 中文字幕人妻熟女乱码| 亚洲国产精品专区欧美| 日产精品乱码卡一卡2卡三| 亚洲激情五月婷婷啪啪| 国产一区二区三区av在线| 男人操女人黄网站| 一本色道久久久久久精品综合| 日韩三级伦理在线观看| 国产精品免费大片| 国产精品三级大全| 91久久精品国产一区二区三区| 视频中文字幕在线观看| 在线观看免费高清a一片| 欧美国产精品va在线观看不卡| 精品一区二区三区视频在线| 青春草国产在线视频| 久久人人97超碰香蕉20202| 午夜福利视频在线观看免费| 少妇的逼水好多| 午夜福利,免费看| www.av在线官网国产| 国产高清不卡午夜福利| 这个男人来自地球电影免费观看 | 女性被躁到高潮视频| 亚洲五月色婷婷综合| 999精品在线视频| 国产深夜福利视频在线观看| 伊人久久国产一区二区| 久久精品国产亚洲av天美| 国产一区有黄有色的免费视频| 国产色爽女视频免费观看| 亚洲丝袜综合中文字幕| 赤兔流量卡办理| 亚洲国产日韩一区二区| 国产免费现黄频在线看| 日本-黄色视频高清免费观看| 男女啪啪激烈高潮av片| 国产 一区精品| av又黄又爽大尺度在线免费看| 亚洲国产精品一区三区| 国产免费一区二区三区四区乱码| 咕卡用的链子| 9热在线视频观看99| 妹子高潮喷水视频| 亚洲伊人色综图| 考比视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩一本色道免费dvd| 一区在线观看完整版| 桃花免费在线播放| 亚洲国产欧美在线一区| 成人漫画全彩无遮挡| 一区二区三区四区激情视频| 中文乱码字字幕精品一区二区三区| 韩国高清视频一区二区三区| 91成人精品电影| 国产免费又黄又爽又色| 亚洲久久久国产精品| av有码第一页| 免费女性裸体啪啪无遮挡网站| 黄片无遮挡物在线观看| 国产成人免费观看mmmm| 丰满迷人的少妇在线观看| 人妻人人澡人人爽人人| 一级黄片播放器| 国产在线一区二区三区精| 欧美97在线视频| 看免费成人av毛片| 90打野战视频偷拍视频| 人成视频在线观看免费观看| 国产 一区精品| 国产亚洲午夜精品一区二区久久| 亚洲色图综合在线观看| 亚洲婷婷狠狠爱综合网| 啦啦啦啦在线视频资源| 亚洲欧美成人综合另类久久久| 波多野结衣一区麻豆| 亚洲av福利一区| 久久热在线av| 国产精品嫩草影院av在线观看| 中文字幕亚洲精品专区| 国产色爽女视频免费观看| 中国美白少妇内射xxxbb| 成人亚洲精品一区在线观看| 永久免费av网站大全| 69精品国产乱码久久久| 各种免费的搞黄视频| 久久精品久久精品一区二区三区| 人妻人人澡人人爽人人| 超碰97精品在线观看| 国产又爽黄色视频| 久久女婷五月综合色啪小说| 亚洲精品,欧美精品| 18禁裸乳无遮挡动漫免费视频| 久久青草综合色| 久久久久网色| 九九爱精品视频在线观看| 18禁国产床啪视频网站| 亚洲成色77777| 免费高清在线观看视频在线观看| 国产麻豆69| 亚洲国产精品一区三区| 中文乱码字字幕精品一区二区三区| 三上悠亚av全集在线观看| 宅男免费午夜| 寂寞人妻少妇视频99o| 日韩伦理黄色片| 天堂8中文在线网| 最近2019中文字幕mv第一页| 热re99久久精品国产66热6| 国产亚洲av片在线观看秒播厂| 欧美激情国产日韩精品一区| 婷婷色麻豆天堂久久| 亚洲成国产人片在线观看| 亚洲,一卡二卡三卡| 狂野欧美激情性bbbbbb| 亚洲图色成人| 国产成人一区二区在线| 中文天堂在线官网| 一级毛片 在线播放| 亚洲欧美日韩卡通动漫| 黄网站色视频无遮挡免费观看| 日本欧美视频一区| av有码第一页| 91aial.com中文字幕在线观看| 少妇的逼好多水| 国产精品嫩草影院av在线观看| av线在线观看网站| 午夜视频国产福利| 人成视频在线观看免费观看| 爱豆传媒免费全集在线观看| 嫩草影院入口| 在线亚洲精品国产二区图片欧美| 国产午夜精品一二区理论片| 久久久久国产网址| 最新的欧美精品一区二区| 亚洲国产欧美在线一区| 久久97久久精品| 天堂俺去俺来也www色官网| 日韩一区二区视频免费看| 美女脱内裤让男人舔精品视频| 看非洲黑人一级黄片| 亚洲精品久久午夜乱码| 亚洲精品第二区| 一个人免费看片子| 性高湖久久久久久久久免费观看| 日产精品乱码卡一卡2卡三| 日本午夜av视频| 亚洲国产av影院在线观看| 久久久久久久精品精品| 久久久久网色| 三级国产精品片| 高清毛片免费看| 亚洲精品一二三| 赤兔流量卡办理| 纵有疾风起免费观看全集完整版| 成人国产麻豆网| 9色porny在线观看| www日本在线高清视频| 日日啪夜夜爽| 亚洲国产日韩一区二区| 欧美精品一区二区免费开放| 狂野欧美激情性xxxx在线观看| 欧美国产精品va在线观看不卡| 在线观看人妻少妇| 看免费成人av毛片| av播播在线观看一区| 欧美精品av麻豆av| 亚洲精品日本国产第一区| 乱码一卡2卡4卡精品| 亚洲av电影在线进入| 少妇被粗大猛烈的视频| 伦理电影免费视频| 亚洲欧美中文字幕日韩二区| av在线老鸭窝| 大陆偷拍与自拍| 桃花免费在线播放| 国产精品久久久久久av不卡| 内地一区二区视频在线| 亚洲成av片中文字幕在线观看 | 国产精品久久久av美女十八| 国产熟女欧美一区二区| 亚洲国产精品专区欧美| 久久97久久精品| 99热这里只有是精品在线观看| 亚洲国产精品999| 日韩av在线免费看完整版不卡| 九色成人免费人妻av| 最近手机中文字幕大全| 女人被躁到高潮嗷嗷叫费观| kizo精华| 日产精品乱码卡一卡2卡三| 国产亚洲午夜精品一区二区久久| 国产精品嫩草影院av在线观看| 日韩三级伦理在线观看| 9色porny在线观看| 久久人人爽人人片av| 一区二区日韩欧美中文字幕 | 91aial.com中文字幕在线观看| 亚洲欧洲日产国产| 美女国产高潮福利片在线看| 成年女人在线观看亚洲视频| 久久久久久久久久久免费av| 亚洲天堂av无毛| 最近中文字幕高清免费大全6| 欧美3d第一页| 亚洲性久久影院| 亚洲精品日韩在线中文字幕| 九色成人免费人妻av| 亚洲人与动物交配视频| 欧美激情 高清一区二区三区| 久久免费观看电影| 夫妻午夜视频| 亚洲四区av| 欧美97在线视频| 人成视频在线观看免费观看| 国产成人精品婷婷| 国内精品宾馆在线| 亚洲国产看品久久| 边亲边吃奶的免费视频| 精品久久蜜臀av无| 精品一区二区三区视频在线| 精品一区二区三卡| 最近最新中文字幕大全免费视频 | 国产国拍精品亚洲av在线观看| www日本在线高清视频| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看 | 午夜福利视频在线观看免费| 欧美最新免费一区二区三区| 欧美bdsm另类| 91精品国产国语对白视频| 国产一级毛片在线| 五月开心婷婷网| 成人国产麻豆网| 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 久久久国产精品麻豆| 草草在线视频免费看| 亚洲婷婷狠狠爱综合网| 国产高清三级在线| 天天操日日干夜夜撸| 欧美国产精品一级二级三级| 欧美xxxx性猛交bbbb| 午夜免费男女啪啪视频观看| 亚洲激情五月婷婷啪啪| 久久综合国产亚洲精品| 国产精品久久久久久精品古装| 久久女婷五月综合色啪小说| 国产精品国产三级国产av玫瑰| www日本在线高清视频| 考比视频在线观看| 亚洲天堂av无毛| 国产精品久久久久久av不卡| 亚洲av在线观看美女高潮| 国产免费福利视频在线观看| 久久久精品94久久精品| 最近的中文字幕免费完整| 亚洲精品美女久久久久99蜜臀 | 日韩制服骚丝袜av| 欧美 亚洲 国产 日韩一| 午夜免费观看性视频| 久久99精品国语久久久| 一区二区三区四区激情视频| 高清在线视频一区二区三区| 永久网站在线| 免费av中文字幕在线| 国产69精品久久久久777片| 色吧在线观看| 亚洲精品乱久久久久久| 欧美日韩av久久| 人妻一区二区av| av免费观看日本| 日韩免费高清中文字幕av| 午夜福利乱码中文字幕| 免费高清在线观看视频在线观看| 91在线精品国自产拍蜜月| 97在线人人人人妻| 亚洲av日韩在线播放| 激情五月婷婷亚洲| 欧美成人精品欧美一级黄| 精品国产一区二区三区久久久樱花| 成人国语在线视频| 日韩一区二区三区影片| 大香蕉久久网| 国产激情久久老熟女| 飞空精品影院首页| 亚洲第一区二区三区不卡| 久久影院123| 黑人巨大精品欧美一区二区蜜桃 | 黄色毛片三级朝国网站| 亚洲欧美色中文字幕在线| 国产黄色免费在线视频| 久久 成人 亚洲| 巨乳人妻的诱惑在线观看| 中文欧美无线码| 精品少妇内射三级| 亚洲精品久久成人aⅴ小说| 免费观看a级毛片全部| 99久国产av精品国产电影| 亚洲性久久影院| av免费在线看不卡| 人妻少妇偷人精品九色| 91精品三级在线观看| 各种免费的搞黄视频| 99热这里只有是精品在线观看| 国产av码专区亚洲av| 亚洲国产精品一区三区| 亚洲伊人色综图| 婷婷色麻豆天堂久久| 久久韩国三级中文字幕| 免费少妇av软件| 国产精品偷伦视频观看了| 丝袜美足系列| 少妇被粗大的猛进出69影院 | 精品少妇久久久久久888优播| 国产一区有黄有色的免费视频| 国产白丝娇喘喷水9色精品| 日韩制服骚丝袜av| 丝袜脚勾引网站| 亚洲中文av在线| 有码 亚洲区| 韩国精品一区二区三区 | 曰老女人黄片| 黄色配什么色好看| 一级片'在线观看视频| 亚洲国产欧美日韩在线播放| 欧美xxⅹ黑人| 黄色怎么调成土黄色| 午夜影院在线不卡| 如日韩欧美国产精品一区二区三区| 婷婷色综合www| 色5月婷婷丁香| 色吧在线观看| 婷婷成人精品国产| 成人毛片a级毛片在线播放| 免费大片18禁| 在线观看一区二区三区激情| 香蕉国产在线看| 日本欧美国产在线视频| 高清视频免费观看一区二区| 亚洲国产精品专区欧美| 天堂俺去俺来也www色官网| 满18在线观看网站| 高清不卡的av网站| 久久毛片免费看一区二区三区| 亚洲综合色惰| 在线观看www视频免费| 波野结衣二区三区在线| 久久热在线av| 国产精品久久久久久久久免| 国产精品.久久久| 狂野欧美激情性xxxx在线观看| 国产色爽女视频免费观看| 亚洲色图 男人天堂 中文字幕 | 精品一品国产午夜福利视频| 大香蕉久久成人网| av天堂久久9| 男人爽女人下面视频在线观看| 欧美 亚洲 国产 日韩一| 久久影院123| 国产免费又黄又爽又色| 国产麻豆69| 国产无遮挡羞羞视频在线观看| 久久99一区二区三区| 热re99久久国产66热| 亚洲,欧美,日韩| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 亚洲色图 男人天堂 中文字幕 | 在线观看人妻少妇| 欧美精品一区二区免费开放| 97人妻天天添夜夜摸| 精品国产露脸久久av麻豆| 最近中文字幕高清免费大全6| 免费看不卡的av| 日韩中文字幕视频在线看片| 精品99又大又爽又粗少妇毛片| 2022亚洲国产成人精品| 老司机亚洲免费影院| 性高湖久久久久久久久免费观看| 中国国产av一级| 日韩电影二区| 国产欧美日韩综合在线一区二区| 狂野欧美激情性bbbbbb| 免费观看在线日韩| 国产精品久久久久久av不卡| 高清视频免费观看一区二区| 97在线视频观看| 国产xxxxx性猛交| 色婷婷av一区二区三区视频| 国产精品久久久久久久久免| 最新的欧美精品一区二区| 欧美国产精品va在线观看不卡| 欧美最新免费一区二区三区| 午夜免费鲁丝| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| 高清毛片免费看| 欧美日韩视频精品一区| 九色亚洲精品在线播放| 免费女性裸体啪啪无遮挡网站| 91精品伊人久久大香线蕉| 欧美日本中文国产一区发布| 欧美精品av麻豆av| 日韩精品免费视频一区二区三区 | 日韩免费高清中文字幕av| 女性生殖器流出的白浆| 国产成人av激情在线播放| 国产精品国产av在线观看| 久久人人爽人人爽人人片va| 乱码一卡2卡4卡精品| av福利片在线| av不卡在线播放| 80岁老熟妇乱子伦牲交| 久久人人爽人人爽人人片va| 亚洲美女搞黄在线观看| 哪个播放器可以免费观看大片| 9热在线视频观看99| 欧美激情 高清一区二区三区| www.色视频.com| 三上悠亚av全集在线观看| 免费观看在线日韩| 中国国产av一级| 精品一品国产午夜福利视频| 日韩中文字幕视频在线看片| 99久久人妻综合| 中文字幕人妻熟女乱码| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久精品电影小说| 国产精品久久久久久久电影| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 深夜精品福利| 国产精品女同一区二区软件| 久久亚洲国产成人精品v| 日韩av免费高清视频| 亚洲国产精品国产精品| 成人国产麻豆网| 中文字幕亚洲精品专区| 男人操女人黄网站| 性色av一级| av播播在线观看一区| 99热这里只有是精品在线观看| 午夜日本视频在线| 曰老女人黄片| 全区人妻精品视频| 99九九在线精品视频| 色94色欧美一区二区| 嫩草影院入口| 性高湖久久久久久久久免费观看| 国产精品女同一区二区软件| 国产精品人妻久久久久久| 九色成人免费人妻av| 久久这里有精品视频免费| 爱豆传媒免费全集在线观看| 少妇精品久久久久久久| 精品国产一区二区久久| 久久久久久人人人人人| 免费播放大片免费观看视频在线观看| 美女视频免费永久观看网站| 国产黄频视频在线观看| 少妇 在线观看| 国产极品天堂在线| 亚洲精品成人av观看孕妇| 男女高潮啪啪啪动态图| 亚洲国产毛片av蜜桃av| 99久久中文字幕三级久久日本| 精品亚洲乱码少妇综合久久| 少妇人妻 视频| 狠狠精品人妻久久久久久综合| 精品国产乱码久久久久久小说| 18禁动态无遮挡网站| 亚洲色图 男人天堂 中文字幕 | 少妇的逼水好多| 国产精品一区二区在线不卡| 免费看不卡的av| 精品第一国产精品| 亚洲成av片中文字幕在线观看 | 午夜av观看不卡| 999精品在线视频| 制服诱惑二区| 国产精品久久久久久久久免| 日本与韩国留学比较| 黄网站色视频无遮挡免费观看| av播播在线观看一区| 在线观看www视频免费| 中文欧美无线码| 久久久久久久大尺度免费视频| 久久精品国产自在天天线| 国产欧美日韩一区二区三区在线| 久久精品国产自在天天线| 内地一区二区视频在线| 亚洲伊人久久精品综合| 国产日韩欧美亚洲二区| 一级毛片 在线播放| 久久久久久久亚洲中文字幕| 久久久国产一区二区| 亚洲丝袜综合中文字幕| 久久影院123| 成人免费观看视频高清| 亚洲综合精品二区| 国产女主播在线喷水免费视频网站| 亚洲欧美日韩另类电影网站| 男人操女人黄网站| 欧美3d第一页| 又大又黄又爽视频免费| 亚洲av在线观看美女高潮| 亚洲精品乱久久久久久| 天天影视国产精品| 97在线视频观看| 免费看不卡的av| 看免费av毛片| 久久久久久久久久人人人人人人| 婷婷色综合www| 人成视频在线观看免费观看| 久久久久国产精品人妻一区二区| 国产精品偷伦视频观看了| 男人舔女人的私密视频| 免费不卡的大黄色大毛片视频在线观看| 久久精品国产亚洲av天美| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品古装| 日韩精品有码人妻一区| 精品亚洲成a人片在线观看| 在线观看三级黄色|