韓立強,孫 宇,付 彤,廉紅霞,高騰云
(河南農(nóng)業(yè)大學(xué)牧醫(yī)工程學(xué)院/農(nóng)業(yè)部動物生化與營養(yǎng)重點實驗室,鄭州 450002)
固醇調(diào)節(jié)元件結(jié)合蛋白(SREBPs)是調(diào)控細(xì)胞內(nèi)膽固醇和甘油三酯合成,維持脂肪穩(wěn)態(tài)的主要調(diào)控因子[1-2]。固醇調(diào)節(jié)元件結(jié)合蛋白裂解激活蛋白(SREBP cleavage activating protein,SCAP)是SREBP的結(jié)合蛋白。哺乳動物SCAP蛋白一般由跨膜螺旋(TM)和羧基(C)末端組成,其中SCAP的TM構(gòu)成了一個固醇敏感結(jié)構(gòu)域,C末端結(jié)構(gòu)域與SREBP前體在內(nèi)質(zhì)網(wǎng)膜形成復(fù)合物[3-4]。在細(xì)胞內(nèi)膽固醇減少后,SREBP-SCAP復(fù)合物從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)移到高爾基體,隨后SREBP前體蛋白的N末端發(fā)生蛋白酶水解,生成的SREBP片段進入細(xì)胞核調(diào)控靶基因轉(zhuǎn)錄,而SREBP前體蛋白的C末端通過未知機制從SCAP中移除,SCAP蛋白再從高爾基體回到內(nèi)質(zhì)網(wǎng),然后與新合成的SREBP前體蛋白循環(huán)結(jié)合[5]。
已經(jīng)有多個研究發(fā)現(xiàn),SCAP-SREBP是調(diào)控固醇和脂肪代謝的關(guān)鍵信號通路[6],介導(dǎo)了細(xì)胞內(nèi)cAMP等多種分子對機體脂肪代謝的調(diào)節(jié)[7-8]。對反芻動物的研究發(fā)現(xiàn),奶牛乳腺作為分泌乳脂的主要器官,胰島素及一些信號分子能夠調(diào)控乳腺上皮細(xì)胞的SREBP基因表達[9-10]。本實驗室前期通過構(gòu)建奶牛SREBP表達載體及硬脂酰輔酶A 去飽和酶基因(SCD)啟動子載體發(fā)現(xiàn),在奶牛乳腺上皮細(xì)胞中SREBP1可以促進SCD基因的轉(zhuǎn)錄[11-12],但在SCAP作用下對SREBP1調(diào)控SCD基因轉(zhuǎn)錄的影響還不清楚。
本研究通過在奶牛乳腺上皮細(xì)胞轉(zhuǎn)染SCD啟動子載體,共轉(zhuǎn)染SCAP和SREBP1真核表達載體,分析對SCD啟動子活性及其基因表達的影響,為闡明奶牛乳腺細(xì)胞中SCAP-SREBP1通路對于脂肪代謝基因的轉(zhuǎn)錄調(diào)控機制打下基礎(chǔ)。
奶牛乳腺上皮細(xì)胞由實驗室保存,奶牛SCAP真核表達載體(pcDNA3.1-SCAP)、SREBP1真核表達載體(pcDNA3.1-SREBP1)、奶牛pGL3-SCD2/SCD3啟動子載體為實驗室前期構(gòu)建的SCD基因啟動子熒光素酶報告基因表達載體[11](序列長度分別為381和417 bp,其中奶牛pGL3-SCD3含有SRE元件,結(jié)構(gòu)見圖1) 由實驗室構(gòu)建,熒光定量PCR儀(Eppendorf,德國),Opti-mem無血清培養(yǎng)基(Gibco,美國),DMEM培養(yǎng)基(Hyclone),Lipofectamine3000(Thermo,美國),雙熒光素酶檢測試劑盒(Promega,美國),SYBR Green(百泰克),c-MYC Antibody(9E10)(Santa Cruz,美國),Alexa Fluor?488 Donkey Anti-Mouse IgG (H+L)(Invitrogen,美國),二氧化碳培養(yǎng)箱(Sanyo,日本),F(xiàn)luroskan Ascent FL熒光和化學(xué)發(fā)光檢測儀(Thermo,美國),激光共聚焦顯微鏡(Carl Zeiss LSM 5 PASCAL,德國)。
圖1 奶牛pGL3-SCD2/SCD3啟動子的結(jié)構(gòu)Fig.1 Structure of dairy pGL3-SCD2/SCD3 promoters
1.2.1雙熒光素酶報告基因系統(tǒng)檢測SCD啟動子活性將奶牛乳腺上皮細(xì)胞接種于24孔板培養(yǎng),放入5% CO2、37 ℃的培養(yǎng)箱中進行培養(yǎng)。將構(gòu)建好的pGL3-SCD2和pGL3-SCD3啟動子用Lipofectamine3000轉(zhuǎn)染至細(xì)胞,進行不同的轉(zhuǎn)染處理分組:對照組(轉(zhuǎn)染1.0 μg pcDNA3.1質(zhì)粒),SCAP組(轉(zhuǎn)染1.0 μg SCAP質(zhì)粒),SREBP1組(轉(zhuǎn)染1.0 μg SREBP1質(zhì)粒),SCAP+SREBP1組(轉(zhuǎn)染1.0 μg SCAP+1.0 μg SREBP1質(zhì)粒),作用24 h后收集細(xì)胞加入裂解液,同時轉(zhuǎn)染內(nèi)參海腎熒光素酶質(zhì)粒,采用熒光和化學(xué)發(fā)光檢測儀檢測熒光素酶活性并進行分析,相對啟動子熒光素酶活性=螢火蟲熒光素酶活性/海腎熒光素酶活性。
1.2.2熒光素酶活性檢測SCAP與SCD啟動子的量效關(guān)系乳腺上皮細(xì)胞接種于24孔板,將pGL3-SCD3質(zhì)粒瞬時轉(zhuǎn)染細(xì)胞,進行不同的轉(zhuǎn)染處理分組:對照組(2.0 μg pcDNA3.1),SREBP1組(1.0 μg pcDNA3.1+1.0 μg SREBP1),SCAP(0.1)組(0.1 μg SCAP+0.9 μg pcDNA3.1+1.0 μg SREBP1),SCAP(0.5)組(0.5 μg SCAP+0.5 μg pcDNA3.1+1.0 μg SREBP1),SCAP(1.0)組(1.0 μg SCAP+1.0 μg SREBP1質(zhì)粒),作用24 h后,收集細(xì)胞進行啟動子活性檢測,采用回歸分析檢測SCAP質(zhì)粒含量與SCD基因啟動子活性之間的量效關(guān)系。
1.2.3免疫熒光觀察SREBP1蛋白在細(xì)胞核的表達在24 孔板中加入細(xì)胞爬片后接種培養(yǎng)乳腺上皮細(xì)胞,進行不同的轉(zhuǎn)染處理分組:對照組(Control,轉(zhuǎn)染1.0 μg pcDNA3.1 +1.0 μg SREBP1),SCAP組(SCAP,轉(zhuǎn)染1.0 μg SCAP+1.0 μg SREBP1質(zhì)粒),培養(yǎng)12 h后用PBS漂洗3次,多聚甲醛固定后用PBS漂洗,室溫脫脂奶粉封閉2 h后,c-myc(9E10)一抗(1∶500)4 ℃孵育過夜,PBS漂洗后用綠色熒光標(biāo)記的驢抗鼠IgG二抗(1∶1 000)37 ℃孵育1 h, 進行免疫熒光標(biāo)記,PBS漂洗后,DAPI復(fù)染細(xì)胞核,封片后在激光共聚焦顯微鏡下觀察細(xì)胞核中SREBP1的熒光表達情況。
1.2.4熒光定量PCR檢測SCD基因mRNA的表達將乳腺上皮細(xì)胞經(jīng)過胰酶消化后分散到12孔板中培養(yǎng),進行不同的轉(zhuǎn)染處理分組:對照組(轉(zhuǎn)
染1.0 μg pcDNA3.1),SCAP組(轉(zhuǎn)染1.0 μg SCAP質(zhì)粒),SREBP1組(轉(zhuǎn)染1.0 μg SREBP1質(zhì)粒),SCAP+SREBP1組(轉(zhuǎn)染1.0 μg SCAP+1.0 μg SREBP1質(zhì)粒),培養(yǎng)48 h后Trizol提取RNA,反轉(zhuǎn)錄成cDNA。在NCBI上搜索奶牛SCD基因序列(NM_173959),并用Primer3 Plus設(shè)計熒光定量引物(表1),以cDNA為模板,利用SYBR Green擴增熒光定量PCR檢測SCD基因mRNA的表達。同時以牛UXT基因(NM_001037471)作為內(nèi)參基因,利用相對定量法計算不同處理對SCD基因mRNA表達的倍數(shù)差異。
表1熒光定量PCR引物
Table1Primersusedforquantitativereal-timePCRanalysis
引物Primer序列(5'-3')Sequence產(chǎn)物長度/bpSizeSCD-FCGACGTGGCTTTTTCTTCTC158SCD-RCACAACAACAGGACACCAGGUXT-FCAGCTGGCCAAATACCTTCAA125UXT-RGTGTCTGGGACCACTGTGTCAA
1.2.5數(shù)據(jù)統(tǒng)計試驗數(shù)據(jù)采用SPSS10.0軟件進行統(tǒng)計學(xué)分析,Sigmaplot作圖,*表示P<0.05,**表示P<0.01,***表示P<0.001。
由圖2可知,在乳腺上皮細(xì)胞中轉(zhuǎn)染 pGL3-SCD2啟動子后,與對照組相比,SREBP1組和SCAP組的SCD2啟動子活性值有所下降,而SCAP+SREBP1組SCD2啟動子活性值顯著下降(P<0.05)。在轉(zhuǎn)染 pGL3-SCD3啟動子的乳腺上皮細(xì)胞中,與對照組相比,SCAP組對啟動子活性無顯著影響,SREBP1組啟動子活性值極顯著升高到114.53 (P<0.01),SCAP+SREBP1組啟動子活性值極顯著升高到192.81(P<0.001),并且SCAP+SREBP1組與SREBP1組之間SCD3啟動子活性值也達到極顯著差異(P<0.01)。
圖2 SCAP對SCD基因啟動子活性的影響Fig.2 Effect of SCAP on promoter activity of SCD gene
由圖3可知,與對照組轉(zhuǎn)染pcDNA3.1相比,轉(zhuǎn)染SREBP1組啟動子活性值為55.66 (P<0.01),隨著SCAP質(zhì)粒含量的增加,SCD基因啟動子活性值從64.41(SCAP= 0.1 μg)增加到169.07(SCAP=1.0 μg),回歸分析發(fā)現(xiàn),SCAP質(zhì)粒濃度與SCD基因啟動子活性呈極顯著的量效關(guān)系(P<0.01)。
由圖4可知,對照組乳腺上皮細(xì)胞核中只有少量SREBP1表達綠色熒光,與DAPI染的細(xì)胞核藍色融合(Merge)后主要呈現(xiàn)藍色。轉(zhuǎn)染SCAP組細(xì)胞核中SREBP1綠色熒光表達明顯增多,與DAPI重疊后呈現(xiàn)出融合的青光。
由圖5可知,與對照組相比,SCAP組細(xì)胞中SCD基因的表達量無明顯變化。SREBP1組顯著上調(diào)1.23倍(P<0.05),SCAP+SREBP1組顯著上調(diào)1.54倍(P<0.05),而SREBP1組與SCAP+SREBP1組SCD基因表達相比差異不顯著(P=0.21)。
Control. 2.0 μg pcDNA3.1;SREBP1. 1.0 μg pcDNA3.1+1.0 μg SREBP1;SCAP(0.1). 0.1 μg SCAP+0.9 μg pcDNA3.1+1.0 μg SREBP1;SCAP(0.5). 0.5 μg SCAP+0.5 μg pcDNA3.1+1.0 μg SREBP1;SCAP(1.0). 1.0 μg SCAP+1.0 μg SREBP1圖3 SCAP調(diào)控SCD基因啟動子活性的量效關(guān)系Fig.3 Dose-response relationship between SCAP and SCD promoter activity
SCAP(-) . 1.0 μg pcDNA3.1 +1.0 μg SREBP1;SCAP(+). 1.0 μg SCAP+1.0 μg SREBP1圖4 SCAP對SREBP1核蛋白表達的影響 600×Fig.4 Effect of SCAP on the nuclear SREBP1 expression 600×
圖5 SCAP與SREBP1對乳腺上皮細(xì)胞SCD基因mRNA表達的影響Fig.5 Effects of SCAP and SREBP1 on mRNA expression of SCD in mammary epithelial cells
SREBPs是一種調(diào)控脂代謝的轉(zhuǎn)錄因子,通過包含兩個跨膜序列的中心結(jié)構(gòu)域錨定在內(nèi)質(zhì)網(wǎng)膜上,其N端結(jié)構(gòu)域是堿性環(huán)-螺旋-亮氨酸拉鏈結(jié)構(gòu),能夠結(jié)合靶基因啟動子上的增強子序列以激活轉(zhuǎn)錄,這些增強子序列被稱為固醇應(yīng)答元件(SRE)[13-14]。本研究前期構(gòu)建的SCD基因啟動子序列,SCD3啟動子比SCD2啟動子多的36 bp片段中含有SRE序列(圖1),轉(zhuǎn)染SREBP1后發(fā)現(xiàn)SCD3啟動子的活性顯著升高,這符合SREBP1能夠結(jié)合在基因啟動子SRE上促進轉(zhuǎn)錄的性質(zhì),其他研究也發(fā)現(xiàn)過表達SREBP能夠促進SCD基因的轉(zhuǎn)錄[15]。SREBP的蛋白活性受到多種分子的調(diào)控[16],其中包括SCAP蛋白[17]。研究表明,采用siRNA沉默小鼠SCAP基因后發(fā)現(xiàn)其肝的SREBP信號通路及下游靶基因表達受到抑制[18]。本試驗在轉(zhuǎn)染SCAP+SREBP1質(zhì)粒時發(fā)現(xiàn),SCD3啟動子的活性比單獨轉(zhuǎn)染SREBP1的活性顯著升高,結(jié)合SCAP質(zhì)粒的濃度與SCD3啟動子活性呈現(xiàn)出的量效關(guān)系,表明SCAP作為SREBP1的結(jié)合蛋白,能夠增強SREBP1促進SCD基因轉(zhuǎn)錄的作用。
SCAP作為SREBP的相互作用蛋白,其調(diào)控作用主要體現(xiàn)在SCAP能夠通過與SREBP結(jié)合轉(zhuǎn)運其到高爾基體進行水解,進一步釋放SREBP進入細(xì)胞核[19-20]。在SCAP基因敲除的MA10細(xì)胞中重新轉(zhuǎn)染SCAP質(zhì)粒,能夠顯著增加核SREBP蛋白的表達[7]。本研究采用免疫熒光觀察發(fā)現(xiàn),SCAP組的細(xì)胞核內(nèi)有更多的SREBP1蛋白表達(圖4),表明SCAP增強了SREBP1前體蛋白向核的轉(zhuǎn)運,相應(yīng)的也會增加下游靶基因的轉(zhuǎn)錄,與本研究中SCD基因啟動子的結(jié)果相互印證(圖2、圖3)。C.M.Cheng等[21]通過免疫熒光發(fā)現(xiàn),在葡萄糖刺激下增加細(xì)胞SCAP的表達,也能夠提高SREBP在細(xì)胞核的表達。SREBP1作為調(diào)控奶牛乳腺細(xì)胞中脂肪合成的主要轉(zhuǎn)錄因子[22],在乳腺細(xì)胞中轉(zhuǎn)染SREBP能夠增加脂類基因的表達[23-24]。為進一步驗證SCAP及SREBP對SCD基因表達的作用,本研究在乳腺細(xì)胞中分別轉(zhuǎn)染這兩種質(zhì)粒,結(jié)果發(fā)現(xiàn),SREBP1能夠顯著上調(diào)乳腺細(xì)胞SCD基因的表達,這與在羊乳腺上皮細(xì)胞中的研究結(jié)果相一致[25],同時發(fā)現(xiàn),SCAP+SREBP1組也能夠顯著上調(diào)細(xì)胞中SCD基因的表達,并且其倍數(shù)高于SREBP1組。雖然SCAP+SREBP1與SREBP1組之間統(tǒng)計分析差異不顯著,但這一結(jié)果也佐證了SCAP能夠促進SREBP1對于SCD基因的調(diào)控作用。
X.Gong等[26]采用晶體衍射法發(fā)現(xiàn),在裂殖酵母SCAP蛋白C端有7個WD重復(fù)序列形成的結(jié)構(gòu)域,在與SREBP的C-端結(jié)合以促進SREBP前體蛋白轉(zhuǎn)運過程中發(fā)揮重要作用,因此進一步研究奶牛等反芻動物SCAP蛋白結(jié)構(gòu)和功能的關(guān)系,對于闡明乳腺細(xì)胞脂肪合成調(diào)控機制具有重要意義。
本研究發(fā)現(xiàn),SCAP可以通過增加SREBP1蛋白在細(xì)胞核中的表達,促進對SCD基因的轉(zhuǎn)錄激活作用,為深入闡明奶牛乳腺細(xì)胞中SCAP-SREBP1通路對乳脂肪合成的表達調(diào)控機制提供了理論基礎(chǔ)。
參考文獻(References):
[1]SHAO W, ESPENSHADE P J. Expanding roles for SREBP in metabolism[J].CellMetab, 2012, 16(4): 414-419.
[2]MOON Y A, LIANG G S, XIE X F, et al. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals[J].CellMetab, 2012, 15(2): 240-246.
[4]SHIMANO H. SREBPs: physiology and pathophysiology of the SREBP family[J].FEBSJ, 2009, 276(3): 616-621.
[5]SHAO W, ESPENSHADE P J. Sterol regulatory element-binding protein (SREBP) cleavage regulates Golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP)[J].JBiolChem, 2014, 289(11): 7547-7557.
[6]MCFARLANE M R, CANTORIA M J, LINDEN A G, et al. Scap is required for sterol synthesis and crypt growth in intestinal mucosa[J].JLipidRes, 2015, 56(8): 1560-1571.
[7]SHIMIZU-ALBERGINE M, VAN YSERLOO B, GOLKOWSKI M G, et al. SCAP/SREBP pathway is required for the full steroidogenic response to cyclic AMP[J].ProcNatlAcadSciUSA, 2016, 113(38): E5685-E5693.
[8]RU P, GUO D L. microRNA-29 mediates a novel negative feedback loop to regulate SCAP/SREBP-1 and lipid metabolism[J].RNADis, 2017, 4(1): e1525.
[9]趙艷坤, 邵偉, 王立文, 等. 與臍帶間充質(zhì)干細(xì)胞共培養(yǎng)對乳腺上皮細(xì)胞乳脂合成及關(guān)鍵基因表達的影響[J]. 畜牧獸醫(yī)學(xué)報, 2017, 48(5): 846-853.
ZHAO Y K, SHAO W, WANG L W, et al. Effect of Co-culturing with umbilical cord mesenchymal stem cells on milk fat synthesis and expression of key genes in bovine mammary gland epithelial cells[J].ActaVeterinariaetZootechnicaSinica, 2017, 48(5): 846-853. (in Chinese)
2.4 兩組患兒瓣膜反流情況 對照組患兒術(shù)后新發(fā)瓣膜反流13例(32.5%),主動脈瓣反流6例(15.0%);觀察組術(shù)后新發(fā)瓣膜反流6例(14.6%),主動脈瓣反流4例(9.8%)。兩組患兒新發(fā)瓣膜反流發(fā)生率對比差異有統(tǒng)計學(xué)意義(χ2=7.933,P<0.05)。
[10]王皓宇, 秦彤, 郝海生, 等. 胰島素對體外培養(yǎng)奶牛乳腺上皮細(xì)胞乳蛋白、乳脂肪合成相關(guān)基因mRNA表達的影響[J]. 畜牧獸醫(yī)學(xué)報, 2013, 44(5): 710-718.
WANG H Y, QIN T, HAO H S, et al. Effects of insulin on mRNA expression of genes related to milk protein and fat synthesis in bovine mammary epithelial cells culturedinvitro[J].ActaVeterinariaetZootechnicaSinica, 2013, 44(5): 710-718. (in Chinese)
[11]韓立強, 王月影, 王林楓, 等. 奶牛SREBP1蛋白在乳腺上皮細(xì)胞的表達定位及對SCD1基因啟動子的轉(zhuǎn)錄調(diào)控[J]. 中國農(nóng)業(yè)科學(xué), 2016, 49(24): 4797-4805.
HAN L Q, WANG Y Y, WANG L F, et al, Expression and localization of bovine SREBP1 protein and regulation of the transcription of SCD1 promoter in bovine mammary epithelial cell[J].ScientiaAgriculturaSinica, 2016, 49(24): 4797-4805. (in Chinese)
[12]韓立強, 曹菁菁, 付彤, 等. 奶牛硬脂酰輔酶A去飽和酶基因(SCD)啟動子的克隆及活性分析[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報, 2013, 21(4): 435-440.
HAN L Q, CAO J J, FU T, et al. Cloning and activity analysis of promoter of bovine stearoyl-CoA desaturase gene (SCD)[J].JournalofAgriculturalBiotechnology, 2013, 21(4): 435-440. (in Chinese)
[13]NOHTURFFT A, DEBOSE-BOYD R A, SCHEEK S, et al. Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi[J].ProcNatlAcadSciUSA, 1999, 96(20): 11235-11240.
[14]SAKAI J, NOHTURFFT A, CHENG D, et al. Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein[J].JBiolChem, 1997, 272(32): 20213-20221.
[15]ZULKIFLI R M, PARR T, SALTER A M, et al. Regulation of ovine and porcine stearoyl coenzyme A desaturase gene promoters by fatty acids and sterols[J].JAnimSci, 2010, 88(8): 2565-2575.
[16]王苗, 羅軍, 許會芬, 等. 山羊INSIG1基因超表達對乳腺上皮細(xì)胞中脂質(zhì)合成的影響[J]. 畜牧獸醫(yī)學(xué)報, 2016, 47(9): 1806-1816.
WANG M, LUO J, XU H F, et al. Effect ofINSIG1 overexpression on the lipid synthesis in goat mammary gland epithelial cells[J].ActaVeterinariaetZootechnicaSinica, 2016, 47(9): 1806-1816. (in Chinese)
[17]XU D Q, WANG Z, ZHANG Y X, et al. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus[J].NatCommun, 2015, 6: 8100.
[18]JENSEN K K, TADIN-STRAPPS M, WANG S P, et al. Dose-dependent effects of siRNA-mediated inhibition of SCAP on PCSK9, LDLR, and plasma lipids in mouse and rhesus monkey[J].JLipidRes, 2016, 57(12): 2150-2162.
[19]KUWABARA P E, LABOUESSE M. The sterol-sensing domain: multiple families, a unique role?[J].TrendsGenet, 2002, 18(4): 193-201.
[20]MOON Y A. The SCAP/SREBP pathway: a mediator of hepatic steatosis[J].EndocrinolMetab(Seoul), 2017, 32(1): 6-10.
[21]CHENG C M, RU P, GENG F, et al. Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth[J].CancerCell, 2015, 28(5): 569-581.
[22]BIONAZ M, LOOR J J. Gene networks driving bovine milk fat synthesis during the lactation cycle[J].BMCGenomics, 2008, 9: 366.
[23]RUDOLPH M C, MONKS J, BURNS V, et al. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium[J].AmJPhysiolEndocrinolMetab, 2010, 299(6): E918-E927.
[24]MA L, CORL B A. Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1[J].JDairySci, 2012, 95(7): 3743-3755.
[25]XU H F, LUO J, ZHAO W S, et al. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells[J].JDairySci, 2016, 99(1): 783-795.
[26]GONG X, LI J X, SHAO W, et al. Structure of the WD40 domain of SCAP from fission yeast reveals the molecular basis for SREBP recognition[J].CellRes, 2015, 25(4): 401-411.