張浩 陳良亮 齊連偉 王念春 陳中 黃學(xué)良
摘 要: 為了使純電動(dòng)汽車(chē)在制動(dòng)過(guò)程中滿足制動(dòng)安全和充分回收制動(dòng)能量的需求以及保持一定的制動(dòng)舒適度,引入最優(yōu)前端個(gè)體系數(shù)對(duì)NSGA?Ⅱ多目標(biāo)遺傳優(yōu)化算法進(jìn)行改進(jìn),并將解集篩選模塊應(yīng)用到制動(dòng)控制器的設(shè)計(jì)中,隨后嵌入到ADVISOR中進(jìn)行仿真測(cè)試。實(shí)驗(yàn)結(jié)果表明,提出的控制策略可以有效保證足夠的制動(dòng)安全性,在能量回收效率和制動(dòng)舒適性方面較標(biāo)準(zhǔn)的NSGA?Ⅱ算法優(yōu)化的控制策略均有提高。
關(guān)鍵詞: 純電動(dòng)汽車(chē); 機(jī)電復(fù)合制動(dòng)系統(tǒng); NSGA?Ⅱ; 制動(dòng)力分配; 控制策略; 制動(dòng)安全
中圖分類(lèi)號(hào): TN876?34; U469 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2018)07?0097?05
Research on modified NSGA?Ⅱ algorithm based electro?mechanical
hybrid braking control strategy of electric vehicle
PAN Shenghui1, XU Ping2, SONG Zhongda1, WU Tiantian1
(1. Guangxi University of Science and Technology, Liuzhou 545006, China; 2. Liuzhou No.1 Vocational and Technical School, Liuzhou 545007, China)
Abstract: In order to make that the electric vehicle can meet the requirements of braking safety and sufficient energy recovery in braking process, and maintain a certain braking comfort level, an optimal front?end individual coefficient is introduced to improve the multi?objective genetic algorithm based on non?dominated sorting genetic algorithm?Ⅱ (NSGA?Ⅱ). The solution set screening module is applied to the design of braking controller, and embedded into ADVISOR for simulation test. The experimental results show that the control strategy can ensure the sufficient braking safety, and its energy recovery efficiency and braking comfort level are improved than those of control strategy based on standard NSGA?Ⅱ algorithm.
Keywords: electric vehicle; electro?mechanical hybrid braking system; NSGA?Ⅱ; braking force distribution; control strategy; braking safety
摘 要: 開(kāi)關(guān)器件對(duì)地寄生電容是共模電流流通的主要路徑,產(chǎn)生的傳導(dǎo)EMI會(huì)對(duì)設(shè)備形成不利影響。以充電機(jī)水冷散熱器為例進(jìn)行分析,利用金屬靜電屏蔽特性采取兩種措施降低電磁干擾。一種是在開(kāi)關(guān)器件與散熱器之間的導(dǎo)熱硅脂間插入一接直流0 V地的金屬層;另一種是對(duì)水冷散熱器結(jié)構(gòu)進(jìn)行改造,將金屬水箱分為兩部分,利用絕緣密封安裝槽連接這兩部分,其中一塊金屬水蓋接到直流0 V地上,另一塊水蓋通過(guò)機(jī)殼接地。仿真結(jié)果表明采用所述方法均能有效地抑制傳導(dǎo)共模電流,而后一種方法能達(dá)到更好的效果。
關(guān)鍵詞: 水冷散熱器; 導(dǎo)熱硅脂; 對(duì)地寄生電容; 傳導(dǎo)EMI; 靜電屏蔽; 電磁干擾
中圖分類(lèi)號(hào): TN99?34 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2018)07?0093?04
Research on EMI suppression with different shielding measures
ZHANG Hao1, 2, CHEN Liangliang1, 2, QI Lianwei3, WANG Nianchun3, CHEN Zhong3, HUANG Xueliang3
(1. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China;
2. NARI Technology Development Limited Company, Nanjing 211106, China; 3. School of Electrical Engineering, Southeast University, Nanjing 210096, China)
Abstract: The parasitic capacitance to ground of switching devices is considered as the main path for common?mode (CM) current flow, and the conducted EMI generated in it has poor effect on the device. The water cooling heatsink of the charger is taken as an example for analysis. According the metal electrostatic shielding properties, two EMI suppression measures are adopted to reduce EMI. For the first measures, a metal layer linking to DC 0 V ground is inserted into the thermal grease between switching device and heatsink. For the second measures, the structure of the water cooling heatsink is altered to divide the metal tank into two parts, and an insulating seal mounting groove is used to connect the two parts. One metal cover is connected to DC 0 V ground, and another cover is connected to ground by chassis. The simulation results show that both of the two measures can suppress the conducted CM current effectively, but the second measure can reach the suppression effect better.
Keywords: water cooling heatsink; thermal grease; parasitic capacitance to ground; conducted EMI; electrostatic shielding; electromagnetic interference
引 言
IGBT是變換器系統(tǒng)中常用的關(guān)鍵器件,在工作過(guò)程中熱耗量很大,需要將其熱量及時(shí)散發(fā)出去,與其他散熱方式相比,水冷散熱是現(xiàn)在常用的散熱方法[1]。在散熱器與開(kāi)關(guān)器件之間會(huì)產(chǎn)生寄生電容,IGBT開(kāi)關(guān)器件采用PWM控制,在工作過(guò)程中會(huì)產(chǎn)生很高的電流和電壓變化率,對(duì)該寄生電容不斷進(jìn)行充放電,產(chǎn)生電磁干擾EMI[2]。傳導(dǎo)EMI分為差模干擾和共模干擾。由于共模干擾造成的危害更大,因此對(duì)共模EMI的研究顯得尤為重要。目前關(guān)于電磁兼容性研究方面有通過(guò)采取信號(hào)調(diào)制方式降低傳導(dǎo)EMI[3]或設(shè)計(jì)EMI濾波器來(lái)抑制噪聲干擾 [4?9] 。這些措施增加了研發(fā)成本,也給系統(tǒng)帶來(lái)一定復(fù)雜性。
本文以電動(dòng)汽車(chē)充電機(jī)三相不控整流電路為例,對(duì)傳導(dǎo)EMI共模電流進(jìn)行分析。利用金屬靜電屏蔽原理,采取兩種不同措施,降低開(kāi)關(guān)器件對(duì)地寄生電容,以此增大共模電流傳播路徑寄生阻抗,降低電磁干擾,相比現(xiàn)有技術(shù),該方法原理簡(jiǎn)單,不需要額外的研發(fā)成本,而且能很好地達(dá)到降低傳導(dǎo)EMI的目的。
1 寄生電容模型及求解
在水冷散熱器與IGBT器件導(dǎo)熱片之間填充一層導(dǎo)熱硅脂,模型圖如圖1所示。散熱器與開(kāi)關(guān)器件導(dǎo)熱片相當(dāng)于平行板電容器的兩個(gè)極板,導(dǎo)熱硅脂相當(dāng)于絕緣介質(zhì)。開(kāi)關(guān)器件導(dǎo)熱片與散熱器之間存在著寄生電容,在充電機(jī)工作時(shí),該寄生電容是共模電流傳播的主要途徑[10]。開(kāi)關(guān)器件對(duì)地寄生電容在變換器中的分布及共模電流主要流通路徑如圖2所示。共模電流通過(guò)開(kāi)關(guān)管對(duì)地寄生電容到達(dá)參考地,通過(guò)測(cè)量傳導(dǎo)EMI所用的LISN回到電網(wǎng)輸入側(cè),然后再流到變流器整流側(cè)。
共模電流等效電路圖如圖3所示。圖中[CL,RL]是LISN等效電容和電阻,[Ceq]是開(kāi)關(guān)器件對(duì)地等效電容,[LCM]是散熱器與參考地連線等效寄生電感,[E]是共模干擾源。在變換器工作頻帶范圍內(nèi),[Ceq]的阻抗值遠(yuǎn)大于其他元件的阻抗,其他元件的阻抗作用可忽略不計(jì)[10]。因此,開(kāi)關(guān)器件對(duì)地寄生阻抗的大小對(duì)共模電流影響很重要。
在寄生電容計(jì)算過(guò)程中,由于實(shí)際的散熱器尺寸要比開(kāi)關(guān)器件大很多,不是理想的平行板電容器。考慮到電場(chǎng)的邊緣效應(yīng)對(duì)電容數(shù)值造成的影響,產(chǎn)生一定的誤差,因此,開(kāi)關(guān)器件與散熱器之間的寄生電容不能采用靜電場(chǎng)中的平行板電容公式進(jìn)行計(jì)算。本文利用有限元分析軟件Ansys Maxwell對(duì)IGBT于散熱器之間的電容進(jìn)行計(jì)算。
2 減小寄生耦合措施
由以上分析可知,開(kāi)關(guān)器件對(duì)地寄生電容是影響共模傳導(dǎo)電流的主要因素。寄生阻抗大小至關(guān)重要。本文采用屏蔽措施和對(duì)水冷散熱器結(jié)構(gòu)進(jìn)行改造主要目的就是減小開(kāi)關(guān)器件對(duì)地的耦合電容,增大回路阻抗,減小傳導(dǎo)電流。
圖4為模型原來(lái)結(jié)構(gòu),采取屏蔽措施后結(jié)構(gòu)如圖5所示。圖5a)表示在導(dǎo)熱硅中間插入一層金屬屏蔽層,接到直流0 V地。圖5b)表示將水冷散熱器分為上蓋和下蓋兩部分,這兩部分通過(guò)密封圈和絕緣安裝槽進(jìn)行連接。冷卻液一般采用去離子水,可以看作一種絕緣介質(zhì),保證了上蓋和下蓋之間相互絕緣。水冷散熱器下蓋通過(guò)機(jī)殼接地,上蓋接直流0 V地。水冷散熱器采用金屬材料制成,因此上蓋也起到靜電屏蔽的作用。這些措施將大大減小電力電子器件與水冷散熱器下蓋之間的電場(chǎng)耦合,電力電子器件對(duì)地寄生電容大大減小。
3 電容計(jì)算及仿真結(jié)果分析
利用仿真軟件Ansys Maxwell計(jì)算電容。在電容計(jì)算中,開(kāi)關(guān)器件導(dǎo)熱片面積為50 cm2;水冷散熱器導(dǎo)熱片面積為200 cm2;導(dǎo)熱硅脂厚度為0.05 cm,兩導(dǎo)熱硅中間屏蔽層為0.01 cm,導(dǎo)熱硅脂介電常數(shù)為5.7,水冷散熱器上蓋和下蓋厚度均為0.1 cm。IGBT調(diào)制方式為雙極性PWM調(diào)制,開(kāi)關(guān)頻率為100 kHz。計(jì)算出的結(jié)果如圖6,圖7所示。圖7中結(jié)構(gòu)1表示屏蔽措施1,結(jié)構(gòu)2表示屏蔽措施2。
圖6表示未采取屏蔽措施的開(kāi)關(guān)器件對(duì)地寄生阻抗的頻率特性。圖7表示采用屏蔽措施后,開(kāi)關(guān)器件對(duì)地寄生阻抗。從圖7中可以看出,采用屏蔽措施2對(duì)增大開(kāi)關(guān)器件對(duì)地寄生阻抗效果更好。這是因?yàn)樵谄帘未胧?中起屏蔽作用的水冷散熱器上蓋面積大于開(kāi)關(guān)器件的面積,能有效阻止開(kāi)關(guān)器件與地之間邊緣處的電場(chǎng)耦合。
在Simulink中搭建充電機(jī)回路仿真模型。分別將兩種不同結(jié)構(gòu)得到的寄生電容代入到仿真模型中,得到共模電流仿真結(jié)果如圖8,圖9所示,頻譜分析如圖10所示。圖8表示未采取屏蔽措施的共模電流,圖9表示采取屏蔽措施后的共模電流,圖9中結(jié)構(gòu)1表示屏蔽措施1,結(jié)構(gòu)2表示屏蔽措施2。圖10表示三種情況下的共模電流頻譜比較。圖10中頻譜1表示未采取屏蔽措施共模電流的頻譜,頻譜2表示采取屏蔽措施1共模電流的頻譜,頻譜3表示采取屏蔽措施2共模電流的頻譜。
從圖8~圖10結(jié)果可以看出采取相應(yīng)措施后,共模電流及其頻譜被明顯減弱。從圖6,圖7中開(kāi)關(guān)器件對(duì)地寄生阻抗頻率特性可以看出,在導(dǎo)熱硅脂中插入金屬屏蔽層和對(duì)散熱器結(jié)構(gòu)進(jìn)行改造后,開(kāi)關(guān)器件對(duì)地寄生阻抗增大,使得共模電流傳播路徑的寄生阻抗增大,對(duì)共模噪聲的抑制作用增強(qiáng),從而降低了共模噪聲。其中對(duì)散熱器結(jié)構(gòu)改造后,由于上蓋面積大于開(kāi)關(guān)器件的面積,能有效阻止開(kāi)關(guān)器件與地之間邊緣處的電場(chǎng)耦合,能達(dá)到更好地降低EMI的效果。
4 結(jié) 論
本文分析了充電機(jī)共模電流產(chǎn)生的機(jī)理及傳播路徑,采取在導(dǎo)熱硅之間插入金屬屏蔽層和對(duì)水冷散熱器結(jié)構(gòu)進(jìn)行改造兩種降低EMI的措施,計(jì)算了散熱器與開(kāi)關(guān)器件之間寄生阻抗的頻率特性。采取這些措施有效地減弱了開(kāi)關(guān)器件對(duì)地的耦合電容,增大了傳導(dǎo)電流傳播路徑的阻抗,以此達(dá)到降低EMI干擾的目的。通過(guò)仿真分析證明該方法使共模電流及其頻譜得到明顯減弱,其中對(duì)散熱器結(jié)構(gòu)改造能達(dá)到更好地降低EMI的效果。
參考文獻(xiàn)
[1] 余軍,馬雅青,趙振龍,等.電動(dòng)汽車(chē)用水冷散熱器的設(shè)計(jì)及仿真[J].大功率變流技術(shù),2015(3):51?53.
YU Jun, MA Yaqing, ZHAO Zhenlong, et al. Design and simulation of water cooled radiator for electric vehicle [J]. High power converter technology, 2015(3): 51?53.
[2] 陳特放,劉騫,余明揚(yáng),等.電力機(jī)車(chē)用110 V大功率高頻開(kāi)關(guān)電源電磁兼容性研究[J].中國(guó)鐵道科學(xué),2005,26(2):100?105.
CHEN Tefang, LIU Qian, YU Mingyang, et al. Electromagnetic compatibility of 110 V high?power high frequency switching power supply for electric locomotive [J]. China railway science, 2005, 26(2): 100?105.
[3] BALCELLS Josep. Conducted EMI reduction in power conver?ters by means of periodic switching frequency modulation [J]. IEEE power electronics, 2007, 22(6): 2271?2281.
[4] JOSIFOVI? I, POPOVI??GERBER J, FERREIRA J A. Impro?ving SiC JFET switching behavior under influence of circuit parasitics [J]. IEEE power electronics, 2012, 27(8): 3843?3854.
[5] WANG Shuo. Investigation of hybrid EMI filters for common mode EMI suppression in a motor drive system [J]. IEEE power electronics, 2010, 25(4): 1034?1045.
[6] CHEN H L, FENG L, CHENG W, et al. Modeling and measurement of the impedance of common mode noise source of swit?ching converters [C]// Proceedings of 2006 IEEE APEC. [S.l.]: IEEE, 2006: 1165?1168.
[7] SON Y C. A new active common?mode EMI filter for PWM inverter [J]. IEEE power electronics, 2003, 18(6): 1309?1314.
[8] HARTMANN M. EMI filter design for high switching frequency three?phase/level PWM rectifier system [C]// 2010 IEEE APEC. [S.l.]: IEEE, 2010: 986?993.
[9] ZHANG X, BOROYEVICH D, MATTAVELLI P, et al. EMI filter design and optimization for both ac and dc side in a DC?fed motor drive system [C]// Proceedings of 2013 IEEE APEC. [S.l.]: IEEE, 2013: 597?603.
[10] 汪泉弟,安宗裕,鄭亞利,等.電動(dòng)汽車(chē)開(kāi)關(guān)電源電磁兼容優(yōu)化設(shè)計(jì)方法[J].電工技術(shù)學(xué)報(bào),2014,29(9):225?231.
WANG Quandi, AN Zongyu, ZHENG Yali, et al. Optimal design method of EMC for electric vehicle switching power supply [J]. Transactions of China electrotechnical society, 2014, 29(9): 225?231.