• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability Analysis of a Lignocellulose Degrading Microbial Consortium

    2018-04-02 09:18:16ZhengGuoxiangLiJianZhouChenyangandChongYuting
    關(guān)鍵詞:賊風(fēng)電熱板水嘴

    Zheng Guo-xiang, Li Jian, Zhou Chen-yang and Chong Yu-ting

    1 College of Engineering, Northeast Agricultural University, Harbin 150030, China

    2 Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China

    3 Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China

    Introduction

    Rice straw is an important carbon resource for the biorefinery industry, its use for bio-energy-biogas is also a very promising way, and is thus considered a sustainable and environmentally friendly alternative to the fossil energy (Kamm and Kamm, 2004; Edwardet al., 2007).The use of microbial populations in decomposing lignocellulosic biomass to produce highcalorific value products is an important research area in alleviating energy crisis and effectively utilizing the cellulose resources (Barkhaet al., 2016;Zhouet al., 2009).

    In natural, lignocellulosic biomass is decomposed under aerobic or anaerobic conditions due to synergy of various microorganisms, which will avoid feedback regulation and metabolic inhibition in contrast to single strain (Kumaret al., 2008; Mohamedet al.,2015; Miqueletoet al., 2010).In recent years, many lignocellulose degradation complex consortia were successfully obtained by limiting-culture and directional construction (Tanget al., 2015; Barkha 2016;Liet al., 2009; Gaoet al., 2009).Harutaet al.(2002)obtained a structural stable and complex lignocellulolytic microbial consortium with high degradable activity on various cellulosic materials from rice straw compost by successive enrichment culture.Study on the dynamic changes of genetic components and functional stability of microbial consortia could provide necessary basis for subsequent theoretical and applied researchs (Bandal, 2003).The application of molecular ecology technology can avoid the cumbersome process in traditional separation and cultivation, directly to the relationships between microbial consortia structure and environment, DGGE technology is one of the commonly used molecular ecology technology (Gonget al., 2004).Liu (2009)studied the microbial community dynamics and determined the dominant bacteria in different rice stalk fermentation stages with PCR-DGGE technology.

    The functional and structural stabilities of microbial consortia are considered to be important factors in biomass degradation capability and potential for biotechnological application (Wongwilaiwalinet al.,2010).In this study, the functional and structural stability of five different generations of reserved microbial consortium LZF-12 capable of degrading rice straw were evaluated through batch experiments and a molecular culture-independent approach.This study provided a valuable platform for the subsequent targeted regulation and control of fermentation system.The microbial consortia have potential in biotechnological application on lignocellulosic biomass degradation.

    Materials and Methods

    Culture and medium

    The mesophilic microbial consortium LZF-12 capable of effectively degrading lignocelluloses was established by the Biomass Laboratory of Northeast Agricultural University (Chonget al., 2011).Rice straw was collected from local farm, pretreated with 1% (w/v) NaOH and dried at 50℃, used as the sole carbon source (Zheng, 2013).The microbial consortium was grown in peptone cellulose selection(PCS) medium (peptone, 5 g; yeast powder, 0.8 g;calcium carbonate, 2.0 g; sodium chloride, 5.0 g; dry straw, 10.0 g; distilled water, 1 000 mL) autoclaved at 121℃ for 15 min using standard methods (Wanget al., 2005).

    The preserved 15th, 20th, 25th, 30th and 35th generations microbial consortia were inoculated in 500 mL petone cellulose substrate (PCS) medium containing 1% rice straw at a 5% inoculation amount,incubated at 35℃ under static condition.pH, dissolved oxygen (DO) value and liquid end products of the fermentation broth were monitored daily, the residual solid cellulosic substrates were determined gravimetrically incubated for 7 days with uninoculated media as the contrast group.

    Analytical methods

    DO and pH were monitored regularly using the Portable Dissolved Oxygen Analyzer (WTW oxi315i)and the portable pH meter (Accuracy: 0.01).The methods referred to Liet al(2006).

    The microbial consortium was incubated in PCS medium containing 1% rice straw.Residual solid cellulosic substrates were analyzed after incubation with the microbial consortia for 7 days at 35℃ under the defined facultative anaerobic static condition.The residual substrates were then determined gravimetrically after dried at 105℃ for 2 days with uninoculated medium as a contrast group.Percent of residual weight was reported based on the total holocellulose content.Degradation ratio was described by the following equation (Kluzek-Turpeinen B,2000).

    Where,Mtwas the total weight of the cellulosic materials before degradation andMrwas the weight of the residual substrates after degradation.The reactions were performed in triplicate and the averages of the results were reported.Volatile fat acid (VFA) was determined by a gas chromatography (GC-6890N,Agilent Inc., USA) equipped with a flame ionization detector and a 30 m×0.25 mm×0.25 μm fused-silica capillary column.Nitrogen was used as the carrier gas with split injection method, split ratio of 20 : 1.The details as described by Zhenget al( 2013).Retention time of ethanol, acetic acid, propionate and butyrate(analytically pure) were determined to obtain the peak sequence.A standard solution containing ethanol,acetic acid, propionic acid, butyric acid was diluted with deionized water to five different concentrations and measured to plot the standard curve.The concentrations of unknown alcohols and acids in the samples were determined according to external standard method (Chong, 2011).

    (三)母豬產(chǎn)前準(zhǔn)備 待產(chǎn)母豬分娩前5~7 d進(jìn)入分娩舍。之前要將分娩舍清掃干凈,用消毒液對(duì)地面、墻壁和圈欄進(jìn)行消毒。墻壁、門(mén)窗有破損時(shí)應(yīng)進(jìn)行修補(bǔ),防止賊風(fēng)進(jìn)入,保持溫濕度良好(產(chǎn)房?jī)?nèi)溫度為16℃~21℃,濕度為55%~57%)。地面要光滑,同時(shí)檢查保育箱、電熱板、水嘴、飼槽等功能是否正常。同時(shí)給待產(chǎn)母豬用溫?zé)岬姆试硭逑慈?,清除污物,再用刺激性小的消毒水將全身消毒,分娩前?.1%高錳酸鉀清洗乳房和外陰部。在產(chǎn)房準(zhǔn)備好接產(chǎn)用的消毒藥水、抹布、碘酒、剪齒鉗等接產(chǎn)用品,等待接產(chǎn)。

    The total genomic DNA was extracted from the microbial consortia using bacterial genomic DNA extraction kit.The purified DNA was used as a template for amplification of the partial 16S rDNA fragment usingTaqDNA polymerase (Fermentas,Vilnius, Lithunia) according to the manufacturer's protocol with 338GC-F forward primer, which was attached to a GC clamp at the 5-terminus (5'-cgcccgc cgcgcgcggcgggcggggcgggggcacggggggactcctacggga ggca-3', GC clamp sequence is underlined), and 518R reverse primer (5'-attaccgcggctgctgg-3').Reactions were performed in a My Cycler thermal cycler (Bio-Rad Laboratories, Hercules, CA).The temperature profile consisted of 94℃ for 3 min, followed by 30 cycles of denaturation at 94℃ for 1 min, annealing at 55℃ for 1 min and extension at 72℃ for 2 min,followed by a final extension step at 72℃ for 3 min.

    The pro files of amplified 16S rDNA fragments were analyzed by DGGE technology on DCodeTM system(Bio-Rad).The target bands were sequenced after cloning.Sequences were initially compared to the available databases using basic local alignment search tool (BLAST) server to determine their approximate phylogeny and analyze the genetic relationship and similarity.

    Results

    Stability analysis of microbial consortium LZF-12

    The degradation rate of rice straw, the types and concentration of fermentation metabolites and genetic stability of the reaction system were used as measurable indicators to screen high efficient microbial consortia.After subculture, transfer experiments were conducted respectively to investigate the fermentation stability of rice straw microbial consortium LZF-12 using the degradation efficiency, pH, DO and terminal liquid products as key indicators.

    Fig.1 showed pH changes of fermentation broth were similar in the 15th, 20th, 25th, 30th and 35th generation cultures with time.At the initial phase of fermentation (1 day), pH of different generations decreased rapidly from the initial 6.8 to 6.1, 6.2, 6.3,and 6.4, respectively.This could be explained by the production of organic acids from the degradation of easily compounds, as acids accumulate, the medium becomes acidified.After 1 day, pH increased from 6.3,6.1, 6.2, 6.4 and 6.3 to 7.0, 7.1, 7.2, 7.0 and 7.1 for each generation respectively, could be explained by the degradation of organic acids along with the growth and fermentation of microbial consortium LZF-12.On the 7th day, the rice straw was mostly degraded and pH was kept 7.0-7.2, it could be inferred that pH changes of the fermentation were closely related to the decomposition process of cellulose.There was no obvious difference in five pH change trends,suggesting the stability of the fermentation system in different generations of LZF-12.

    DO in the 15th, 20th, 25th, 30th and 35th generation cultures were determined.Table 1 showed the changing trends of DO were basically same in five experimental groups.After inoculated 1 day, the decrease in DO significantly from initial 2.3 mg · L-1to 0.07-0.08 mg · L-1, which could be explained by the consumption of dissolved oxygen, due to the growth of facultative anaerobes.In 2-7 days, pH fluctuated slightly (0.07≤DO≤0.09), on the 7th day of the fermentation, DO were 0.07, 0.08, 0.08, 0.07 and 0.09,respectively, indicated that the fermentation of the microbial consortium adapted to micro-aerobic environment.

    The component and concentration of the liquid end products could provide very important reference for controlling the normal operation of the reaction system.In view of the previous studies,the fermentation products of LZF-12 were mainly ethanol, acetic acid, butyric acid and a small amount of propionic acid, and the acetic acid made up about 70% of the total liquid product volume (Chong,2011).Therefore, in this experiment, the changes of acetic acid contents in the fermentation broth of different generations were analyzed dynamically(Fig.2).The main types of liquid end products did not change (the data was not listed) in different generation fermentation systems which were still composed of alcohol, acetic acid, butyric acid and propionic acid.The acetic acid showed small difference and slight variations in different generations.The increase of acetic acid concentrations from 0 to 2.2-2.4 g · L-1appeared to correspond to cellulose degradation amount within 6 days of the incubation.Then gradually decreased to 2.01-2.15 g · L-1, and the concentration of acetic acid in five experimental groups were all above 70% of the total liquid phase end product concentration.

    Fig.1 Variation of pH of different subcultures of microbial system

    Table 1 DO variation of different subcultures of microbial consortium LZF-12

    Fig.2 Variation of acetic acid content of different subcultures of microbial system

    Fig.3 % Residual weight of 15th, 20th, 25th, 30th and 35th generations of microbial consortium LZF-12

    Microbial community structure

    In order to assess the structural stability of the microbial consortium during subcultivation, 16S rDNA PCR products amplified with primer pairs collected from different cultured generations were analyzed by denaturing gradient gel electrophoresis to contrast to the community DGGE profiles.Sixteen bands were observed in DGGE pro files (Fig.4).

    Comparison of the sequences originating from the numbered bands with GenBank (Table 2) revealed that LZF-12 was composed of five major bacteria.Bands 5, 9 and 10 originated fromClostridiumsp.AP81,Clostridium cellobioparumstrain DSM 1351 andClostridiumsp.T241, respectively.

    Clostridiumstrains had a strong adaptation to ambient temperature and pH, and could produce extracellular hydrolytic enzymes decomposing proteins,sugars and lignocellulose to small molecular substances.Bands 7 and 8 originated fromClostridiumcellulolyticumH10 andC.cellulolyticum, gram negative and spore-forming, bacterium with flagella,could produce lignin modifying enzymes including extracellular oxidase, laccase, tyrosinase and peroxidase with a strong ability to degrade cellulose into acetic acid, H2, CO2and lactic acid (Wiegelet al., 2006).The sequences of bands 2, 3, 4, 6, 11 and 15 were identical to some uncultured bacteria which stably co-existed in the consortia, respectively.

    Fig.4 Structural stability of composite microbes in microbial consortium LZF-12 by denaturing gradient gel electrophoresis

    Bands 13, 14 and 16 originated from unculturedVerrucomicrobiawere presented, in addition toPseudomonassp.F5OHPNU07IE0B8 (Band 1) andAcetivibriosp.WSC-27 (Band 12).Being one of the dominant bacterium,Verrucomicrobiaappeared in the later stage owing to oxygen depletion in reaction system and were good for lignocellulosic substrate degradation (Kuang, 2010).Pseudomonaswas rodshaped or slightly curved, gram negative, no spores and aerobic bacterium, used the dissolved oxygen at the initial stage of fermentation to create a microaerobic environment for the system, thus accelerated the lignocellulose degradation by anaerobic and facultative anaerobes.Furthermore,Acetivibriosp.WSC-27 was a mesophilic, chemoorganotrophic bacterium isolated from the waste sludge or pig manure, its main end products were acetates, in additional to a few of ethanol, CO2and H2.DGGE pattern pro file dynamics from different LZF-12 generations were reproducible,suggesting the relative stabilities of the microbial community structure and succession mechanism in the established consortia.

    Table 2 Sequence similarity analysis of bands 1-16

    Conclusions

    These experimental results showed that efficient degradation of rice straw (>70%) could be achieved in batch cultures inoculated with microbial consortium LZF-12 from different generations.Acetic acid was the major aqueous products of five generations,ethanol, butyric acid and a small amount of propionic acid were also formed, but in low levels, the difference in liquid end products showed slightly variation and was the same with DO and pH in the whole fermentation process.Similar DGGE patterns among five generations (from generation 15 to 35) were observed, indicated that the structural and functional stability of the composite microbial co-existed in the consortium, which comprised mainly of approx.Five major composite members includingClostridium,Pseudomonas,Acetivibrio,Verrucomicrobiaand some uncultured unidentified bacteria.Their coexistence was assumed to be important for effective lignocellulose degradation by complex metabolic interaction.The balance of various types of metabolic relationships was considered to be essential for the stable co-existence of the composite members in the community, which resulted in efficient biomass degradation.The results also illustrated the high stability of the microbial community LZF-12 and allowed long-term storage of the seed culture for further experimental studies and application.

    Barkha V, Vaibhav S, Pooja S,et al.2016.Exploring untapped energy potential of urban solid waste.Energy Ecology & Environment, 1(5):323-342.

    Bandal C S.2003.Hemicellulose bioconversion.Journal of Industrial Microbiology and Biotechnology, 30: 279-291.

    Chong Y T.2011.Screening and degradation characteristics of rice straw degrading composite strains.Northeast Agricultural University,Harbin.

    Chong Y T, Li W Z, Zheng G X,et al.2011.Screening of rice straw degradation microbial system and its growth characteristics.Journal of Northeast Agricultural University, 42(8): 56-61.

    Edward A B, Raphael L, Michael E H I.2007.The potential of cellulose and cellulosomes for cellulosic waste management.Current Opinion in Biotechnology, 18: 237-245.

    Gao L W, Ma L, Zhang W F.2009.Estimation and utilization of crop straw nutrient resources in China.Journal of Agricultural Engineering, 25(7): 173-179.

    Gong L M, Ren N Q, Xing D F.2004.DGGE/TGGE technology and its application in microbial molecular ecology.Journal of Microbiology,44(6): 845-848.

    Harta S, Cui Z, Li M,et al.2002.Construction of a stable microbial community with high cellulose-degradation ability.Appl Microbiol Biotechnol, 59: 529-34.

    Kamm B, Kamm M.2004.Principles of biorefineries.Appl Microbiol Biotechnol, 64: 137-145.

    Kuang X Z, Qiu Y L, Shi X S,et al.2010.Isolation and characterization of a novel anaerobic fermentation bacterium.Journal of Anhui Agri Sci,38(17): 8840-8843.

    Kumar R, Singh S, Singh O V.2008.Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.Ind Microbiol Biotechnol, 35: 377-91.

    Li H, Liu L, Li M,et al.2009.Effects of pH, temperature, dissolved oxygen, and flow rate on phophorus release processes at the sediment and water interface in storm sewer.Journal of Analytical Methods in Chemistry, 10: 1-7.

    Li W G, Li Q, He X X.2006.Research progress on returning straw to field.Hunan Agricultural Science, 1: 46-48.

    Liu S.2009.Characteristics of degraded lignocellulose and its flora dynamics in complex strains.Northeast Agricultural University,Harbin.

    Miqueleto A P, Dolosic C C,et al.2010.Influence of carbon sources and C/N ratio on EPS production in anaerobic sequencing batch biofilm reactors for wastewater treatment.Bioresource Technology, 101(4):1324-1330.

    Mohamed T, Krishna K, Kadali A H,et al.2015.An effective microplate method (Biolog MT2) for screening native lignocellulosicstraw-degrading bacteria.Annals of Microbiology, 65(4): 2053-2064.

    Tang H M, Xiao X P, Tang W G,et al.2015.Effect of winter covering crop residue incorporation on CH4and N2O emission from doublecropped paddy fields in southern China.Environmental Science &Pollution Research, 22(16): 12689.

    Kluzek-Turpeinen B, Tuomala M, Hatakka A,et al.2003.Lingin degradation in a compost environment by the deuteromycetePaecilomyces in flatus.Applied Microbiology and Biotechnology, 61:374-379.

    Wang W D, Cui Z J, Yang H Y,et al.2005.Stability of a composite microbial system WSC-6 with efficient cellulose degrading.China Environmental Science, 25(5): 567-571.

    Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T,et al.2010.Analysis of a thermophilic lignocellose degrading microbial consortium and multi-species lignocellulolytic enzyme system.Enzyme and Microbial Technology, 47: 283-290.

    Wiegel J, Tanner R, Rainey F A.2006.An introduction to the family Clostridiaceae.The Prokaryote, 4: 654-678.

    Zheng W L.2013.Optimization of fermentative factors and strengthening compost of rice straw degradation microbial system LZF-12.Northeast Agricultural University, Harbin.

    Zhou J, Wang Y H, Chu J.2009.Optimization of cellulose mixture for efficient hydrolysis of steam-exploded corn storer by statistically designed experiments.Bioresource Technology, 100(2): 819-825.

    猜你喜歡
    賊風(fēng)電熱板水嘴
    地方豬養(yǎng)殖場(chǎng)秋冬季賊風(fēng)的防范
    雞年生人初之氣運(yùn)氣養(yǎng)生
    注水井智能無(wú)級(jí)調(diào)節(jié)配水器水嘴結(jié)構(gòu)優(yōu)選及評(píng)價(jià)
    基于蜂窩罩的平板型遠(yuǎn)紅外電暖器的節(jié)能機(jī)理
    背心幫老人防住“賊風(fēng)”
    碳纖維電熱板采暖系統(tǒng)施工技術(shù)應(yīng)用
    碳纖維帶電熱技術(shù)的試驗(yàn)研究
    “賊”伴左右,如何是好
    碳晶電熱板輻射采暖系統(tǒng)的研究與應(yīng)用
    多水嘴配注技術(shù)嘴損試驗(yàn)研究
    新久久久久国产一级毛片| 日本av免费视频播放| 久久久久久人妻| 在现免费观看毛片| 啦啦啦中文免费视频观看日本| 亚洲熟女精品中文字幕| 欧美日韩视频精品一区| 人人妻人人澡人人看| 久久综合国产亚洲精品| 亚洲精品日本国产第一区| 在线观看www视频免费| 国产又爽黄色视频| 国产在线视频一区二区| 视频在线观看一区二区三区| 久久性视频一级片| 一级毛片电影观看| av国产久精品久网站免费入址| 最近2019中文字幕mv第一页| 成人午夜精彩视频在线观看| 成人亚洲欧美一区二区av| 亚洲精品自拍成人| 亚洲色图 男人天堂 中文字幕| 成年女人毛片免费观看观看9 | 亚洲成人免费av在线播放| 午夜精品国产一区二区电影| 十八禁高潮呻吟视频| 国产不卡av网站在线观看| 人妻 亚洲 视频| 色94色欧美一区二区| av网站免费在线观看视频| 中文字幕人妻熟女乱码| 高清不卡的av网站| 婷婷色av中文字幕| 在线免费观看不下载黄p国产| 日本猛色少妇xxxxx猛交久久| 亚洲人成电影观看| 日本午夜av视频| 国产一区二区在线观看av| 国产精品偷伦视频观看了| 精品国产露脸久久av麻豆| 国产又爽黄色视频| 欧美精品亚洲一区二区| 99九九在线精品视频| 久久青草综合色| 国产一区亚洲一区在线观看| 最近中文字幕高清免费大全6| 麻豆精品久久久久久蜜桃| 国产日韩欧美亚洲二区| 免费在线观看完整版高清| 国产黄色免费在线视频| 狂野欧美激情性xxxx| 国产成人av激情在线播放| 在线 av 中文字幕| 韩国精品一区二区三区| 好男人视频免费观看在线| 国产精品无大码| 秋霞伦理黄片| 免费少妇av软件| 巨乳人妻的诱惑在线观看| 涩涩av久久男人的天堂| 人人澡人人妻人| 少妇人妻久久综合中文| 精品久久蜜臀av无| 亚洲av成人精品一二三区| 日韩熟女老妇一区二区性免费视频| 丝袜在线中文字幕| 欧美日本中文国产一区发布| 国产黄色免费在线视频| 日韩精品有码人妻一区| 日韩av在线免费看完整版不卡| 交换朋友夫妻互换小说| 欧美黑人欧美精品刺激| 夫妻性生交免费视频一级片| 久久精品久久久久久噜噜老黄| 欧美少妇被猛烈插入视频| 中文字幕高清在线视频| 女的被弄到高潮叫床怎么办| 亚洲精品美女久久久久99蜜臀 | 秋霞在线观看毛片| 一区二区av电影网| 赤兔流量卡办理| 美女国产高潮福利片在线看| 成年女人毛片免费观看观看9 | 老司机靠b影院| 无限看片的www在线观看| 91精品国产国语对白视频| 久久ye,这里只有精品| 日本色播在线视频| 亚洲成色77777| 青春草视频在线免费观看| 伊人久久国产一区二区| 男女无遮挡免费网站观看| 午夜福利免费观看在线| 国产欧美日韩综合在线一区二区| 免费日韩欧美在线观看| 巨乳人妻的诱惑在线观看| 午夜福利在线免费观看网站| 欧美中文综合在线视频| 水蜜桃什么品种好| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av日韩在线播放| 美女扒开内裤让男人捅视频| 亚洲国产最新在线播放| 纯流量卡能插随身wifi吗| 日韩熟女老妇一区二区性免费视频| 男人操女人黄网站| 国产精品女同一区二区软件| 黄色视频在线播放观看不卡| 国产探花极品一区二区| 国产熟女午夜一区二区三区| 精品一区二区免费观看| 亚洲av成人精品一二三区| 中文字幕人妻丝袜制服| 欧美变态另类bdsm刘玥| 日韩制服丝袜自拍偷拍| 国产欧美日韩一区二区三区在线| av不卡在线播放| 久久97久久精品| www.精华液| 亚洲一级一片aⅴ在线观看| 青草久久国产| 国产福利在线免费观看视频| 国产一区二区激情短视频 | 韩国精品一区二区三区| 黄色视频在线播放观看不卡| 男男h啪啪无遮挡| 久久久国产一区二区| 街头女战士在线观看网站| 久久人妻熟女aⅴ| av有码第一页| 国产午夜精品一二区理论片| 久久久久久免费高清国产稀缺| 欧美成人午夜精品| 男人舔女人的私密视频| 国产精品蜜桃在线观看| 在线亚洲精品国产二区图片欧美| 2021少妇久久久久久久久久久| 亚洲国产欧美网| 综合色丁香网| 热re99久久国产66热| 最近手机中文字幕大全| 99久国产av精品国产电影| av不卡在线播放| 高清在线视频一区二区三区| 亚洲精品视频女| www.精华液| 国产片特级美女逼逼视频| 国产午夜精品一二区理论片| 日本色播在线视频| av卡一久久| 婷婷色av中文字幕| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区久久| 男女无遮挡免费网站观看| 欧美 日韩 精品 国产| 欧美亚洲日本最大视频资源| 久久精品久久久久久久性| 99热全是精品| 亚洲av综合色区一区| 超碰97精品在线观看| 晚上一个人看的免费电影| 欧美日韩精品网址| 日日爽夜夜爽网站| 成人国产av品久久久| videos熟女内射| 最近的中文字幕免费完整| 日日爽夜夜爽网站| 免费久久久久久久精品成人欧美视频| 婷婷色综合大香蕉| 国产免费现黄频在线看| 国产一区二区三区综合在线观看| 18禁国产床啪视频网站| 欧美黑人精品巨大| h视频一区二区三区| 亚洲成人国产一区在线观看 | 国产成人欧美在线观看 | 免费人妻精品一区二区三区视频| 中文字幕人妻熟女乱码| 成人漫画全彩无遮挡| 亚洲专区中文字幕在线 | av在线观看视频网站免费| 亚洲,一卡二卡三卡| 18禁动态无遮挡网站| 国产又色又爽无遮挡免| 亚洲久久久国产精品| 巨乳人妻的诱惑在线观看| 丝袜喷水一区| avwww免费| 久久久久精品人妻al黑| 免费在线观看完整版高清| 亚洲成人国产一区在线观看 | 午夜激情av网站| 777久久人妻少妇嫩草av网站| 少妇猛男粗大的猛烈进出视频| 日韩成人av中文字幕在线观看| 国产亚洲欧美精品永久| 日本vs欧美在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 一区二区av电影网| 日韩制服骚丝袜av| 看非洲黑人一级黄片| 99精品久久久久人妻精品| 亚洲色图 男人天堂 中文字幕| 青草久久国产| 国产一区二区三区av在线| 国产黄频视频在线观看| 国产精品国产三级专区第一集| 久久天躁狠狠躁夜夜2o2o | 天天操日日干夜夜撸| 满18在线观看网站| 日韩一本色道免费dvd| 亚洲一区二区三区欧美精品| 91aial.com中文字幕在线观看| 美女主播在线视频| 亚洲欧美成人综合另类久久久| 午夜福利在线免费观看网站| 久久av网站| 午夜福利,免费看| 蜜桃在线观看..| 欧美变态另类bdsm刘玥| 日韩一区二区视频免费看| 男人添女人高潮全过程视频| 午夜福利视频在线观看免费| 欧美 日韩 精品 国产| 建设人人有责人人尽责人人享有的| 一二三四在线观看免费中文在| 欧美日韩精品网址| www日本在线高清视频| 午夜福利视频精品| 中文字幕高清在线视频| 毛片一级片免费看久久久久| 午夜福利视频精品| 男男h啪啪无遮挡| 嫩草影院入口| 大片免费播放器 马上看| 中文乱码字字幕精品一区二区三区| 99久久综合免费| 日韩免费高清中文字幕av| www.自偷自拍.com| 中文天堂在线官网| 亚洲精品国产av成人精品| 欧美97在线视频| 狂野欧美激情性xxxx| 丰满少妇做爰视频| 男人舔女人的私密视频| 国产成人午夜福利电影在线观看| 日韩人妻精品一区2区三区| 亚洲国产av影院在线观看| 久久人人爽av亚洲精品天堂| 亚洲精品日本国产第一区| 高清在线视频一区二区三区| 不卡视频在线观看欧美| 欧美老熟妇乱子伦牲交| 免费观看人在逋| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇久久久久久888优播| 亚洲欧美精品综合一区二区三区| 国产色婷婷99| 久久天堂一区二区三区四区| 秋霞伦理黄片| 国产在线免费精品| 久久免费观看电影| 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美在线一区| 免费av中文字幕在线| 美女福利国产在线| 九色亚洲精品在线播放| 九九爱精品视频在线观看| 午夜免费男女啪啪视频观看| 51午夜福利影视在线观看| 制服诱惑二区| 777米奇影视久久| 久久青草综合色| 日韩 亚洲 欧美在线| 久久久久久久国产电影| 欧美黑人精品巨大| 19禁男女啪啪无遮挡网站| 纵有疾风起免费观看全集完整版| 日韩伦理黄色片| 精品一区二区三区av网在线观看 | 女的被弄到高潮叫床怎么办| 精品亚洲成国产av| 亚洲精品一二三| 亚洲av电影在线进入| 男女边摸边吃奶| 又大又黄又爽视频免费| 一本—道久久a久久精品蜜桃钙片| 一级片'在线观看视频| 黑人欧美特级aaaaaa片| 最近中文字幕高清免费大全6| 美女福利国产在线| 一边摸一边抽搐一进一出视频| 麻豆乱淫一区二区| 久久人人97超碰香蕉20202| 高清在线视频一区二区三区| 国产日韩欧美在线精品| 国产精品香港三级国产av潘金莲 | 人人妻人人添人人爽欧美一区卜| 99久久综合免费| 亚洲欧美激情在线| 精品人妻在线不人妻| 国产有黄有色有爽视频| 亚洲欧美成人综合另类久久久| 观看美女的网站| 水蜜桃什么品种好| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品自拍成人| 国产黄频视频在线观看| 国产精品三级大全| 少妇人妻 视频| 亚洲国产av新网站| 中文字幕人妻熟女乱码| 日韩不卡一区二区三区视频在线| 欧美中文综合在线视频| av在线播放精品| 精品第一国产精品| 日本爱情动作片www.在线观看| 人妻人人澡人人爽人人| 亚洲精品成人av观看孕妇| av线在线观看网站| 久久av网站| 在线看a的网站| 欧美日韩成人在线一区二区| 亚洲国产av新网站| 国产片内射在线| 美女国产高潮福利片在线看| 亚洲精品一区蜜桃| 看十八女毛片水多多多| 日韩一本色道免费dvd| 免费不卡黄色视频| 久久久精品94久久精品| 一本大道久久a久久精品| 韩国av在线不卡| 精品亚洲成a人片在线观看| 免费在线观看完整版高清| 亚洲成人av在线免费| 亚洲精品,欧美精品| 免费不卡黄色视频| xxxhd国产人妻xxx| 中文字幕精品免费在线观看视频| 亚洲成人一二三区av| 亚洲国产看品久久| 国产在线视频一区二区| 亚洲精品aⅴ在线观看| 国产精品国产三级专区第一集| 亚洲国产av新网站| 制服人妻中文乱码| 又黄又粗又硬又大视频| 亚洲精品在线美女| 操美女的视频在线观看| 丰满迷人的少妇在线观看| 高清欧美精品videossex| 一区二区三区激情视频| 欧美97在线视频| 精品酒店卫生间| 你懂的网址亚洲精品在线观看| 亚洲精品,欧美精品| 一边亲一边摸免费视频| 美女福利国产在线| 丰满饥渴人妻一区二区三| 国产精品久久久人人做人人爽| 天天添夜夜摸| 精品免费久久久久久久清纯 | 欧美日韩亚洲高清精品| 精品视频人人做人人爽| a级片在线免费高清观看视频| 人体艺术视频欧美日本| 欧美最新免费一区二区三区| e午夜精品久久久久久久| 欧美 亚洲 国产 日韩一| 欧美97在线视频| 国产精品 国内视频| 成人漫画全彩无遮挡| 悠悠久久av| 亚洲国产精品一区二区三区在线| 国产成人啪精品午夜网站| 亚洲熟女毛片儿| 99国产精品免费福利视频| 精品国产乱码久久久久久小说| 国产成人免费无遮挡视频| 啦啦啦视频在线资源免费观看| 国产亚洲av高清不卡| 精品国产一区二区三区四区第35| 成人免费观看视频高清| 国产 一区精品| 午夜久久久在线观看| 久久久久精品性色| 在线观看一区二区三区激情| 女性生殖器流出的白浆| 波多野结衣一区麻豆| 成人18禁高潮啪啪吃奶动态图| 久久久久久免费高清国产稀缺| 欧美黄色片欧美黄色片| 叶爱在线成人免费视频播放| 国产精品秋霞免费鲁丝片| 久久热在线av| 九色亚洲精品在线播放| 国产日韩欧美在线精品| 久久精品人人爽人人爽视色| 日本色播在线视频| 国产高清国产精品国产三级| 一边摸一边抽搐一进一出视频| 亚洲国产精品国产精品| 十八禁网站网址无遮挡| 只有这里有精品99| 亚洲欧洲日产国产| 欧美人与性动交α欧美软件| 国产欧美日韩一区二区三区在线| 国产av一区二区精品久久| 欧美激情高清一区二区三区 | 天天操日日干夜夜撸| 亚洲成国产人片在线观看| 亚洲国产最新在线播放| 亚洲av成人不卡在线观看播放网 | 亚洲一码二码三码区别大吗| 一区在线观看完整版| 久久国产亚洲av麻豆专区| 国产日韩欧美亚洲二区| 欧美最新免费一区二区三区| 亚洲熟女精品中文字幕| 黄片播放在线免费| 黄色 视频免费看| 亚洲国产欧美一区二区综合| 中文字幕精品免费在线观看视频| 永久免费av网站大全| 欧美人与性动交α欧美软件| 在线天堂最新版资源| 毛片一级片免费看久久久久| 赤兔流量卡办理| 国产精品三级大全| avwww免费| 精品久久蜜臀av无| 无遮挡黄片免费观看| 日本午夜av视频| 亚洲av综合色区一区| 最新的欧美精品一区二区| 久热爱精品视频在线9| 你懂的网址亚洲精品在线观看| √禁漫天堂资源中文www| 亚洲自偷自拍图片 自拍| 精品少妇一区二区三区视频日本电影 | 成人免费观看视频高清| 哪个播放器可以免费观看大片| 国产免费视频播放在线视频| 国产日韩欧美亚洲二区| 亚洲一码二码三码区别大吗| 欧美精品av麻豆av| 久久久久久久国产电影| 国产精品av久久久久免费| 亚洲精品国产一区二区精华液| 久久精品久久久久久久性| 黄色一级大片看看| 十分钟在线观看高清视频www| 欧美日韩精品网址| 欧美人与善性xxx| 国产精品一国产av| 丰满乱子伦码专区| 亚洲精品国产av蜜桃| a级毛片在线看网站| 国产精品免费大片| 亚洲av成人不卡在线观看播放网 | 亚洲一码二码三码区别大吗| 一边亲一边摸免费视频| 777久久人妻少妇嫩草av网站| 国产精品久久久人人做人人爽| 亚洲激情五月婷婷啪啪| 一本—道久久a久久精品蜜桃钙片| 我要看黄色一级片免费的| 午夜影院在线不卡| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 亚洲精品成人av观看孕妇| 国产伦理片在线播放av一区| 欧美精品一区二区免费开放| av在线播放精品| 国产深夜福利视频在线观看| av有码第一页| 操美女的视频在线观看| 欧美日韩av久久| www.av在线官网国产| 欧美日韩亚洲国产一区二区在线观看 | 亚洲熟女毛片儿| 欧美激情极品国产一区二区三区| xxx大片免费视频| 秋霞在线观看毛片| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| 丝袜美足系列| 极品少妇高潮喷水抽搐| 亚洲精品aⅴ在线观看| 久久午夜综合久久蜜桃| 老汉色∧v一级毛片| 成年人免费黄色播放视频| 男女免费视频国产| 中文字幕最新亚洲高清| 国产一级毛片在线| 夫妻性生交免费视频一级片| xxx大片免费视频| 一级黄片播放器| 宅男免费午夜| 免费高清在线观看视频在线观看| 久久精品久久精品一区二区三区| 人人妻,人人澡人人爽秒播 | 日韩制服骚丝袜av| av不卡在线播放| 免费看不卡的av| 久久精品久久久久久噜噜老黄| 丰满少妇做爰视频| 国产日韩欧美在线精品| 精品免费久久久久久久清纯 | 午夜免费鲁丝| 伊人久久国产一区二区| 久久99精品国语久久久| 日韩 亚洲 欧美在线| 国产成人精品久久久久久| 国产老妇伦熟女老妇高清| 极品少妇高潮喷水抽搐| 久久女婷五月综合色啪小说| 精品一区二区三区av网在线观看 | 亚洲精品日本国产第一区| 大陆偷拍与自拍| 久久 成人 亚洲| 中文字幕人妻丝袜一区二区 | 亚洲国产看品久久| 国产成人91sexporn| 18禁动态无遮挡网站| 国产精品偷伦视频观看了| 国产黄色视频一区二区在线观看| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| 岛国毛片在线播放| 日韩成人av中文字幕在线观看| 免费看不卡的av| 欧美另类一区| 久久精品熟女亚洲av麻豆精品| 少妇的丰满在线观看| 十八禁高潮呻吟视频| 久久久久精品久久久久真实原创| 超碰97精品在线观看| 超色免费av| 在线免费观看不下载黄p国产| 欧美在线一区亚洲| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av高清一级| 久久精品亚洲熟妇少妇任你| 国产成人精品无人区| 美女国产高潮福利片在线看| 一级片免费观看大全| 九色亚洲精品在线播放| 亚洲一区二区三区欧美精品| 欧美日韩av久久| 麻豆av在线久日| 在线免费观看不下载黄p国产| 街头女战士在线观看网站| 18禁动态无遮挡网站| 熟女少妇亚洲综合色aaa.| av有码第一页| 亚洲欧美日韩另类电影网站| 日本vs欧美在线观看视频| 亚洲,欧美精品.| 精品久久久精品久久久| 两性夫妻黄色片| 日韩视频在线欧美| 亚洲色图综合在线观看| a级毛片在线看网站| 人人妻,人人澡人人爽秒播 | 亚洲av成人精品一二三区| 韩国精品一区二区三区| 最黄视频免费看| 狠狠精品人妻久久久久久综合| 亚洲免费av在线视频| 欧美精品高潮呻吟av久久| 欧美国产精品一级二级三级| 1024香蕉在线观看| 午夜免费鲁丝| 国产av精品麻豆| 下体分泌物呈黄色| 天天躁夜夜躁狠狠久久av| 97人妻天天添夜夜摸| 视频在线观看一区二区三区| 妹子高潮喷水视频| 少妇人妻 视频| 亚洲国产毛片av蜜桃av| 国产精品三级大全| 人人妻人人爽人人添夜夜欢视频| 国精品久久久久久国模美| 国产av精品麻豆| 曰老女人黄片| 18在线观看网站| 三上悠亚av全集在线观看| 亚洲av成人精品一二三区| 亚洲国产毛片av蜜桃av| 免费av中文字幕在线| 亚洲精品美女久久久久99蜜臀 | 国产精品久久久久成人av| 日韩av不卡免费在线播放| 免费看av在线观看网站| 日韩伦理黄色片| av在线老鸭窝| 精品一区在线观看国产| 久久鲁丝午夜福利片| 午夜福利影视在线免费观看| 亚洲国产欧美一区二区综合| 亚洲av综合色区一区| 99久久精品国产亚洲精品| avwww免费| 婷婷色麻豆天堂久久| 妹子高潮喷水视频| 亚洲国产av新网站| 免费少妇av软件| 国产视频首页在线观看| 黄色视频不卡| 2021少妇久久久久久久久久久| 亚洲精品久久久久久婷婷小说| 男人舔女人的私密视频|