• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    JULIA SETS AS JORDAN CURVES

    2018-04-02 06:52:31ZHUANGWei
    數(shù)學雜志 2018年2期
    關鍵詞:濱組同質性卡培

    ZHUANG Wei

    (Department of Mathematics and Physics,Beijing Institute of Petrochemical Technology,Beijing 102617,China)

    1 Introduction and Main Results

    Let f(z)be a rational map of degree d=degf≥2 on the complex sphere.The Julia set J(f)of a rational function f is defined to be the closure of all repelling periodic points of f,and its complement set is called Fatou set F(f).It is known that J(f)is a perfect set(so J(f)is uncountable,and no point of J(f)is isolated),and also that if J(f)is disconnected,then it has infinitely many components.

    for every x∈X and fnis topologically conjugate to a subshift of finite type.If only condition|(fn)′(x)|> 1 is satisfied,we call the map f|Xexpanding.

    We call a rational function f:J(f)→ J(f)hyperbolic if there exists n ≥ 1 such that

    Denote CV(f)the critical values of a rational function f.Let

    It follows from[1,Theorem 2.2]that a rational function f:J(f)→ J(f)is hyperbolic if and only if

    Denote by J(f)the Julia set of a rational function.A rational map f is expansive if the Julia set J(f)contains no critical points of f.It follows from[1]that each hyperbolic rational function is expansive and that a rational function is expansive but not hyperbolic if and only if the Julia set contains no critical points of f but intersect the ω-limit set of critical points.

    We call expansive but not hyperbolic rational functions parabolic.It follows from[1]that a rational function f:J(f)→ J(f)is expansive but not hyperbolic if and only if the Julia set J(f)contains no critical points of f but contains at least one parabolic point.

    We recall that if T:X→X is a continuous map of a topological space X,then for every point x ∈ X,the ω-limit set of x denoted by ω(x)is defined to be the set of all limit points of the sequence{Tn(x)}n≥0.We call a point x recurrent if x ∈ ω(x);otherwise x is called non-recurrent.

    The class of NCP maps obviously contains all expanding and parabolic maps.It also comprises the important class of so called subexpanding maps which are defined by the requirement that f|ω(Crit(f))∩J(f)is expanding and the class of geometrically finite maps defined by the property that the forward trajectory of each critical point contained in the Julia set is finite and disjoint from ω-limit set.

    Let f(z)be a map of degree≥2.A component D of the Fatou set F(f)is said to be completely invariant,if

    In this paper,we establish the following main theorem.

    Main TheoremLet f(z)be an NCP map of degree≥2,and suppose that F(f)is the union of exactly two completely invariant components.Then J(f)is their common boundary and is a Jordan curve.

    2 Preliminaries and the Construction of a Net

    Let f be an NCP map.Denote by Λ(f)the set of all parabolic periodic points of f(these points belong to the Julia set and have an essential influence on its fractal structure),and Crit(f)of all critical points of f.We put

    Set

    Definition 2.1We define the conical set Jc(f)of f as follow.First,say x belongs to Jc(f,r)if for any∈>0,there is a neighborhood U of x and n>0 such that diam(U)<ε and fn:U→B(fn(x),r)is a homeomorphism.Then setWe have x∈Jc(f)if and only if arbitrary small neighborhood of x can be blow up univalently by the dynamics to balls of definite size centered at fn(x).

    Lemma 2.1(see[2])If f:J(f)→J(f)is an NCP map,then

    Note that Curtis T.McMullen used the term radial Julia set Jrad(f)instead of conical set Jc(f)in analogy with Kleinian groups,see ref.[3].By paper[3],we have the set Sing(f)is countable.

    Let 0<λ<1.Then there exist an integer m≥1,C>0,an open topological disk U containing no critical values of f up to order m and analytic inverse branchesof fmn(i=1,···,kn≤ dnm,n ≥ 0),satisfying

    (3)for each fixed n ≥ 1,for all i=1,···,knthe setsare pairwise disjoint and

    Now we state as a lemma the following consequence of(1)–(3).

    Lemma 2.2For each n,letand letThen N is a net of Jc(f),i.e.,any two sets in N are either disjoint or one is a subset of the other.

    3 Conformal Iterated Function System

    In paper[4],Urbanski and Zdunik provided the framework to study infinite conformal iterated function systems.Now we recall this notion and some of its basic properties.Let I be a countable index set with at least two elements and let S={φi:X → X:i∈ I}be a collection of injective contractions from a compact metric space X(equipped with a metric ρ)into X for which there exists 0 < s < 1 such that ρ(φi(x),φi(y)) ≤ sρ(x,y)for every i∈I and for every pair of points x,y∈X.Thus system S is uniformly contractive.Any such collection S of contractions is called an iterated function system.We are particularly interested in the properties of the limit set defined by such a system.We can define this set as the image of the coding space under a coding map as follows.Letthe space of finite words,and for τ∈ I?,n ≥ 1,let φτ= φτ1? φτ2? ···? φτn.Letbe the set of all infinite sequences of elements of I.If τ∈ I?∪I∞and n ≥ 1 does not exceed the length of τ,we denote by τ|nthe word τ1τ2···τn.Since given τ∈ I∞,the diameters of the compact sets φτ|n(X),n ≥ 1,converge to zero and since they form a descending family,the set

    is a singleton therefor,denoting its only element by π(τ),defines the coding map

    有 8 篇研究[2,4-8,11]報道了Ⅲ度及以上腹瀉,合計樣本量504例:替吉奧組252例,卡培他濱組252例。各研究間具有同質性(P=0.92,I2=0%),采用固定效應模型。結果顯示,替吉奧組Ⅲ度及以上腹瀉少于卡培他濱組,具有統(tǒng)計學意義[RR=0.42,95%CI:(0.18,0.99),P=0.05],見圖 3。

    The main object in the theory of iterated function systems is the limit set defined as follows.

    Observe that J satisfied the natural invariance equality

    Notice(1)If I is finite,then J is compact and this property fails for infinite systems by paper[4].

    (2)In Lemma 3.3,we shall build recursively our iterated function systemand n(=I)is finite.

    Let X(∞)be the set of limit points of all sequences xi∈ φi(X),i∈ I′,where I′ranges over all infinite subsets of I,see ref.[4].

    Lemma 3.1(see[4])If

    An iterated function system S={φi:X → X:i∈ I}is said to satisfy the open set condition if there exists a nonempty open set U?X(in the topology of X)such that φi(U)? U for every i∈ I and φi(U)∩φj(U)= ? for every pair i,j∈ I,i/=j(we do not exclude clφi(U)∩ clφj(U)/= ?).

    An iterated function system S={φi:X →X:i∈I}is said to be conformal if X ?Rdfor some d≥1 and the following conditions are satisfied.

    (c)There exists an open connected set V such that X?V?Rdsuch that all maps φi,i ∈ I,extend to C1conformal diffeomorphisms of V into V(note that for d=1 this just means that all the maps φi,i ∈ I,are monotone diffeomorphism,for d=2 the words conformal mean holomorphic and antiholomorphic,and for d=3,the maps φi,i ∈ I are M?bius transformations).

    (d)(Cone condition)There exist α,l> 0 such that for every x ∈ ?X and there exists an open cone Con(x,u,α)? Int(V)with vertex x,the symmetry axis determined by vector u of length l and a central angle of Lebesgue measure α,here Con(x,u,α)={y:0 < (y?x,u)≤cosα||y?x||≤ l}.

    (e)Bounded distortion property(BDP).There exists K≥1 such that

    for every ω ∈ I?and every pair of points x,y ∈ V,wheremeans the norm of the derivative,see ref.[9,10].

    Definition 3.1A bounded subset X of a Euclidean space(or Reimann sphere)is said to be porous if there exists a positive constant c>0 such that each open ball B centered at a point of X and of an arbitrary radius 0<r≤1 contains an open ball of radius cr disjoint from X.If only balls B centered at a fi xed point x∈X are discussed above,X is called porous at x,see ref.[5].

    Lemma 3.2(see[5])The Julia set of each NCP map,if diあerent fromis porous.

    Lemma 3.3If f is an NCP map,then Jc(f)admits a conformal iterated function system satisfying conditions(a)–(e).

    ProofLet f be an NCP map.By Lemma 2.2,Jc(f)admits a net such that Bi∩Bj= ?,i/=j.Moreover,we may require the existence of an integer q≥ 1 and σ > 0 such that the following holds:

    If x∈Jc(f),say x∈Bi,and fqn(x)∈Bt,then there exists a unique holomorphic inverse branch:sending fqn(x)to x.Moreoverand taking q suきciently large,we have

    for suきciently small σ,then

    Let n > 1 be fi nite.For every t=1,2,···,n,we now build recursively our iterated function system Stas a disjoint union of the familiesj≥1,as follows.consists of all the maps,where x,fq(x)∈ Jc(f)∩ Bt.consists of all the mapswhere x,f2q(x)∈Jc(f)∩Btand fq(x)/∈Bt.Suppose that the familieshave been already constructed.Thenis composed of all the mapssuch that y,fqn(y)∈Jc(f)∩Btand fqj(y)∈/Btfor every 1≤j≤n?1.

    Let V?Jc(f)be an open set constructed by the net such that it disjoints from the parabolic and critical points and their inverse orbits of f.For any x∈V and fi nite n<∞,we have

    then

    where x,y∈V and 1≤K<∞is a constant.So condition(e)bounded distortion property(BDP)holds.It is evident that fnis holomorphic and antiholomorphic of V into V for all n≥1,then condition(c)holds.Since J(f)is porous,and condition(d)is satis fi ed.Condition(b)follows immediately from(3.1).In order to prove condition(a),take two distinct mapsandbelong to St.Without loss of generality we may assume that m≤n.Suppose on the contrary that

    Then

    4 Proof of Main Result

    Given x∈C,θ,r> 0,we put

    where η is a representative of θ.We recall that a set Y has a tangent in the direction θ at a point x∈Y if for every r>0,

    where H1denotes the 1-dimensional Hausdorff measure(see refs.[6,7]).Following[6],we say that a set Y has a strong tangent in the direction θ at a point x provided for each 0< β ≤ 1,there is a some r> 0 such that Y ∩B(x,r)? Con(x,θ,β).

    Lemma 4.1(see[7])If Y is locally arcwise connected at a point x and Y has a tangent θ at x,then Y has strong tangent θ at x.

    We call a point τ∈ I∞transitive if ω(τ)=I∞,where ω(τ)is the ω-limit set of τ under the shift transformation σ :I∞→ I∞.We denote the set of these points byand putWe call the Γtthe set of transitive points of ΓStand notice that for everythe setis dense in

    Lemma 4.2(see[7])has a strong tangent at a point x= π(τ),τ∈ I∞,then ΓSt has a strong tangent at every point

    Remark 4.1If f is an NCP map,by Lemma 3.3,Jc(f)admits a conformal iterated function system St.It is obvious that the Julia set J(f)coincides with the limit setby Lemma 3.1.By Lemma 3.1,3.3 and 4.2 we have

    Lemma 4.3If f is an NCP map,then J(f)has a strong tangent at every point of J(f).

    Proof of Main TheoremLet f be an NCP map and denoted by F∞the unbounded component of the Fatou set F(f).As F∞is completely invariant,applying Riemann-Hurwitz formula(see§5.4 in[8])to f:F∞→ F∞,we find that F∞has exactly d?1 critical points of f,and all of these lie at∞.Now take any disk D centered at∞,which is such that

    For each n,let Dn=f?n(D):then Dnis open and connected,

    and as

    where χ(Dn+1)and χ(Dn)denote the Euler characteristics of domains Dn+1and Dnas above,we see that each Dnis simply connected.Let γnbe the boundary of Dn;then γnis a Jordan curve and fnis a dn-fold map of γnonto γ0.SetRoughly speaking,we shall show that γnconverges to

    If ξ∈ Γ then there are points ξnon γnwhich converge to ξ,so,in particular,ξ is in the closure of F∞.However,ξ cannot lie in F∞else it has a compact neighbourhood K lying in some Dn(for the Djare an open cover of K),and hence not meeting γn,γn+1,···for sufficiently large n.We deduce that Γ ? J(f).

    J(f)is porous,then Jc(f)admits a conformal iterated function system s}for finite s satisfying conditions(a)–(e)by Lemma 3.3.

    To prove that J(f)?Γ,let w∈J(f)be a repelling fixed point(or an image of a repelling fixed point)and l be the straight line determined by the strongly tangent direction of J(f)at w as in Lemma 4.3.Then w is an attracting fixed point of f?1.Moreover,

    is a conformal map,where U(w)is a disk centered at w.Now suppose that J(f)is not contained in Γ.Consider x ∈ J(f)Γ such that x ∈ U(w),thenand for every n ≥ 0,we have f?n(x)∈ J(f).Since the map f?1:U(w)→ U(w)is conformal,we get

    It follows that w and f?n(x)(n ≥ 0)are contained in the same lineand this implies thatis the strongly tangent straight line of J(f)at w.Therefore,we conclude that l is not a strongly tangent straight line of J(f)at w.This contradiction proves that J(f)? Γ.

    RemarkIf Main Theorem only with the hypothesis:the Fatou set F(f)has a completely invariant component,J(f)need not be a Jordan curve;for example,the map z→ z2?1 is expanding on its Julia set(certainly NCP map),see Theorem 9.7.5 and Figure 1.5.1 in[8].

    [1]Urba′nski M.Measures and dimensions in conformal dynamics[J].Bull.Amer.Math.Soc,2003,40:281–321.

    [2]Urba′nski M.Rational functions with no recurrent critical points[J].Ergod.Th.Dynam.Sys.,1994,14:391–414.

    [3]Curtis T McMullen.Huasdorff dimension and conformal dynamics II:Geometrically finite rational maps[J].Comment Math.Helv.,2000,75:535–593.

    [4]Urba′nski M,Zdunik A.Hausdorff dimension of harmonic maesure for self-conformal set[J].Adv.Math.,2002,171:1–58.

    [5]Przytycki F,Urba′nski M.Porosity of Julia sets of non-recurrent and parabolic Collet-Eckmann rational functions[J].Ann.Acad.Fenn.,2001,26:125–154.

    [6]Mauldin R D,Urba′nski M.Jordan curvers as repellors[J].Pac.J.Math.,1994,166:85–97.

    [7]Mauldin R D,Mayer V,Urba′nski M.Rigidity of connected limit sets of conformal IFS[J].Michigan Math.J.,2001,49:451–458.

    [8]Beardon A F.Iteration of rational functions[M].No.132 in GTM,New York:Springer-Verlag,1991.

    [9]Zhuang Wei.On the continuity of Julia sets and the Hausdorff dimension of Yang-Lee zeros[J].J.Math.,2013,33(4):571–583.

    [10]Zhuang Wei.The property of the Julia set of rational functions with conformal iterated function system[J].J.Math.,2007,27(2):177–180.

    猜你喜歡
    濱組同質性卡培
    二甲雙胍增強膽管癌細胞對吉西他濱敏感性機制的研究
    奈達鉑聯(lián)合吉西他濱阻滯非霍奇金淋巴瘤細胞周期促進細胞凋亡的作用研究
    卡培他濱對復發(fā)轉移三陰性乳腺癌的療效分析
    阿帕替尼聯(lián)合吉西他濱對Lewis肺癌的實驗研究
    TLR9對胰腺癌裸鼠增殖生長及化療耐藥性的研究
    基于同質性審視的高職應用型本科工程教育研究
    職教論壇(2017年4期)2017-03-13 16:43:19
    血清CEA和CA-199對卡培他濱治療復發(fā)轉移乳腺癌預后的臨床預測
    理性程度的異質性:基于理論與實踐的考察
    長春瑞濱聯(lián)合卡培他濱對乳腺癌患者復發(fā)轉移和無病生存的影響
    高等工程教育與高等職業(yè)教育的同質性
    国产麻豆成人av免费视频| 国内毛片毛片毛片毛片毛片| 国产高清视频在线观看网站| 久久99热这里只有精品18| 一区二区三区激情视频| 香蕉久久夜色| 看黄色毛片网站| 亚洲av中文字字幕乱码综合| 久久久久久久久免费视频了| 国产 一区 欧美 日韩| 中文在线观看免费www的网站| 色av中文字幕| 欧美极品一区二区三区四区| 成熟少妇高潮喷水视频| 熟女少妇亚洲综合色aaa.| 色综合欧美亚洲国产小说| 色av中文字幕| 天堂影院成人在线观看| 国产aⅴ精品一区二区三区波| 丰满人妻熟妇乱又伦精品不卡| 国产精品永久免费网站| 成人18禁在线播放| 色尼玛亚洲综合影院| 伦理电影免费视频| 成人三级做爰电影| 美女扒开内裤让男人捅视频| 日韩欧美在线二视频| 亚洲精品乱码久久久v下载方式 | 最近最新免费中文字幕在线| 亚洲国产欧美一区二区综合| 最近最新免费中文字幕在线| 黄片大片在线免费观看| 男人的好看免费观看在线视频| 国产亚洲av嫩草精品影院| 亚洲国产欧美一区二区综合| 搡老妇女老女人老熟妇| 两个人视频免费观看高清| 国产成人精品久久二区二区91| 日本 欧美在线| 亚洲五月天丁香| 这个男人来自地球电影免费观看| 亚洲精华国产精华精| 免费看十八禁软件| 日韩高清综合在线| 久久久久九九精品影院| 国产精华一区二区三区| 又大又爽又粗| 毛片女人毛片| 香蕉丝袜av| 制服丝袜大香蕉在线| 69av精品久久久久久| 中国美女看黄片| 久99久视频精品免费| 很黄的视频免费| 性欧美人与动物交配| 国产v大片淫在线免费观看| 美女扒开内裤让男人捅视频| 国产又黄又爽又无遮挡在线| 99热精品在线国产| 真人做人爱边吃奶动态| 亚洲av成人一区二区三| 成人高潮视频无遮挡免费网站| 白带黄色成豆腐渣| 小说图片视频综合网站| 亚洲精品在线美女| 欧美一区二区精品小视频在线| 午夜免费成人在线视频| 91av网一区二区| 黄色女人牲交| 日本精品一区二区三区蜜桃| 90打野战视频偷拍视频| 51午夜福利影视在线观看| 中国美女看黄片| av女优亚洲男人天堂 | 成人av一区二区三区在线看| 嫩草影视91久久| 精华霜和精华液先用哪个| 日韩欧美一区二区三区在线观看| 久久天堂一区二区三区四区| АⅤ资源中文在线天堂| 久久中文字幕人妻熟女| 久久亚洲真实| tocl精华| 99久国产av精品| 级片在线观看| 麻豆一二三区av精品| 两性午夜刺激爽爽歪歪视频在线观看| 少妇熟女aⅴ在线视频| 女同久久另类99精品国产91| 亚洲成人久久性| 国产三级中文精品| 此物有八面人人有两片| 日韩成人在线观看一区二区三区| 男女做爰动态图高潮gif福利片| 91麻豆精品激情在线观看国产| 老汉色av国产亚洲站长工具| 国产精品精品国产色婷婷| 亚洲黑人精品在线| 一本久久中文字幕| av女优亚洲男人天堂 | www.自偷自拍.com| www日本黄色视频网| 日韩成人在线观看一区二区三区| 一区福利在线观看| 日韩国内少妇激情av| 女同久久另类99精品国产91| 好男人电影高清在线观看| 一a级毛片在线观看| 亚洲,欧美精品.| 国产黄a三级三级三级人| or卡值多少钱| 母亲3免费完整高清在线观看| 十八禁人妻一区二区| 毛片女人毛片| 精品无人区乱码1区二区| 亚洲男人的天堂狠狠| 欧美最黄视频在线播放免费| 欧美日韩国产亚洲二区| 亚洲成人免费电影在线观看| 嫩草影视91久久| 国产精品av视频在线免费观看| 日韩欧美三级三区| 亚洲性夜色夜夜综合| 亚洲精华国产精华精| 99热6这里只有精品| 国产精品 欧美亚洲| 精品国产乱子伦一区二区三区| 亚洲第一欧美日韩一区二区三区| 天堂影院成人在线观看| 91九色精品人成在线观看| 日本成人三级电影网站| 午夜免费成人在线视频| 亚洲av免费在线观看| 69av精品久久久久久| 在线观看日韩欧美| 欧美另类亚洲清纯唯美| 免费在线观看日本一区| 在线十欧美十亚洲十日本专区| 色哟哟哟哟哟哟| 免费av毛片视频| 听说在线观看完整版免费高清| 黄片大片在线免费观看| 亚洲精品456在线播放app | 成人精品一区二区免费| 国产精品一区二区精品视频观看| 大型黄色视频在线免费观看| 黄色女人牲交| 久久中文字幕人妻熟女| 欧美成狂野欧美在线观看| 特大巨黑吊av在线直播| xxx96com| 国内精品一区二区在线观看| 黄色 视频免费看| 国产精品香港三级国产av潘金莲| 国产三级黄色录像| 欧美xxxx黑人xx丫x性爽| 日本黄色片子视频| 高潮久久久久久久久久久不卡| 激情在线观看视频在线高清| 神马国产精品三级电影在线观看| 宅男免费午夜| 一个人免费在线观看电影 | 色哟哟哟哟哟哟| avwww免费| 九九热线精品视视频播放| 成人无遮挡网站| 国产成人欧美在线观看| 99精品在免费线老司机午夜| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费成人在线视频| 国产精品,欧美在线| 亚洲性夜色夜夜综合| 久久久久九九精品影院| 亚洲aⅴ乱码一区二区在线播放| 99国产综合亚洲精品| 九色成人免费人妻av| 最新中文字幕久久久久 | www日本黄色视频网| 人人妻人人澡欧美一区二区| 欧美一区二区精品小视频在线| 久久香蕉精品热| 网址你懂的国产日韩在线| 欧美乱码精品一区二区三区| 亚洲 欧美一区二区三区| 级片在线观看| 色av中文字幕| 在线免费观看不下载黄p国产 | 嫩草影视91久久| 成人特级黄色片久久久久久久| 日韩国内少妇激情av| 国产激情偷乱视频一区二区| 精品久久久久久久久久免费视频| 亚洲一区高清亚洲精品| 少妇的丰满在线观看| 天堂av国产一区二区熟女人妻| 日本成人三级电影网站| 亚洲欧美日韩无卡精品| 综合色av麻豆| 国产真实乱freesex| 黄色丝袜av网址大全| 搞女人的毛片| 97碰自拍视频| 99精品欧美一区二区三区四区| 国产伦人伦偷精品视频| 国产真实乱freesex| 国产aⅴ精品一区二区三区波| 中文资源天堂在线| 高清在线国产一区| 搡老熟女国产l中国老女人| 在线观看免费视频日本深夜| www日本黄色视频网| 18禁美女被吸乳视频| 很黄的视频免费| 窝窝影院91人妻| 一区二区三区激情视频| 草草在线视频免费看| 性色av乱码一区二区三区2| 美女 人体艺术 gogo| 久久久久久久久免费视频了| 亚洲专区国产一区二区| 日本与韩国留学比较| 国产三级黄色录像| 两性夫妻黄色片| 亚洲天堂国产精品一区在线| 久久久久国产精品人妻aⅴ院| 午夜福利在线在线| 国产av不卡久久| 男人的好看免费观看在线视频| 欧美日韩亚洲国产一区二区在线观看| 国产成人精品久久二区二区免费| av在线蜜桃| 91麻豆精品激情在线观看国产| 国产精品久久久久久人妻精品电影| 桃色一区二区三区在线观看| 高潮久久久久久久久久久不卡| 成年女人看的毛片在线观看| 国产精品av视频在线免费观看| 亚洲欧美日韩卡通动漫| 久久草成人影院| 免费在线观看视频国产中文字幕亚洲| 夜夜看夜夜爽夜夜摸| 男女做爰动态图高潮gif福利片| 观看美女的网站| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区av网在线观看| 又紧又爽又黄一区二区| 男女下面进入的视频免费午夜| 一夜夜www| 日本黄色片子视频| 亚洲中文日韩欧美视频| 黄色 视频免费看| 亚洲国产欧洲综合997久久,| 男人的好看免费观看在线视频| 久久久久精品国产欧美久久久| 久久久久国产精品人妻aⅴ院| 色在线成人网| 极品教师在线免费播放| 老司机午夜十八禁免费视频| 美女被艹到高潮喷水动态| 国内精品美女久久久久久| 久久精品国产清高在天天线| 久久精品91无色码中文字幕| 美女扒开内裤让男人捅视频| 国产精品国产高清国产av| 99国产极品粉嫩在线观看| 欧美一区二区国产精品久久精品| 成人av在线播放网站| 九色国产91popny在线| 婷婷精品国产亚洲av| 亚洲片人在线观看| 18禁国产床啪视频网站| 听说在线观看完整版免费高清| cao死你这个sao货| 日本 欧美在线| 成年人黄色毛片网站| 一本一本综合久久| 在线免费观看不下载黄p国产 | 91av网一区二区| 久久婷婷人人爽人人干人人爱| 久久婷婷人人爽人人干人人爱| 欧美黑人欧美精品刺激| 综合色av麻豆| cao死你这个sao货| 1024手机看黄色片| 成人鲁丝片一二三区免费| 天堂影院成人在线观看| 欧美另类亚洲清纯唯美| 婷婷精品国产亚洲av| 国产精品久久久久久精品电影| 国模一区二区三区四区视频 | 五月伊人婷婷丁香| 色播亚洲综合网| av黄色大香蕉| 亚洲电影在线观看av| 国产高清视频在线观看网站| 午夜精品久久久久久毛片777| 丁香六月欧美| 国产野战对白在线观看| 精品免费久久久久久久清纯| 精品日产1卡2卡| 国产黄片美女视频| 黄片小视频在线播放| 真人一进一出gif抽搐免费| 免费一级毛片在线播放高清视频| 97碰自拍视频| 欧美日韩乱码在线| 校园春色视频在线观看| 亚洲专区国产一区二区| 日本精品一区二区三区蜜桃| 国产精品美女特级片免费视频播放器 | 淫妇啪啪啪对白视频| 99久久久亚洲精品蜜臀av| 国产一区二区三区在线臀色熟女| 99riav亚洲国产免费| 伦理电影免费视频| 国产一级毛片七仙女欲春2| 久久久久久国产a免费观看| bbb黄色大片| 91九色精品人成在线观看| 国产又色又爽无遮挡免费看| 亚洲精华国产精华精| 级片在线观看| 老熟妇仑乱视频hdxx| 国产精品精品国产色婷婷| 99久国产av精品| 久久香蕉精品热| 久久香蕉国产精品| 精品一区二区三区四区五区乱码| 久久精品国产综合久久久| 97人妻精品一区二区三区麻豆| 国产精品久久久久久人妻精品电影| 99久久精品国产亚洲精品| 91九色精品人成在线观看| 精品久久久久久,| 夜夜爽天天搞| 亚洲人成网站高清观看| 又粗又爽又猛毛片免费看| 一夜夜www| 中文在线观看免费www的网站| 免费在线观看影片大全网站| 亚洲狠狠婷婷综合久久图片| 久久久国产成人精品二区| 国产精品1区2区在线观看.| 亚洲精品美女久久久久99蜜臀| 热99re8久久精品国产| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美日韩无卡精品| 一个人观看的视频www高清免费观看 | 成人三级做爰电影| 午夜福利在线观看免费完整高清在 | 变态另类丝袜制服| 在线看三级毛片| 日韩精品中文字幕看吧| 美女高潮喷水抽搐中文字幕| 国产成人av教育| 日韩精品中文字幕看吧| 亚洲精品色激情综合| 久99久视频精品免费| 国产熟女xx| 精品国产三级普通话版| 桃红色精品国产亚洲av| 中文字幕av在线有码专区| 啦啦啦免费观看视频1| 桃红色精品国产亚洲av| 亚洲午夜理论影院| 国产免费av片在线观看野外av| 麻豆国产av国片精品| 亚洲一区二区三区不卡视频| 国产精品久久久久久精品电影| 可以在线观看的亚洲视频| 超碰成人久久| 国产三级中文精品| 母亲3免费完整高清在线观看| 精品国产乱子伦一区二区三区| 亚洲自拍偷在线| 又大又爽又粗| 韩国av一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 99精品久久久久人妻精品| 一个人看视频在线观看www免费 | 国产蜜桃级精品一区二区三区| 一级作爱视频免费观看| 久久精品亚洲精品国产色婷小说| 国产精品av视频在线免费观看| 99精品久久久久人妻精品| 又黄又爽又免费观看的视频| 欧美黑人欧美精品刺激| 色视频www国产| 亚洲人成网站在线播放欧美日韩| 亚洲无线在线观看| 精品99又大又爽又粗少妇毛片 | 波多野结衣高清无吗| a级毛片在线看网站| 精品久久久久久久人妻蜜臀av| 热99在线观看视频| 一级作爱视频免费观看| 成人国产综合亚洲| 亚洲精品美女久久av网站| 精品午夜福利视频在线观看一区| 亚洲一区二区三区色噜噜| 最近最新中文字幕大全免费视频| 日韩欧美国产在线观看| 国产精品影院久久| a级毛片在线看网站| 久久久久久久久免费视频了| 黄色 视频免费看| av视频在线观看入口| 亚洲在线观看片| 成人三级黄色视频| 1024手机看黄色片| 岛国在线观看网站| 国产一区二区激情短视频| 成人三级做爰电影| 99久久久亚洲精品蜜臀av| 69av精品久久久久久| 日韩大尺度精品在线看网址| 美女午夜性视频免费| 国产美女午夜福利| 变态另类成人亚洲欧美熟女| 综合色av麻豆| 亚洲精品乱码久久久v下载方式 | av中文乱码字幕在线| 久久久久九九精品影院| 国产精品99久久久久久久久| 国产欧美日韩精品亚洲av| 99热这里只有精品一区 | 亚洲,欧美精品.| 精品日产1卡2卡| 三级国产精品欧美在线观看 | 在线观看舔阴道视频| 久久中文看片网| 成年女人毛片免费观看观看9| 麻豆久久精品国产亚洲av| 久久亚洲真实| 亚洲成av人片在线播放无| 亚洲av美国av| 99久久综合精品五月天人人| 亚洲成人久久性| 嫩草影院入口| 国产亚洲精品一区二区www| 一二三四社区在线视频社区8| 色av中文字幕| 午夜福利在线在线| 香蕉国产在线看| 一二三四在线观看免费中文在| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看| 午夜a级毛片| 99热6这里只有精品| 动漫黄色视频在线观看| 69av精品久久久久久| 久久精品亚洲精品国产色婷小说| 国产午夜精品久久久久久| 伦理电影免费视频| 午夜福利18| 免费看十八禁软件| 欧美高清成人免费视频www| 又粗又爽又猛毛片免费看| 18禁美女被吸乳视频| 一区二区三区国产精品乱码| 国产精品一及| 日韩欧美三级三区| 美女扒开内裤让男人捅视频| 成人国产一区最新在线观看| 亚洲成av人片免费观看| 757午夜福利合集在线观看| 午夜福利免费观看在线| 久久久精品大字幕| 黄色女人牲交| 99久国产av精品| 国产av在哪里看| 亚洲人成电影免费在线| 午夜两性在线视频| 国产精品久久久久久人妻精品电影| 波多野结衣巨乳人妻| 美女黄网站色视频| 欧美极品一区二区三区四区| 午夜福利在线在线| 亚洲人成电影免费在线| 九九在线视频观看精品| 亚洲av熟女| 亚洲专区字幕在线| 久久久久久大精品| 99热精品在线国产| 在线免费观看的www视频| 国产成人啪精品午夜网站| 在线视频色国产色| 国产视频内射| 神马国产精品三级电影在线观看| 99在线视频只有这里精品首页| 女同久久另类99精品国产91| 91久久精品国产一区二区成人 | 午夜福利成人在线免费观看| 国产三级在线视频| 老司机午夜十八禁免费视频| ponron亚洲| 久9热在线精品视频| 国产午夜福利久久久久久| 久久久久国内视频| 国产精品一区二区精品视频观看| 男女之事视频高清在线观看| 国产亚洲精品一区二区www| 国产精品爽爽va在线观看网站| 一级毛片精品| 亚洲精品美女久久久久99蜜臀| 亚洲天堂国产精品一区在线| 日本 av在线| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆| 桃色一区二区三区在线观看| 欧美+亚洲+日韩+国产| 精品熟女少妇八av免费久了| 日本黄大片高清| 欧美成狂野欧美在线观看| av福利片在线观看| 日韩av在线大香蕉| 国产毛片a区久久久久| 欧美日韩乱码在线| 国产免费男女视频| 国产精品女同一区二区软件 | 亚洲中文字幕日韩| 性色avwww在线观看| 曰老女人黄片| 欧美激情在线99| 激情在线观看视频在线高清| 最近最新中文字幕大全免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 免费看美女性在线毛片视频| 国产午夜精品论理片| 天天添夜夜摸| 麻豆一二三区av精品| 久久久国产精品麻豆| 国产1区2区3区精品| 亚洲av日韩精品久久久久久密| 美女被艹到高潮喷水动态| 亚洲熟妇熟女久久| 窝窝影院91人妻| 麻豆国产97在线/欧美| 国产av麻豆久久久久久久| 亚洲熟妇熟女久久| 国产激情偷乱视频一区二区| 亚洲精品粉嫩美女一区| 看片在线看免费视频| 视频区欧美日本亚洲| 国产1区2区3区精品| 色综合站精品国产| 一级毛片高清免费大全| 九九热线精品视视频播放| 亚洲午夜理论影院| 制服丝袜大香蕉在线| 两性午夜刺激爽爽歪歪视频在线观看| 午夜亚洲福利在线播放| 不卡av一区二区三区| 两个人视频免费观看高清| 国内精品一区二区在线观看| 久久久久久久精品吃奶| h日本视频在线播放| 麻豆av在线久日| 亚洲熟女毛片儿| 后天国语完整版免费观看| 三级国产精品欧美在线观看 | 日本黄大片高清| 午夜精品久久久久久毛片777| 久久久久久人人人人人| 美女 人体艺术 gogo| 女人高潮潮喷娇喘18禁视频| 欧美黄色淫秽网站| 99re在线观看精品视频| 欧洲精品卡2卡3卡4卡5卡区| 九九久久精品国产亚洲av麻豆 | 亚洲熟女毛片儿| 亚洲成av人片免费观看| 1000部很黄的大片| 黄色片一级片一级黄色片| 精品人妻1区二区| 欧美中文日本在线观看视频| 色噜噜av男人的天堂激情| 亚洲avbb在线观看| 久久精品aⅴ一区二区三区四区| www.熟女人妻精品国产| 国产私拍福利视频在线观看| 午夜精品一区二区三区免费看| 国产一区二区激情短视频| 中文字幕av在线有码专区| 国产精品女同一区二区软件 | 成人国产一区最新在线观看| 国产日本99.免费观看| 亚洲自拍偷在线| 亚洲avbb在线观看| 国产精品一及| 啦啦啦韩国在线观看视频| 成年女人永久免费观看视频| 久久精品国产综合久久久| 欧美成人性av电影在线观看| 在线a可以看的网站| 香蕉国产在线看| 亚洲 国产 在线| 国产69精品久久久久777片 | 91麻豆av在线| 99久久精品热视频| 久久久久久久久免费视频了| 亚洲中文av在线| 亚洲自偷自拍图片 自拍| 亚洲国产精品成人综合色| 国产视频一区二区在线看| 最近在线观看免费完整版| 午夜福利在线在线| 99久国产av精品| 久久天堂一区二区三区四区| 免费观看精品视频网站| 久久久国产精品麻豆| 一个人看视频在线观看www免费 | 亚洲av第一区精品v没综合| 免费av不卡在线播放| 欧美色视频一区免费|