• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    JULIA SETS AS JORDAN CURVES

    2018-04-02 06:52:31ZHUANGWei
    數(shù)學雜志 2018年2期
    關鍵詞:濱組同質性卡培

    ZHUANG Wei

    (Department of Mathematics and Physics,Beijing Institute of Petrochemical Technology,Beijing 102617,China)

    1 Introduction and Main Results

    Let f(z)be a rational map of degree d=degf≥2 on the complex sphere.The Julia set J(f)of a rational function f is defined to be the closure of all repelling periodic points of f,and its complement set is called Fatou set F(f).It is known that J(f)is a perfect set(so J(f)is uncountable,and no point of J(f)is isolated),and also that if J(f)is disconnected,then it has infinitely many components.

    for every x∈X and fnis topologically conjugate to a subshift of finite type.If only condition|(fn)′(x)|> 1 is satisfied,we call the map f|Xexpanding.

    We call a rational function f:J(f)→ J(f)hyperbolic if there exists n ≥ 1 such that

    Denote CV(f)the critical values of a rational function f.Let

    It follows from[1,Theorem 2.2]that a rational function f:J(f)→ J(f)is hyperbolic if and only if

    Denote by J(f)the Julia set of a rational function.A rational map f is expansive if the Julia set J(f)contains no critical points of f.It follows from[1]that each hyperbolic rational function is expansive and that a rational function is expansive but not hyperbolic if and only if the Julia set contains no critical points of f but intersect the ω-limit set of critical points.

    We call expansive but not hyperbolic rational functions parabolic.It follows from[1]that a rational function f:J(f)→ J(f)is expansive but not hyperbolic if and only if the Julia set J(f)contains no critical points of f but contains at least one parabolic point.

    We recall that if T:X→X is a continuous map of a topological space X,then for every point x ∈ X,the ω-limit set of x denoted by ω(x)is defined to be the set of all limit points of the sequence{Tn(x)}n≥0.We call a point x recurrent if x ∈ ω(x);otherwise x is called non-recurrent.

    The class of NCP maps obviously contains all expanding and parabolic maps.It also comprises the important class of so called subexpanding maps which are defined by the requirement that f|ω(Crit(f))∩J(f)is expanding and the class of geometrically finite maps defined by the property that the forward trajectory of each critical point contained in the Julia set is finite and disjoint from ω-limit set.

    Let f(z)be a map of degree≥2.A component D of the Fatou set F(f)is said to be completely invariant,if

    In this paper,we establish the following main theorem.

    Main TheoremLet f(z)be an NCP map of degree≥2,and suppose that F(f)is the union of exactly two completely invariant components.Then J(f)is their common boundary and is a Jordan curve.

    2 Preliminaries and the Construction of a Net

    Let f be an NCP map.Denote by Λ(f)the set of all parabolic periodic points of f(these points belong to the Julia set and have an essential influence on its fractal structure),and Crit(f)of all critical points of f.We put

    Set

    Definition 2.1We define the conical set Jc(f)of f as follow.First,say x belongs to Jc(f,r)if for any∈>0,there is a neighborhood U of x and n>0 such that diam(U)<ε and fn:U→B(fn(x),r)is a homeomorphism.Then setWe have x∈Jc(f)if and only if arbitrary small neighborhood of x can be blow up univalently by the dynamics to balls of definite size centered at fn(x).

    Lemma 2.1(see[2])If f:J(f)→J(f)is an NCP map,then

    Note that Curtis T.McMullen used the term radial Julia set Jrad(f)instead of conical set Jc(f)in analogy with Kleinian groups,see ref.[3].By paper[3],we have the set Sing(f)is countable.

    Let 0<λ<1.Then there exist an integer m≥1,C>0,an open topological disk U containing no critical values of f up to order m and analytic inverse branchesof fmn(i=1,···,kn≤ dnm,n ≥ 0),satisfying

    (3)for each fixed n ≥ 1,for all i=1,···,knthe setsare pairwise disjoint and

    Now we state as a lemma the following consequence of(1)–(3).

    Lemma 2.2For each n,letand letThen N is a net of Jc(f),i.e.,any two sets in N are either disjoint or one is a subset of the other.

    3 Conformal Iterated Function System

    In paper[4],Urbanski and Zdunik provided the framework to study infinite conformal iterated function systems.Now we recall this notion and some of its basic properties.Let I be a countable index set with at least two elements and let S={φi:X → X:i∈ I}be a collection of injective contractions from a compact metric space X(equipped with a metric ρ)into X for which there exists 0 < s < 1 such that ρ(φi(x),φi(y)) ≤ sρ(x,y)for every i∈I and for every pair of points x,y∈X.Thus system S is uniformly contractive.Any such collection S of contractions is called an iterated function system.We are particularly interested in the properties of the limit set defined by such a system.We can define this set as the image of the coding space under a coding map as follows.Letthe space of finite words,and for τ∈ I?,n ≥ 1,let φτ= φτ1? φτ2? ···? φτn.Letbe the set of all infinite sequences of elements of I.If τ∈ I?∪I∞and n ≥ 1 does not exceed the length of τ,we denote by τ|nthe word τ1τ2···τn.Since given τ∈ I∞,the diameters of the compact sets φτ|n(X),n ≥ 1,converge to zero and since they form a descending family,the set

    is a singleton therefor,denoting its only element by π(τ),defines the coding map

    有 8 篇研究[2,4-8,11]報道了Ⅲ度及以上腹瀉,合計樣本量504例:替吉奧組252例,卡培他濱組252例。各研究間具有同質性(P=0.92,I2=0%),采用固定效應模型。結果顯示,替吉奧組Ⅲ度及以上腹瀉少于卡培他濱組,具有統(tǒng)計學意義[RR=0.42,95%CI:(0.18,0.99),P=0.05],見圖 3。

    The main object in the theory of iterated function systems is the limit set defined as follows.

    Observe that J satisfied the natural invariance equality

    Notice(1)If I is finite,then J is compact and this property fails for infinite systems by paper[4].

    (2)In Lemma 3.3,we shall build recursively our iterated function systemand n(=I)is finite.

    Let X(∞)be the set of limit points of all sequences xi∈ φi(X),i∈ I′,where I′ranges over all infinite subsets of I,see ref.[4].

    Lemma 3.1(see[4])If

    An iterated function system S={φi:X → X:i∈ I}is said to satisfy the open set condition if there exists a nonempty open set U?X(in the topology of X)such that φi(U)? U for every i∈ I and φi(U)∩φj(U)= ? for every pair i,j∈ I,i/=j(we do not exclude clφi(U)∩ clφj(U)/= ?).

    An iterated function system S={φi:X →X:i∈I}is said to be conformal if X ?Rdfor some d≥1 and the following conditions are satisfied.

    (c)There exists an open connected set V such that X?V?Rdsuch that all maps φi,i ∈ I,extend to C1conformal diffeomorphisms of V into V(note that for d=1 this just means that all the maps φi,i ∈ I,are monotone diffeomorphism,for d=2 the words conformal mean holomorphic and antiholomorphic,and for d=3,the maps φi,i ∈ I are M?bius transformations).

    (d)(Cone condition)There exist α,l> 0 such that for every x ∈ ?X and there exists an open cone Con(x,u,α)? Int(V)with vertex x,the symmetry axis determined by vector u of length l and a central angle of Lebesgue measure α,here Con(x,u,α)={y:0 < (y?x,u)≤cosα||y?x||≤ l}.

    (e)Bounded distortion property(BDP).There exists K≥1 such that

    for every ω ∈ I?and every pair of points x,y ∈ V,wheremeans the norm of the derivative,see ref.[9,10].

    Definition 3.1A bounded subset X of a Euclidean space(or Reimann sphere)is said to be porous if there exists a positive constant c>0 such that each open ball B centered at a point of X and of an arbitrary radius 0<r≤1 contains an open ball of radius cr disjoint from X.If only balls B centered at a fi xed point x∈X are discussed above,X is called porous at x,see ref.[5].

    Lemma 3.2(see[5])The Julia set of each NCP map,if diあerent fromis porous.

    Lemma 3.3If f is an NCP map,then Jc(f)admits a conformal iterated function system satisfying conditions(a)–(e).

    ProofLet f be an NCP map.By Lemma 2.2,Jc(f)admits a net such that Bi∩Bj= ?,i/=j.Moreover,we may require the existence of an integer q≥ 1 and σ > 0 such that the following holds:

    If x∈Jc(f),say x∈Bi,and fqn(x)∈Bt,then there exists a unique holomorphic inverse branch:sending fqn(x)to x.Moreoverand taking q suきciently large,we have

    for suきciently small σ,then

    Let n > 1 be fi nite.For every t=1,2,···,n,we now build recursively our iterated function system Stas a disjoint union of the familiesj≥1,as follows.consists of all the maps,where x,fq(x)∈ Jc(f)∩ Bt.consists of all the mapswhere x,f2q(x)∈Jc(f)∩Btand fq(x)/∈Bt.Suppose that the familieshave been already constructed.Thenis composed of all the mapssuch that y,fqn(y)∈Jc(f)∩Btand fqj(y)∈/Btfor every 1≤j≤n?1.

    Let V?Jc(f)be an open set constructed by the net such that it disjoints from the parabolic and critical points and their inverse orbits of f.For any x∈V and fi nite n<∞,we have

    then

    where x,y∈V and 1≤K<∞is a constant.So condition(e)bounded distortion property(BDP)holds.It is evident that fnis holomorphic and antiholomorphic of V into V for all n≥1,then condition(c)holds.Since J(f)is porous,and condition(d)is satis fi ed.Condition(b)follows immediately from(3.1).In order to prove condition(a),take two distinct mapsandbelong to St.Without loss of generality we may assume that m≤n.Suppose on the contrary that

    Then

    4 Proof of Main Result

    Given x∈C,θ,r> 0,we put

    where η is a representative of θ.We recall that a set Y has a tangent in the direction θ at a point x∈Y if for every r>0,

    where H1denotes the 1-dimensional Hausdorff measure(see refs.[6,7]).Following[6],we say that a set Y has a strong tangent in the direction θ at a point x provided for each 0< β ≤ 1,there is a some r> 0 such that Y ∩B(x,r)? Con(x,θ,β).

    Lemma 4.1(see[7])If Y is locally arcwise connected at a point x and Y has a tangent θ at x,then Y has strong tangent θ at x.

    We call a point τ∈ I∞transitive if ω(τ)=I∞,where ω(τ)is the ω-limit set of τ under the shift transformation σ :I∞→ I∞.We denote the set of these points byand putWe call the Γtthe set of transitive points of ΓStand notice that for everythe setis dense in

    Lemma 4.2(see[7])has a strong tangent at a point x= π(τ),τ∈ I∞,then ΓSt has a strong tangent at every point

    Remark 4.1If f is an NCP map,by Lemma 3.3,Jc(f)admits a conformal iterated function system St.It is obvious that the Julia set J(f)coincides with the limit setby Lemma 3.1.By Lemma 3.1,3.3 and 4.2 we have

    Lemma 4.3If f is an NCP map,then J(f)has a strong tangent at every point of J(f).

    Proof of Main TheoremLet f be an NCP map and denoted by F∞the unbounded component of the Fatou set F(f).As F∞is completely invariant,applying Riemann-Hurwitz formula(see§5.4 in[8])to f:F∞→ F∞,we find that F∞has exactly d?1 critical points of f,and all of these lie at∞.Now take any disk D centered at∞,which is such that

    For each n,let Dn=f?n(D):then Dnis open and connected,

    and as

    where χ(Dn+1)and χ(Dn)denote the Euler characteristics of domains Dn+1and Dnas above,we see that each Dnis simply connected.Let γnbe the boundary of Dn;then γnis a Jordan curve and fnis a dn-fold map of γnonto γ0.SetRoughly speaking,we shall show that γnconverges to

    If ξ∈ Γ then there are points ξnon γnwhich converge to ξ,so,in particular,ξ is in the closure of F∞.However,ξ cannot lie in F∞else it has a compact neighbourhood K lying in some Dn(for the Djare an open cover of K),and hence not meeting γn,γn+1,···for sufficiently large n.We deduce that Γ ? J(f).

    J(f)is porous,then Jc(f)admits a conformal iterated function system s}for finite s satisfying conditions(a)–(e)by Lemma 3.3.

    To prove that J(f)?Γ,let w∈J(f)be a repelling fixed point(or an image of a repelling fixed point)and l be the straight line determined by the strongly tangent direction of J(f)at w as in Lemma 4.3.Then w is an attracting fixed point of f?1.Moreover,

    is a conformal map,where U(w)is a disk centered at w.Now suppose that J(f)is not contained in Γ.Consider x ∈ J(f)Γ such that x ∈ U(w),thenand for every n ≥ 0,we have f?n(x)∈ J(f).Since the map f?1:U(w)→ U(w)is conformal,we get

    It follows that w and f?n(x)(n ≥ 0)are contained in the same lineand this implies thatis the strongly tangent straight line of J(f)at w.Therefore,we conclude that l is not a strongly tangent straight line of J(f)at w.This contradiction proves that J(f)? Γ.

    RemarkIf Main Theorem only with the hypothesis:the Fatou set F(f)has a completely invariant component,J(f)need not be a Jordan curve;for example,the map z→ z2?1 is expanding on its Julia set(certainly NCP map),see Theorem 9.7.5 and Figure 1.5.1 in[8].

    [1]Urba′nski M.Measures and dimensions in conformal dynamics[J].Bull.Amer.Math.Soc,2003,40:281–321.

    [2]Urba′nski M.Rational functions with no recurrent critical points[J].Ergod.Th.Dynam.Sys.,1994,14:391–414.

    [3]Curtis T McMullen.Huasdorff dimension and conformal dynamics II:Geometrically finite rational maps[J].Comment Math.Helv.,2000,75:535–593.

    [4]Urba′nski M,Zdunik A.Hausdorff dimension of harmonic maesure for self-conformal set[J].Adv.Math.,2002,171:1–58.

    [5]Przytycki F,Urba′nski M.Porosity of Julia sets of non-recurrent and parabolic Collet-Eckmann rational functions[J].Ann.Acad.Fenn.,2001,26:125–154.

    [6]Mauldin R D,Urba′nski M.Jordan curvers as repellors[J].Pac.J.Math.,1994,166:85–97.

    [7]Mauldin R D,Mayer V,Urba′nski M.Rigidity of connected limit sets of conformal IFS[J].Michigan Math.J.,2001,49:451–458.

    [8]Beardon A F.Iteration of rational functions[M].No.132 in GTM,New York:Springer-Verlag,1991.

    [9]Zhuang Wei.On the continuity of Julia sets and the Hausdorff dimension of Yang-Lee zeros[J].J.Math.,2013,33(4):571–583.

    [10]Zhuang Wei.The property of the Julia set of rational functions with conformal iterated function system[J].J.Math.,2007,27(2):177–180.

    猜你喜歡
    濱組同質性卡培
    二甲雙胍增強膽管癌細胞對吉西他濱敏感性機制的研究
    奈達鉑聯(lián)合吉西他濱阻滯非霍奇金淋巴瘤細胞周期促進細胞凋亡的作用研究
    卡培他濱對復發(fā)轉移三陰性乳腺癌的療效分析
    阿帕替尼聯(lián)合吉西他濱對Lewis肺癌的實驗研究
    TLR9對胰腺癌裸鼠增殖生長及化療耐藥性的研究
    基于同質性審視的高職應用型本科工程教育研究
    職教論壇(2017年4期)2017-03-13 16:43:19
    血清CEA和CA-199對卡培他濱治療復發(fā)轉移乳腺癌預后的臨床預測
    理性程度的異質性:基于理論與實踐的考察
    長春瑞濱聯(lián)合卡培他濱對乳腺癌患者復發(fā)轉移和無病生存的影響
    高等工程教育與高等職業(yè)教育的同質性
    久久久久精品国产欧美久久久 | 视频区图区小说| 亚洲精品乱久久久久久| 国产免费视频播放在线视频| 秋霞在线观看毛片| 亚洲 国产 在线| av在线老鸭窝| 日韩视频一区二区在线观看| 国产色视频综合| 热99re8久久精品国产| 首页视频小说图片口味搜索| 啦啦啦视频在线资源免费观看| 国产老妇伦熟女老妇高清| 黑人巨大精品欧美一区二区mp4| 老汉色∧v一级毛片| 久久国产精品男人的天堂亚洲| 亚洲视频免费观看视频| 国产伦人伦偷精品视频| 日本wwww免费看| 一级毛片电影观看| 黑人操中国人逼视频| 99热全是精品| 精品人妻1区二区| 人妻 亚洲 视频| 天天添夜夜摸| 国产欧美日韩一区二区精品| 一级片'在线观看视频| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久成人av| 欧美成人午夜精品| 国产精品麻豆人妻色哟哟久久| 91麻豆精品激情在线观看国产 | 99热国产这里只有精品6| 欧美一级毛片孕妇| 黑人操中国人逼视频| 午夜两性在线视频| 亚洲国产毛片av蜜桃av| 另类亚洲欧美激情| 大型av网站在线播放| 99热网站在线观看| 中文字幕最新亚洲高清| 国产精品熟女久久久久浪| 在线观看人妻少妇| 一本一本久久a久久精品综合妖精| 俄罗斯特黄特色一大片| 大码成人一级视频| 久久精品国产综合久久久| 夜夜骑夜夜射夜夜干| 韩国精品一区二区三区| 精品人妻熟女毛片av久久网站| 大型av网站在线播放| 欧美日韩一级在线毛片| 大片免费播放器 马上看| 男人爽女人下面视频在线观看| 老司机靠b影院| 欧美老熟妇乱子伦牲交| 视频在线观看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久国产精品人妻蜜桃| 不卡一级毛片| 欧美人与性动交α欧美软件| 黄色 视频免费看| 亚洲国产看品久久| 美女脱内裤让男人舔精品视频| 极品人妻少妇av视频| 欧美久久黑人一区二区| 国产亚洲av高清不卡| 男女无遮挡免费网站观看| 啦啦啦 在线观看视频| 交换朋友夫妻互换小说| 久久久久国产一级毛片高清牌| 精品卡一卡二卡四卡免费| 性色av一级| 日韩视频在线欧美| 99国产精品一区二区蜜桃av | 欧美精品高潮呻吟av久久| 黑丝袜美女国产一区| 亚洲欧美成人综合另类久久久| 如日韩欧美国产精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 制服人妻中文乱码| 久久人妻熟女aⅴ| 在线观看免费日韩欧美大片| 丰满人妻熟妇乱又伦精品不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色怎么调成土黄色| 搡老熟女国产l中国老女人| 国产无遮挡羞羞视频在线观看| 亚洲欧美色中文字幕在线| www.av在线官网国产| 99精品久久久久人妻精品| 一进一出抽搐动态| 俄罗斯特黄特色一大片| 国产精品国产三级国产专区5o| 啦啦啦视频在线资源免费观看| 欧美久久黑人一区二区| 国产高清videossex| 欧美中文综合在线视频| 操美女的视频在线观看| 国产黄频视频在线观看| 国产精品偷伦视频观看了| 亚洲av日韩在线播放| 国产精品久久久久久人妻精品电影 | 国产免费视频播放在线视频| 无限看片的www在线观看| 亚洲国产欧美网| 日韩免费高清中文字幕av| 妹子高潮喷水视频| 亚洲av电影在线进入| 超色免费av| 亚洲国产中文字幕在线视频| 亚洲专区国产一区二区| 午夜福利,免费看| 人成视频在线观看免费观看| 久久久久国产一级毛片高清牌| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲高清精品| 捣出白浆h1v1| 国产成人免费观看mmmm| 老司机深夜福利视频在线观看 | 99久久精品国产亚洲精品| 黄色片一级片一级黄色片| 日本av免费视频播放| 法律面前人人平等表现在哪些方面 | 国产片内射在线| 一边摸一边做爽爽视频免费| 精品人妻熟女毛片av久久网站| 麻豆av在线久日| 成人18禁高潮啪啪吃奶动态图| 丝袜在线中文字幕| 五月开心婷婷网| 精品一区二区三区四区五区乱码| 亚洲国产精品成人久久小说| 亚洲国产看品久久| 中文欧美无线码| 黄色毛片三级朝国网站| 精品一区二区三卡| 亚洲激情五月婷婷啪啪| 亚洲 欧美一区二区三区| 男人爽女人下面视频在线观看| av线在线观看网站| 午夜福利在线免费观看网站| 极品人妻少妇av视频| 国产99久久九九免费精品| 午夜日韩欧美国产| 黑人巨大精品欧美一区二区mp4| 免费在线观看完整版高清| 亚洲欧美精品自产自拍| 亚洲欧洲日产国产| 一边摸一边做爽爽视频免费| 亚洲男人天堂网一区| a级毛片在线看网站| av天堂久久9| 久热爱精品视频在线9| 国产在线观看jvid| 亚洲精品日韩在线中文字幕| 91大片在线观看| 久久国产精品影院| 岛国毛片在线播放| 一区二区av电影网| av电影中文网址| 飞空精品影院首页| 精品久久久久久久毛片微露脸 | 日韩一卡2卡3卡4卡2021年| 国产1区2区3区精品| 热re99久久国产66热| 丁香六月欧美| 人人妻,人人澡人人爽秒播| 俄罗斯特黄特色一大片| 久久久国产一区二区| 九色亚洲精品在线播放| 国产精品二区激情视频| 免费在线观看黄色视频的| 一级毛片精品| 午夜免费成人在线视频| 亚洲精品中文字幕一二三四区 | 国产精品一区二区免费欧美 | 久久精品久久久久久噜噜老黄| 9191精品国产免费久久| 国产xxxxx性猛交| 亚洲欧美一区二区三区黑人| 久久青草综合色| 欧美日韩亚洲高清精品| 性高湖久久久久久久久免费观看| 十分钟在线观看高清视频www| 欧美日韩精品网址| 亚洲国产精品999| 大香蕉久久成人网| 亚洲 欧美一区二区三区| 中文字幕制服av| 午夜福利,免费看| 国产一区二区在线观看av| 亚洲午夜精品一区,二区,三区| 在线观看免费视频网站a站| 男女边摸边吃奶| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美| 国产av精品麻豆| 伦理电影免费视频| 国产精品一二三区在线看| 人人妻人人爽人人添夜夜欢视频| 十八禁人妻一区二区| 国精品久久久久久国模美| 亚洲专区中文字幕在线| 一个人免费在线观看的高清视频 | 黑人操中国人逼视频| avwww免费| 麻豆av在线久日| 国产一区二区 视频在线| www.自偷自拍.com| 国产伦人伦偷精品视频| 国产精品欧美亚洲77777| 婷婷色av中文字幕| 亚洲九九香蕉| 亚洲国产精品一区三区| 丝袜在线中文字幕| 免费高清在线观看日韩| 国产日韩一区二区三区精品不卡| 国产深夜福利视频在线观看| 亚洲国产日韩一区二区| 久久九九热精品免费| 欧美一级毛片孕妇| 手机成人av网站| 国产精品香港三级国产av潘金莲| 视频在线观看一区二区三区| 青春草亚洲视频在线观看| av不卡在线播放| 欧美精品高潮呻吟av久久| 俄罗斯特黄特色一大片| 色综合欧美亚洲国产小说| 欧美日韩精品网址| 精品少妇黑人巨大在线播放| 国产成人一区二区三区免费视频网站| av不卡在线播放| 人妻 亚洲 视频| 欧美精品一区二区免费开放| 久久精品国产综合久久久| 男女午夜视频在线观看| 青草久久国产| 99久久综合免费| 欧美精品高潮呻吟av久久| 性高湖久久久久久久久免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一级a爱视频在线免费观看| 男女床上黄色一级片免费看| 黄色片一级片一级黄色片| 一二三四在线观看免费中文在| 久久亚洲国产成人精品v| 一区在线观看完整版| 热99国产精品久久久久久7| 久久精品国产亚洲av香蕉五月 | 国产亚洲一区二区精品| 国产一区二区激情短视频 | a级毛片黄视频| 国产亚洲精品第一综合不卡| 男女边摸边吃奶| 看免费av毛片| 97在线人人人人妻| 亚洲人成电影观看| 国产av国产精品国产| 精品亚洲成a人片在线观看| 美女脱内裤让男人舔精品视频| 久久热在线av| 精品国产一区二区三区四区第35| 亚洲免费av在线视频| 亚洲精品国产区一区二| 精品免费久久久久久久清纯 | 亚洲天堂av无毛| 欧美人与性动交α欧美软件| 人人妻人人爽人人添夜夜欢视频| 欧美成狂野欧美在线观看| 午夜福利视频精品| 男女午夜视频在线观看| 国产黄频视频在线观看| 啦啦啦视频在线资源免费观看| videos熟女内射| 成年人黄色毛片网站| 王馨瑶露胸无遮挡在线观看| 欧美精品高潮呻吟av久久| 欧美日韩视频精品一区| 女性被躁到高潮视频| 免费在线观看完整版高清| 大码成人一级视频| 欧美亚洲日本最大视频资源| 久久中文字幕一级| 高潮久久久久久久久久久不卡| 精品亚洲乱码少妇综合久久| 亚洲精品久久久久久婷婷小说| 99久久99久久久精品蜜桃| 精品一品国产午夜福利视频| 亚洲欧美成人综合另类久久久| 又黄又粗又硬又大视频| 男女床上黄色一级片免费看| 自拍欧美九色日韩亚洲蝌蚪91| 精品福利观看| 亚洲av日韩精品久久久久久密| 大片电影免费在线观看免费| 欧美成人午夜精品| 国产一区二区三区在线臀色熟女 | 99久久国产精品久久久| 欧美 日韩 精品 国产| 久久免费观看电影| 亚洲一区中文字幕在线| 亚洲中文av在线| 午夜激情久久久久久久| 97在线人人人人妻| 桃红色精品国产亚洲av| 岛国在线观看网站| 性高湖久久久久久久久免费观看| 久久国产精品人妻蜜桃| 精品亚洲成国产av| 久久精品亚洲av国产电影网| 一边摸一边做爽爽视频免费| 午夜福利在线免费观看网站| 久久午夜综合久久蜜桃| 无遮挡黄片免费观看| 亚洲五月婷婷丁香| 岛国在线观看网站| 欧美黑人欧美精品刺激| 国产欧美日韩综合在线一区二区| 国产精品一区二区精品视频观看| 电影成人av| 91精品伊人久久大香线蕉| 啦啦啦免费观看视频1| 国产av又大| 搡老熟女国产l中国老女人| 亚洲第一青青草原| 亚洲成国产人片在线观看| 国产视频一区二区在线看| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看 | 国产成人精品久久二区二区免费| 国产一区二区三区综合在线观看| 精品欧美一区二区三区在线| 乱人伦中国视频| 国产成人影院久久av| 中文资源天堂在线| 亚洲精品美女久久久久99蜜臀| 无人区码免费观看不卡| 国产乱人伦免费视频| 久久久久久国产a免费观看| 国产精品 欧美亚洲| www.自偷自拍.com| 香蕉国产在线看| 国产成+人综合+亚洲专区| 美女黄网站色视频| 亚洲av电影不卡..在线观看| 国产一区二区三区视频了| 我要搜黄色片| 亚洲av片天天在线观看| 久久精品国产亚洲av香蕉五月| 亚洲人成伊人成综合网2020| 大型黄色视频在线免费观看| 日本一二三区视频观看| 国产精品一区二区三区四区免费观看 | 久久精品aⅴ一区二区三区四区| 久久久国产成人免费| 婷婷亚洲欧美| 少妇裸体淫交视频免费看高清 | 在线观看66精品国产| 久久精品国产亚洲av高清一级| 99精品在免费线老司机午夜| 色噜噜av男人的天堂激情| 国产成人欧美在线观看| 欧美一区二区精品小视频在线| 夜夜爽天天搞| 国产午夜精品论理片| 日韩欧美三级三区| 两个人看的免费小视频| av欧美777| 一级作爱视频免费观看| 久热爱精品视频在线9| 亚洲av电影在线进入| 91大片在线观看| 成人特级黄色片久久久久久久| 免费观看人在逋| 国产激情欧美一区二区| 18禁国产床啪视频网站| 国产区一区二久久| 在线观看免费视频日本深夜| 高清毛片免费观看视频网站| 老司机在亚洲福利影院| a级毛片在线看网站| 香蕉久久夜色| 国产av不卡久久| 看免费av毛片| 美女黄网站色视频| 成人18禁在线播放| 亚洲国产精品sss在线观看| 免费在线观看黄色视频的| 不卡一级毛片| 高清毛片免费观看视频网站| 亚洲国产高清在线一区二区三| 久久人妻福利社区极品人妻图片| 99精品在免费线老司机午夜| 欧美一区二区国产精品久久精品 | 不卡一级毛片| 别揉我奶头~嗯~啊~动态视频| 一级黄色大片毛片| 亚洲一码二码三码区别大吗| 国产精品电影一区二区三区| 一a级毛片在线观看| 中文字幕精品亚洲无线码一区| 免费无遮挡裸体视频| 免费观看人在逋| 国产精品野战在线观看| 99精品欧美一区二区三区四区| 一本精品99久久精品77| av欧美777| 欧美国产日韩亚洲一区| 精华霜和精华液先用哪个| 欧美另类亚洲清纯唯美| 国产亚洲精品第一综合不卡| 中出人妻视频一区二区| 久久亚洲精品不卡| 一卡2卡三卡四卡精品乱码亚洲| 久久久久亚洲av毛片大全| 最新在线观看一区二区三区| 国产精品综合久久久久久久免费| 一本一本综合久久| 国产精品乱码一区二三区的特点| 狠狠狠狠99中文字幕| 国产乱人伦免费视频| 欧美zozozo另类| av福利片在线观看| 一个人观看的视频www高清免费观看 | av视频在线观看入口| 在线国产一区二区在线| 免费看美女性在线毛片视频| 看片在线看免费视频| 久久亚洲精品不卡| 少妇的丰满在线观看| 好男人电影高清在线观看| 国产高清激情床上av| 精品一区二区三区四区五区乱码| 一边摸一边做爽爽视频免费| 国产精华一区二区三区| 999久久久国产精品视频| 黄片大片在线免费观看| 亚洲 国产 在线| 久久午夜亚洲精品久久| 妹子高潮喷水视频| 十八禁人妻一区二区| 亚洲精品中文字幕在线视频| 欧美乱妇无乱码| 欧洲精品卡2卡3卡4卡5卡区| 日本精品一区二区三区蜜桃| 夜夜躁狠狠躁天天躁| 国产精品久久久av美女十八| 国产激情久久老熟女| 18禁黄网站禁片免费观看直播| 国内精品久久久久久久电影| 男人舔女人的私密视频| 少妇的丰满在线观看| 超碰成人久久| 亚洲国产精品成人综合色| 全区人妻精品视频| 国模一区二区三区四区视频 | 男女做爰动态图高潮gif福利片| 亚洲天堂国产精品一区在线| 色综合站精品国产| 欧美日本视频| 色播亚洲综合网| 亚洲精品在线美女| 可以在线观看的亚洲视频| 午夜福利18| www.精华液| 一进一出好大好爽视频| 久久久久久久久免费视频了| 久久香蕉国产精品| 天天一区二区日本电影三级| 国产精品久久视频播放| 两个人的视频大全免费| 成年女人毛片免费观看观看9| 欧美黑人精品巨大| 日韩大尺度精品在线看网址| 99国产综合亚洲精品| 久久精品国产综合久久久| 两个人视频免费观看高清| 三级男女做爰猛烈吃奶摸视频| 午夜精品久久久久久毛片777| 国产精品影院久久| √禁漫天堂资源中文www| 天堂动漫精品| 成人永久免费在线观看视频| 午夜福利在线观看吧| 日韩欧美 国产精品| 夜夜夜夜夜久久久久| avwww免费| 精品一区二区三区av网在线观看| 91成年电影在线观看| 日韩欧美在线乱码| 色精品久久人妻99蜜桃| 亚洲电影在线观看av| 亚洲色图 男人天堂 中文字幕| 欧美三级亚洲精品| 美女 人体艺术 gogo| 婷婷精品国产亚洲av在线| 亚洲男人的天堂狠狠| 亚洲美女视频黄频| 成人18禁在线播放| 女生性感内裤真人,穿戴方法视频| 免费一级毛片在线播放高清视频| a级毛片a级免费在线| 婷婷亚洲欧美| 欧美成人一区二区免费高清观看 | 精品一区二区三区视频在线观看免费| 美女 人体艺术 gogo| 欧美在线黄色| 1024手机看黄色片| 日本一本二区三区精品| 国内揄拍国产精品人妻在线| 国产视频内射| 亚洲中文字幕一区二区三区有码在线看 | 国产精品电影一区二区三区| 国产真人三级小视频在线观看| 国产欧美日韩一区二区精品| 岛国在线观看网站| 天堂动漫精品| 国产区一区二久久| 全区人妻精品视频| 亚洲欧美一区二区三区黑人| 国产免费男女视频| 91成年电影在线观看| 黄色丝袜av网址大全| 丁香欧美五月| 国产v大片淫在线免费观看| 亚洲一区二区三区色噜噜| 亚洲一码二码三码区别大吗| www日本在线高清视频| 天堂√8在线中文| 非洲黑人性xxxx精品又粗又长| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 97碰自拍视频| 三级毛片av免费| 久久久久久免费高清国产稀缺| 亚洲人成伊人成综合网2020| 亚洲国产精品999在线| 最近最新中文字幕大全电影3| 天堂动漫精品| 日本在线视频免费播放| 两个人免费观看高清视频| 久久 成人 亚洲| 亚洲狠狠婷婷综合久久图片| 不卡av一区二区三区| 久久亚洲真实| 久久国产精品影院| 午夜福利视频1000在线观看| 亚洲 欧美 日韩 在线 免费| 日韩有码中文字幕| 99国产极品粉嫩在线观看| 老司机午夜福利在线观看视频| 国产免费av片在线观看野外av| xxx96com| 九色成人免费人妻av| 亚洲国产精品合色在线| 99在线视频只有这里精品首页| 99久久久亚洲精品蜜臀av| 中文字幕精品亚洲无线码一区| 国内揄拍国产精品人妻在线| 亚洲天堂国产精品一区在线| 俄罗斯特黄特色一大片| 成人特级黄色片久久久久久久| 97超级碰碰碰精品色视频在线观看| 亚洲,欧美精品.| 亚洲av片天天在线观看| 亚洲七黄色美女视频| 久久国产精品影院| 人成视频在线观看免费观看| 波多野结衣高清无吗| 欧美国产日韩亚洲一区| 精品乱码久久久久久99久播| 脱女人内裤的视频| 国产高清激情床上av| 亚洲男人的天堂狠狠| 亚洲国产精品999在线| 国产成人av激情在线播放| 欧美日韩乱码在线| 欧美不卡视频在线免费观看 | 亚洲第一欧美日韩一区二区三区| 精品久久久久久,| av片东京热男人的天堂| 一区二区三区高清视频在线| 久久精品国产99精品国产亚洲性色| 一a级毛片在线观看| 久久热在线av| 美女黄网站色视频| 亚洲 欧美一区二区三区| videosex国产| 亚洲专区字幕在线| 亚洲五月天丁香| 日韩欧美 国产精品| av片东京热男人的天堂| 午夜a级毛片| 午夜日韩欧美国产| 十八禁人妻一区二区| 男人舔女人的私密视频| 精品欧美一区二区三区在线| 美女大奶头视频| 成熟少妇高潮喷水视频| 琪琪午夜伦伦电影理论片6080| 国产伦在线观看视频一区| 色精品久久人妻99蜜桃| av免费在线观看网站| 男插女下体视频免费在线播放| 99国产极品粉嫩在线观看| 欧美极品一区二区三区四区| 日本精品一区二区三区蜜桃| 国产精品国产高清国产av| tocl精华| 国产三级在线视频| 正在播放国产对白刺激| 床上黄色一级片| 亚洲专区国产一区二区|