• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Comparative Study on Photosynthetic Characteristics of Dryopteris fragrans and Associated Plants in Wudalianchi City, Heilongjiang Province, China

    2018-04-02 09:18:13ChenLinglingLiangYantaoWangHemengZhangTongBoZhigangZhaoZongbaoandChangYing
    關(guān)鍵詞:旅行包屋檐下屁股

    Chen Ling-ling, Liang Yan-tao, Wang He-meng, Zhang Tong, Bo Zhi-gang, Zhao Zong-bao, and Chang Ying*

    1 College of Life Sciences, Northeast Agricultural University, Harbin 150030, China

    2 Life Science Department, Daqing Normal University, Daqing 163712, Heilongjiang, China

    Introduction

    Dryopteris fragrans(L.) Schott, a deciduous perennial herb used in China for the treatment of skin diseases (Shenet al., 2006), exhibits antibacterial,antioxidant, analgesic, antitumor and immunomodulatory activities.Multiple substances, such as flavonoids,sterols and other medicinal components, have been isolated and characterized from this fern (Fanet al.,2012).Notably,D.fragranshas a very narrow geographic distribution and is limited to Asia, Europe and North America.In China, it is found exclusively in Wudalianchi City, Heilongjiang Province and thrives only in areas within volcanic geological landforms.There it grows in association with several other plant species, mainlySambucus williamsii,Artemisia sacrorum,Chelidonium majus,Sorbaria sorbifolia,Woodsia ilvensis,Potentilla asperrimaandUrtica angustifolia.The unique, but limited, geographic distribution ofD.fragranshas probably played an important role in shaping its physiological and ecological characteristics.

    Fern occupies an important place in plant phyletic evolution and uniquely exhibits independent gametophyte and sporophyte life stages.Moreover,D.fragransis a unique type of fern that grows in extreme environment.Therefore, due to its medicinal,nutritional and ornamental value, achieving optimalD.fragransgrowth is currently an important cha-llenge.Because photosynthesis is a very complex process, photosynthetic physiological ecology can systematically address this complexity through experimental indoor control methods, field sampling methods, isotopic techniques and other methods(Knight and Mitchell, 1989; Aguilaret al., 2015).Such studies can elucidate the relationships between ecological factors and multiple plant physiological phenomena.For example, on the one hand, photosynthetic efficiency of plants is influenced by external factors, such as light intensity, temperature and relative atmospheric humidity (Freeland, 1952;Arzariet al., 2005).On the other hand, internal factors, such as leaf size, leaf maturity, chlorophyll content and nitrate-reductase activity also play a role (Spoeher and Mcgee, 1924) (Osterhoutet al.,1919).In spite of this complexity, researchers have successfully employed several endangered plants.For example, researches onTrillium tschonoskiifound that this endangered plant photosynthesis(Liaoet al., 2006) and cannot adapt to humid environments (Macedoet al., 2011; Hanget al., 2008).In this study, various photosynthetic characteristics ofD.fragransand its associated plants were measured and compared, including net photosynthesis rate,chlorophyll content, nitrate reductase activity, light compensation point (LCP) and light saturation point(LSP).The results indicated that coordination exists betweenD.fragransphotosynthetic characteristics and its growth environment.Moreover, these results also served to identify factors underlying the narrow geographic distribution ofD.fragransand provided a theoretical foundation to justify protection of wild resources and facilitate artificial cultivation ofD.fragrans.

    Materials and Methods

    Natural conditions

    The experimental site was located within the mainD.fragransnatural habitat regions (Wudalianchi City,China).This area has a temperate continental monsoon climate, with average temperature of –0.5℃, average annual precipitation of 476 mm and average relative humidity of 69.2%.The frost period typically lasted from early October to early May, with an average annual frost-free period of 121 days.

    Plant materials

    Healthy representative plants ofD.fragransand its main associated plants, includingSambucus williamsii,Artemisia sacrorum,Chelidonium majus,Sorbaria sorbifolia,Woodsia ilvensis,Potentilla asperrimaandUrtica angustifoliawere chosen for sampling.Leaves, which carried out plants' major photosynthetic function, were typically sampled using two or three leaves per plant (13 cm long, 3.5 cm wide).Leaves with similar spatial orientation and angle were chosen(Caiet al., 2008) with westward posture and 30o dip angle with respect to the ground (Yanget al., 2010; Li,2005).

    Diurnal variations of photosynthetic rate (Pn)

    On sunny days in mid-July, a LCi portable photosynthesis measurement system (ADC BioScientific,Ltd., UK) was used to measure net photosynthesis rate [Pn, μmol · (m2· s-1)-1] each hour from 6: 00 a.m.to 6: 00 p.m (Jin, 2002).Each measurement was repeated 3 times.

    Measurement of light compensation point and light saturation point

    CO2concentration was set to 450 μmol · mol-1and the relative humidity to 80% as described previously(Zhanget al., 2010).The saturating light intensity was determined by varying the light intensity until it was no longer a factor limiting the photosynthesis rate.Light compensation point (LCP) was determined using photosynthetically active radiation-net photo-synthetic rate response curves.

    Measurement of chlorophyll content

    A soaking extraction method was applied to extract chlorophyll using a mixed ethanol-acetone solution.Chlorophyll content was determined using spectrophotometry (Shuet al., 2010).Three individualD.fragransplants growing at the same location were used to measurePnand were chosen to determine chlorophyll a and chlorophyll b contents using the Beer-Lambert law.

    Measurement of nitrate reductase activity

    The activity of nitrate reductase was measured as previously described (Fresneauet al., 2007; Giaimoet al., 2002).NaNO2was used to generate a standard curve and the activity of nitrate reductase was determined from the curve.

    Results

    Diurnal variations of Pn in D.fragrans and its main associated plants

    白天明又苦笑了一下,他說(shuō):“蘇石在城里沒(méi)事,沒(méi)啥大事,這是他叫我?guī)Щ貋?lái)給你的。”他指了指屋檐下的那旅行包,鼓鼓囊囊的。他又說(shuō):“我先走了,有什么事你問(wèn)爸吧,剛才我都跟爸說(shuō)了?!闭f(shuō)著,白天明就跟小偷似的,拎起自己的包,折轉(zhuǎn)屁股溜了。

    The diurnal variations in leaf net photosynthetic rate(Pn) forD.fragransand its main associated plants are shown in Fig.1, showing dramatic changes for all the plants studied.Moreover, the diurnalPnprofiles ofD.fragrans,W.ilvensisandU.angustifoliaexhibited unimodal change pro files, whileC.majusandA.gmeliniiexhibited bimodal rate change pro files.The maximal photosynthesis rate (Pmax) forS.williamsiiandP.asperrimawere the highest and were mainly observed at noon or 1: 00 p.m.OnlyC.majus andP.asperrimaexhibited an additionalPmaxpeak around 11: 00 a.m.Pmaxvalues were the lowest inD.fragransandA.gmelinii(Fig.2).

    Comparison of monthly variations of chlorophyll content in D.fragrans and its main associated plants

    The results demonstrated that leaf chlorophyll content directly correlated with photosynthetic capacity for all the plants grown under similar conditions within a certain range (Figs.3-5).During the growth period from April to October, the chlorophyll was tested content monthly for all the plants, except for a gap in some data for April (Fig.4), when the average temperature was only –11.2℃.Due to the cold temperatures,S.williamsii,S.sorbifoliaandU.angustifolialeaves were not completely grown by this time point and data were not collected.

    Fig.1 Diurnal variations of Pn

    Chlorophyll content changes followed a consistent pattern, with a gradual decrease from May to July,followed by an increase from July to September.In October,C.majus,S.sorbifoliaandU.angustifoliaplants lost their leaves.The chlorophyll a/b ratio changes were quite stable across the entire growing season, with the most values remaining between 1.5 and 3.0 and exhibiting common trends.However, early in the growing season, chlorophyll a/b values were the highest, followed by a slow decline until they reached their lowest values in July and August.Therefore,the chlorophyll content was maximal, the chlorophyll a/b value was the lowest.With leaf aging, the ratio gradually rose again, during spring and autumn, the chlorophyll a/b ratio was larger, favoring absorption of longer light wavelengths.In summer, chlorophyll a/b value was relatively lower, favoring absorption of shorter wavelengths.Therefore, chlorophyll a,chlorophyll b, chlorophyll a+b and chlorophyll a/b each varied significantly for different months.

    Fig.2 Average diurnal Pmax of D.fragrans and associated plants

    Fig.3 Chlorophyll a content of D.fragrans and main associated plants

    Fig.4 Chlorophyll b content of D.fragrans and main associated plants

    Fig.5 showed that changes in chlorophyll a,chlorophyll b and chlorophyll a+b values exhibited similar trends.However, these values were much higher forA.sacrorumandC.majus, with large variations among different months.In contrast, forP.asperrima,S.williamsii,D.fragrans,S.sorbifolia,W.ilvensisandC.majus, these values were lower,with only minimal variation.InD.fragrans, these values were only a little higher than forC.majusandW.ilvensis.It was well known that chlorophyll a mainly absorbed red light, while chlorophyll b absorbs blue light.Red light absorption forD.fragranswas initially higher than forW.ilvensisandC.majus, while blue light absorption byD.fragranswas still higher than that ofW.ilvensisbut lower than that ofC.majuslater, from August to October.To summarize, plant chlorophyll content had a direct effect on photosynthetic efficiency.Thus, in thisD.fragranscommunity,whenW.ilvensisexhibited higher photosynthetic efficiency,C.majusphotosynthetic efficiency was noticeably lower, whileD.fragransefficiency fell among values for these species.

    Fig.5 Chlorophyll a+b comparisons for D.fragrans and associated plants for each month

    Low chlorophyll a/b values for smaller plants have established that they utilize blue-purple wavelengths more efficiently.Fig.6 showed the highest maximum chlorophyll a/b value forD.fragransfollowed byA.gmelinii,W.ilvensis,C.majus,U.angustifolia,P.asperrima,S.sorbifolia,S.williamsii.These results showed thatD.fragranswas poorly adapted to its environment relative to its associated plants.

    Fig.6 Comparison of chlorophyll a/b for each plant species averaged over all the months

    Variation in activity of nitrate reductase in D.fragrans and associated plants

    As shown in Fig.8, the maximum nitrate reductase activity varied.The highest maximum nitrate reductase activity value was observed forS.williamsii, while the minimum was forA.gmelinii.Notably,the average nitrate reductase activity inD.fragranswas higher than only that ofA.gmelinii.In addition,becausePnshowed a positive correlation with enzyme activity, the relatively lowD.fragransnitrate reductase activity reflected its relatively lower photosynthesis rate and weaker photo-synthesis capacity than its associated plants.

    Fig.7 Monthly variation in nitrate reductase activity for all the studied plants

    Fig.8 Comparison of maximum nitrate reductase activity in D.fragrans and associated plants

    Variation of LCP and LSP in D.fragrans and its main associated plants

    A common pattern in LCP seasonal dynamic variation was observed overall (Figs.9 and 10).With the attainment of leaf maturity and increase in chlorophyll content, LCP appeared to decline generally, reaching a minimum in July.Subsequently, with leaf aging and reduction of chlorophyll content, LCP steadily and consistently increased, reaching a peak in September.A low LCP, small canopy density and strong light intensity in the rocky environment ofD.fragranscommunity gave rise to excessive photosynthesis,which greatly impacted growth.Therefore, in these eight species, the chlorophyll content and associated leaf growth both peaked in July, followed by a steady decrease with leaf aging.Generally, LSP could be utilized to measure plant photosynthetic capacity,as a higher LSP correlates with a largerPnvalue.Compared with its associated plants,D.fragransexhibited a relatively low LSP, suggesting a narrower ecological amplitude to light adaptation.

    Fig.9 LCP variation D.fragrans and main associated plants

    Fig.10 LSP variation in D.fragrans and associated plants

    Discussion

    The net photosynthetic rate (Pn) in different habitats was a single peak pattern.In the summer morning, leaf photosynthetic rate ofD.fragransand other associated plants increased gradually.With the increased of the height of the sun, maximum value was at 1: 00 p.m.This was due to the high temperature and light in the northeast in summer, but in the morning the temperature was low, with the increased of PAR and temperaturePnwas also rising to and peak at the same time.Then the temperature was higher,the leaf water content was reduced, and the stomata were partially closed, which resulted in the decrease of Ci concentration and the decreased ofPn.Plant net photosynthetic rate determines the level of accumulation of plant photosynthetic products, which can further affect the speed of plant growth (Zhanget al., 2014).D.fragrans niche similarity and niche overlap of this plant were higher, which showed that their niches were more similar (Huanget al.,2013).Previous findings had shown that the growth ofD.fragransresponded to specifically defined environment factors.Here, measurements of photosynthetic rate and other photosynthetic physiological indices demonstrated that these values were not higher forD.fragrans, but were lower among most of its associated plants.For example, a lowerPnvalue reflected a weak photosynthetic capacity forD.fragransrelative to other plants in this community.In addition, the lowPnchanged at noon coupled with a higher light energy utilization rate both suggested thatD.fragranshad a certain resistance to strong light.

    Strong light environment was not conducive to the synthesis of chlorophyll and chloroplast development.Chlorophyll content and chlorophyll a/b had a direct effect on the photosynthetic rate.Chlorophyll a/b were small, meant the higher the use of blue violet, the higher ability to adapt to less light environment (Liet al., 2011).When chlorophyll a and chlorophyll b decreased, photosynthetic activity of plants increased.Compared with associated plants, the total chlorophyll content and chlorophyll a to chlorophyll b content ratio inD.fragransremained consistently at a middle level, demonstrating thatD.fragransmight adapt to light, but had weak competitive ability.At the same time, the study found thatD.fragransnitrate reductase activity varied significantly in different seasons, reaching the maximum in July before declining.

    The heliophytes had high LCP and LSP; however,the shade plants had low LCP and LSP (Liet al., 2011).In our study, low LCP and LSP values forD.fragranssuggested it had a stronger ability to utilize weak light than its associated plants.Overall, the results of this study linked the narrow geographic distribution ofD.fragransto its growth disadvantage relative to its associated plants.

    Conclusions

    Photosynthesis is one of the most significant physiological processes underlying plant growth and greatly impacts subsequent plant size and development.D.fragransis mainly distributed in rocks, an inhospitable environment that is neither warm nor damp enough for most plants to thrive.Therefore, during competition within a mixed plant community, the success ofD.fragranspartly depends on its growth speed.BecausePndetermined the rate of plant growth to a certain extent, this factor should play a role.Moreover, because previous researches indicated thatD.fragransgrowth characteristics helped it to adapt to environmental factors, photosynthetic physiological indices and the photosynthetic rate ofD.fragransand its main associated plants were analyzed.The study showed thatD.fragranswere not dominant and exhibit even lower values than for the associated plants.By comparing these photosynthetic characteristics, a potential coordination betweenD.fragransand the growing environment were observed that partly explained the reason behind the narrow geographic distribution ofD.fragrans.Moreover, the information obtained from the analyses should provide a theoretical basis for further resource protection, exploitation and artificial cultivation ofD.fragrans.

    Aguilar E, Allende L, Del Toro F J,et al.2015.Effects of elevated CO2and temperature on pathogenicity determinants and virulence of potato virus X/Potyvirus-associated synergism.Molecular Plant-microbe Interactions, 28: 1364-1373.

    Arzari R, Tadmor Y, Meir A,et al.2005.Light signaling genes and their manipulation towards modulation of phy-tonutrients content in tomato fruits.Biotech aology Advances, 28: 108-118.

    Cai R G, Zhang M, Yin Y P,et al.2008.Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application during grain filling of field-grow wheat.Agricultural Sciences in China, 7(2): 157-167.

    Fan H Q, Shen Z B Chen Y F,et al.2012.Study on antifungal susceptibility of different extract ofDryopteris fragrans.Journal ofChinese Medicinal Materials, 35: 1981-1985.

    Freeland R O.1952.Effect of age of leaves upon the rate of photosynthesis in some conifers.Plant Physiology, 27: 685-690.

    Fresneau C, Ghashghaie J, Cornicet G,et al.2007.Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durumL.): role of leaf internal CO2.Journal of Experimental Botany, 67(5): 2983-2992.

    Giaimo J M, Gusev A V, Wasielewski M R,et al.2002.Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation.Journal of the American Chemical Society, 124(29): 8530-8531.

    Hang G f, Zhai S H, Wen-Hua S U,et al.2008.Effects of light intensity and air temperature on the photosynthesis of Neottopteris Nidus.Journal of Kunming University, 4: 62-63.

    Huang Q Y, Lichun H U, Fan R,et al.2013.Characteristics of plant niche on medicinal herbDryopteris fragrans(L.) Schott.Journal of Northeast Agricultural University, 44(7): 143-148.

    Jin Z X.2002.The Photosynthetic characteristics of the main species of the Hep-tacodium miconioides community in Tiantai mountain of Zhejiang Province, China.Acta Ecologica Sinica, 1645-1652.

    Macedo A F, Leal-Costa M V, Tavares E S,et al.2011.The effect of light quality nn leaf production and development of in avitro-ultured plants ofAlternanthera brasilianaKuntze.Environmental and Experimental Botany, 70: 43-50.

    Knight S L, Mitchell C A.1989.Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce.Sci Hortic(Amsterdam), 35: 37-49.

    Li F W.2005.Studies on the photosynthetic characterizations and distributions of rear earth elements in fern Dicranopteris dichotoma.Institute of Botany, the Chinese Academy of Sciences, Beijing.

    Li L, Li X Y, Lin L S,et al.2011.Comparison of chlorophyll content and fluorescence parameters of six pasture species in two habitats in China.Chinese Journal of Plant Ecology, 35(6): 672-680.

    Li Y H, Zhang K M, Hong-Fang Y U,et al.2011.Photosynthetic characteristics of ten cultivars of autumn chrysanthemum (Dendranthema morifolium) and correlation analysis between net photosynthetic rate and some physio cological factors.Journal ofPlaut Resources and Euviroumeut, 21(1): 70-76.

    Liao J X, Ge Y, Guan B H,et al.2006.Photosynthetic characteristics and growth ofMosla hangchowensisand M-dianthera under different irradiances.Biol Plantarum, 50: 737-740.

    Osterhout W J, Haas A R.1919.The temperature coefficient of photosynthesis.The Journal of General Physiology, 1: 295-298.

    Shen Z B, Luo W Y, Yan Y S,et al.2006.Study on terpene ofDryopteris fragransL.Journal of Chinese Medicinal Materials, 29:334-335.

    Shu Z Z, Zhang X S, Chen J,et al.2010.The simplification of chlorophyll content measurement.Plant Physiology Communications, 6(4): 399-402.

    Spoeher H A, Mcgee J M.1924.Absorption of carbon dioxide the first step in photosynthesis.Science, 59: 513-514.

    Yang X Y, Wang X F, Wei M,et al.2010.Changes of nitrate reductase activity in cucumber seedlings in response to nitrate stress.Agricultural Sciences in China, 9(2): 216-222.

    Zhang Z W, Zhang B Y, Tong H F,et al.2010.Photosynthetic LCP and LSP of different grapevine cultivars.Journal of Northwest Forestry University, 25(1): 24-29.

    Zhang Y Q, Li S W, Wei F U,et al.2014.Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet.Journal of Plant Nutrition and Fertilizer, 5:1119-1126.

    猜你喜歡
    旅行包屋檐下屁股
    同在一個(gè)屋檐下的困擾
    中老年保健(2022年1期)2022-08-17 06:15:32
    給麥先生的信
    出色
    智族GQ(2020年1期)2020-03-11 13:14:38
    打針要扎在屁股上
    善待屁股
    特別健康(2018年4期)2018-07-03 00:38:12
    神奇屁股在哪里
    光合之家——一個(gè)屋檐下
    輕裝出行
    關(guān)于“報(bào)屁股”(外一章)
    同一屋檐下的你
    51国产日韩欧美| 少妇的逼水好多| 一级av片app| 欧美 日韩 精品 国产| 中文字幕制服av| 欧美xxxx性猛交bbbb| 亚洲精品456在线播放app| 国产精品蜜桃在线观看| 狂野欧美白嫩少妇大欣赏| 熟女人妻精品中文字幕| av女优亚洲男人天堂| 国产精品一区www在线观看| 99热6这里只有精品| 中文字幕制服av| av在线老鸭窝| 亚洲第一av免费看| 丁香六月天网| 少妇的逼水好多| 成年人免费黄色播放视频 | 一级爰片在线观看| 日韩不卡一区二区三区视频在线| 制服丝袜香蕉在线| 我的老师免费观看完整版| 国产永久视频网站| 少妇人妻一区二区三区视频| 亚洲美女视频黄频| 在线观看三级黄色| √禁漫天堂资源中文www| 午夜激情久久久久久久| av又黄又爽大尺度在线免费看| 一本色道久久久久久精品综合| 一本色道久久久久久精品综合| 免费久久久久久久精品成人欧美视频 | 亚洲av二区三区四区| 国产免费福利视频在线观看| 国产免费福利视频在线观看| 亚洲精品自拍成人| 汤姆久久久久久久影院中文字幕| 少妇人妻一区二区三区视频| 亚洲国产av新网站| 亚洲自偷自拍三级| 成人漫画全彩无遮挡| 91在线精品国自产拍蜜月| 精品久久久精品久久久| 色婷婷久久久亚洲欧美| 日本黄色片子视频| 欧美精品高潮呻吟av久久| 亚洲欧美成人精品一区二区| 99视频精品全部免费 在线| 寂寞人妻少妇视频99o| 国产极品天堂在线| 精品久久久久久久久亚洲| www.色视频.com| 激情五月婷婷亚洲| 国产高清有码在线观看视频| 久久韩国三级中文字幕| 午夜福利影视在线免费观看| 国产淫片久久久久久久久| 男人狂女人下面高潮的视频| 亚洲av不卡在线观看| 又黄又爽又刺激的免费视频.| 亚洲欧美成人精品一区二区| 黄色配什么色好看| 久久久久久久久久久免费av| 国产成人精品无人区| 亚洲欧美精品专区久久| 久久久久久伊人网av| 日韩av免费高清视频| 丰满迷人的少妇在线观看| 久久韩国三级中文字幕| 大香蕉97超碰在线| 人妻少妇偷人精品九色| 99热全是精品| 高清在线视频一区二区三区| 免费黄网站久久成人精品| av在线app专区| 久久亚洲国产成人精品v| 久久av网站| 全区人妻精品视频| 亚洲精品日韩在线中文字幕| 日韩精品有码人妻一区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产高清三级在线| 免费人成在线观看视频色| 久久亚洲国产成人精品v| 亚洲经典国产精华液单| 欧美三级亚洲精品| av在线观看视频网站免费| 最黄视频免费看| 国产男人的电影天堂91| 国产精品女同一区二区软件| 人妻人人澡人人爽人人| 在线观看www视频免费| 久久久a久久爽久久v久久| 亚洲欧美成人精品一区二区| av福利片在线观看| av网站免费在线观看视频| 久久久久精品久久久久真实原创| 国产成人精品婷婷| 精品少妇内射三级| 97精品久久久久久久久久精品| 中文字幕亚洲精品专区| 青春草视频在线免费观看| 成人亚洲精品一区在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品乱久久久久久| av国产精品久久久久影院| 日韩 亚洲 欧美在线| 午夜老司机福利剧场| 51国产日韩欧美| 国产精品久久久久久av不卡| 精品一区二区三区视频在线| 欧美成人午夜免费资源| 蜜桃在线观看..| 在线天堂最新版资源| 国产黄色免费在线视频| 又大又黄又爽视频免费| 国产亚洲91精品色在线| 毛片一级片免费看久久久久| 国产日韩欧美视频二区| 老女人水多毛片| 高清视频免费观看一区二区| 天天操日日干夜夜撸| 99热国产这里只有精品6| 欧美国产精品一级二级三级 | 中国美白少妇内射xxxbb| 午夜免费男女啪啪视频观看| 久久鲁丝午夜福利片| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 丰满迷人的少妇在线观看| 婷婷色综合www| 亚洲国产欧美日韩在线播放 | 国产成人精品婷婷| 中文字幕av电影在线播放| 简卡轻食公司| 久久精品国产鲁丝片午夜精品| 国产成人一区二区在线| 免费观看在线日韩| 欧美精品一区二区免费开放| 女人精品久久久久毛片| 视频中文字幕在线观看| 午夜福利影视在线免费观看| 国产69精品久久久久777片| 免费黄频网站在线观看国产| 99国产精品免费福利视频| 国产女主播在线喷水免费视频网站| 免费播放大片免费观看视频在线观看| 午夜久久久在线观看| 欧美日韩一区二区视频在线观看视频在线| 人人妻人人爽人人添夜夜欢视频 | 国产 一区精品| 中国三级夫妇交换| 久久久久久久精品精品| 国产精品99久久99久久久不卡 | 久久97久久精品| 亚洲欧美日韩另类电影网站| 极品少妇高潮喷水抽搐| 麻豆成人av视频| av福利片在线观看| 国产伦精品一区二区三区视频9| 一级片'在线观看视频| 免费少妇av软件| 国产亚洲av片在线观看秒播厂| av在线app专区| 涩涩av久久男人的天堂| 新久久久久国产一级毛片| 一级av片app| 欧美日韩亚洲高清精品| 简卡轻食公司| 日本欧美国产在线视频| 偷拍熟女少妇极品色| 天堂8中文在线网| 校园人妻丝袜中文字幕| 最近中文字幕高清免费大全6| 久久99热这里只频精品6学生| 精品卡一卡二卡四卡免费| 大香蕉97超碰在线| 国产淫片久久久久久久久| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 夜夜爽夜夜爽视频| 下体分泌物呈黄色| 青春草国产在线视频| 内地一区二区视频在线| 高清在线视频一区二区三区| av在线老鸭窝| 午夜免费男女啪啪视频观看| 高清视频免费观看一区二区| 99久久精品一区二区三区| 国产成人精品一,二区| 免费看不卡的av| 日本黄色日本黄色录像| 国产成人精品久久久久久| 免费人妻精品一区二区三区视频| 免费播放大片免费观看视频在线观看| 大片电影免费在线观看免费| 男女边吃奶边做爰视频| 亚洲高清免费不卡视频| 水蜜桃什么品种好| 国产日韩欧美亚洲二区| 国产免费又黄又爽又色| 黄色配什么色好看| 日韩欧美 国产精品| 边亲边吃奶的免费视频| av网站免费在线观看视频| 91aial.com中文字幕在线观看| 久久久久久伊人网av| 成人18禁高潮啪啪吃奶动态图 | a级片在线免费高清观看视频| 亚洲经典国产精华液单| 日韩人妻高清精品专区| 在线观看免费日韩欧美大片 | 亚洲av男天堂| 日本爱情动作片www.在线观看| 国产 精品1| 日日啪夜夜爽| 不卡视频在线观看欧美| 在线天堂最新版资源| 少妇人妻久久综合中文| av天堂久久9| 99久久精品国产国产毛片| 纯流量卡能插随身wifi吗| 亚洲av日韩在线播放| 国产一区有黄有色的免费视频| 欧美日本中文国产一区发布| 男女边摸边吃奶| 亚洲内射少妇av| 99九九在线精品视频 | 全区人妻精品视频| 看非洲黑人一级黄片| 黄色怎么调成土黄色| 99久国产av精品国产电影| 国产乱人偷精品视频| 十八禁网站网址无遮挡 | 一级毛片我不卡| 婷婷色av中文字幕| 亚洲第一av免费看| 国产精品一区二区性色av| 日韩av免费高清视频| 男男h啪啪无遮挡| 少妇 在线观看| 国产乱人偷精品视频| 高清视频免费观看一区二区| 中文乱码字字幕精品一区二区三区| 美女国产视频在线观看| 97在线视频观看| 春色校园在线视频观看| 亚洲图色成人| 日韩熟女老妇一区二区性免费视频| av网站免费在线观看视频| 欧美日韩精品成人综合77777| 免费av中文字幕在线| 嫩草影院入口| 妹子高潮喷水视频| 一级毛片aaaaaa免费看小| 成人免费观看视频高清| 亚洲精品乱码久久久久久按摩| 菩萨蛮人人尽说江南好唐韦庄| 午夜91福利影院| 97在线人人人人妻| 国产av码专区亚洲av| 91午夜精品亚洲一区二区三区| 国产极品粉嫩免费观看在线 | 亚洲国产精品999| av天堂中文字幕网| 亚洲精品自拍成人| 日韩不卡一区二区三区视频在线| 国产国拍精品亚洲av在线观看| 丰满迷人的少妇在线观看| 好男人视频免费观看在线| 熟女人妻精品中文字幕| 中文字幕亚洲精品专区| 成人美女网站在线观看视频| 免费看不卡的av| 免费av不卡在线播放| 亚洲精品乱码久久久久久按摩| 亚洲美女视频黄频| 国产精品三级大全| 亚洲欧美日韩卡通动漫| av女优亚洲男人天堂| 久久久久久久国产电影| 两个人免费观看高清视频 | 热re99久久国产66热| 精品99又大又爽又粗少妇毛片| 日韩成人伦理影院| 在线观看免费日韩欧美大片 | 91在线精品国自产拍蜜月| 蜜桃久久精品国产亚洲av| 亚洲成色77777| 久久精品久久久久久噜噜老黄| 久久午夜综合久久蜜桃| 午夜免费鲁丝| 美女cb高潮喷水在线观看| 涩涩av久久男人的天堂| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 国产精品久久久久久av不卡| 欧美xxxx性猛交bbbb| 亚洲av在线观看美女高潮| a级一级毛片免费在线观看| 天天躁夜夜躁狠狠久久av| 在线观看美女被高潮喷水网站| 另类精品久久| 国产精品一区二区三区四区免费观看| 日本午夜av视频| 国产高清有码在线观看视频| 晚上一个人看的免费电影| 成人免费观看视频高清| 亚洲综合色惰| 国产精品嫩草影院av在线观看| 国产一区有黄有色的免费视频| 永久网站在线| av一本久久久久| 免费看av在线观看网站| 看免费成人av毛片| 哪个播放器可以免费观看大片| 国产男女内射视频| 国产精品一区www在线观看| 青春草视频在线免费观看| 亚洲精品久久久久久婷婷小说| 一级毛片电影观看| 久久99热6这里只有精品| 精品人妻熟女毛片av久久网站| 街头女战士在线观看网站| 日韩成人av中文字幕在线观看| 亚洲国产欧美日韩在线播放 | 精品久久久久久久久av| 熟女人妻精品中文字幕| 麻豆成人av视频| 69精品国产乱码久久久| 久久6这里有精品| 欧美成人精品欧美一级黄| 成人午夜精彩视频在线观看| 国产免费福利视频在线观看| 最近最新中文字幕免费大全7| 99久国产av精品国产电影| 丁香六月天网| 大陆偷拍与自拍| 国内揄拍国产精品人妻在线| 啦啦啦视频在线资源免费观看| 亚洲精品国产av蜜桃| 伦理电影大哥的女人| 日本wwww免费看| 91精品国产国语对白视频| 国产91av在线免费观看| 伦理电影大哥的女人| 26uuu在线亚洲综合色| 精品国产国语对白av| 亚洲国产毛片av蜜桃av| 国产免费一级a男人的天堂| 免费大片18禁| 极品少妇高潮喷水抽搐| 夫妻性生交免费视频一级片| 少妇被粗大猛烈的视频| 在线观看美女被高潮喷水网站| 亚洲欧美日韩另类电影网站| 九九爱精品视频在线观看| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 多毛熟女@视频| 国产精品一区www在线观看| 国产又色又爽无遮挡免| 亚洲av中文av极速乱| 亚洲精品国产成人久久av| 另类精品久久| 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 老司机影院成人| 日日摸夜夜添夜夜添av毛片| 人人妻人人澡人人看| 久久国内精品自在自线图片| 国产又色又爽无遮挡免| 色婷婷av一区二区三区视频| 在现免费观看毛片| 国产伦精品一区二区三区四那| 精品久久久久久久久亚洲| 中文字幕精品免费在线观看视频 | 久久久精品94久久精品| 少妇熟女欧美另类| 成人亚洲精品一区在线观看| 一级片'在线观看视频| 成人二区视频| 国产av码专区亚洲av| 国产高清国产精品国产三级| 国产91av在线免费观看| 欧美三级亚洲精品| 国产精品免费大片| 色视频www国产| 人妻制服诱惑在线中文字幕| 少妇人妻久久综合中文| 在线 av 中文字幕| 亚洲精华国产精华液的使用体验| 精品久久久久久久久亚洲| 久久午夜福利片| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 91精品国产国语对白视频| 伊人久久国产一区二区| 欧美精品人与动牲交sv欧美| 黄色毛片三级朝国网站 | 国产成人91sexporn| 色婷婷久久久亚洲欧美| 另类亚洲欧美激情| 一区在线观看完整版| 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 久久精品国产自在天天线| 最近手机中文字幕大全| 人人妻人人看人人澡| 最近最新中文字幕免费大全7| 亚洲国产精品成人久久小说| 国产又色又爽无遮挡免| 国产熟女午夜一区二区三区 | 丰满乱子伦码专区| 欧美 日韩 精品 国产| 人体艺术视频欧美日本| 精品久久国产蜜桃| 免费黄频网站在线观看国产| 久久久久精品久久久久真实原创| 麻豆成人午夜福利视频| 亚洲性久久影院| 亚洲怡红院男人天堂| 国产一级毛片在线| 午夜福利网站1000一区二区三区| 亚洲欧美日韩卡通动漫| 久久狼人影院| 久久精品久久久久久噜噜老黄| 国产免费一区二区三区四区乱码| 黑人巨大精品欧美一区二区蜜桃 | 91在线精品国自产拍蜜月| 黑人巨大精品欧美一区二区蜜桃 | 亚洲一级一片aⅴ在线观看| 简卡轻食公司| 久久精品国产亚洲av涩爱| 精品国产一区二区久久| 色婷婷久久久亚洲欧美| 人妻制服诱惑在线中文字幕| 黑人猛操日本美女一级片| 免费黄网站久久成人精品| 伊人亚洲综合成人网| 国精品久久久久久国模美| 久热这里只有精品99| 这个男人来自地球电影免费观看 | 天堂中文最新版在线下载| 人人澡人人妻人| 久久久久久久亚洲中文字幕| 3wmmmm亚洲av在线观看| 国产淫片久久久久久久久| 欧美激情国产日韩精品一区| 99久久精品热视频| 老熟女久久久| 熟女电影av网| 亚洲欧洲日产国产| 美女视频免费永久观看网站| 国产高清不卡午夜福利| 黑人猛操日本美女一级片| 国产精品久久久久久久久免| 欧美日韩综合久久久久久| 国国产精品蜜臀av免费| 久热久热在线精品观看| 天堂中文最新版在线下载| 亚洲国产精品一区三区| 老熟女久久久| 男的添女的下面高潮视频| av国产精品久久久久影院| 少妇精品久久久久久久| 亚洲一区二区三区欧美精品| av国产精品久久久久影院| 久久精品熟女亚洲av麻豆精品| 国产伦精品一区二区三区视频9| 久久精品久久久久久久性| 欧美精品一区二区大全| 亚洲va在线va天堂va国产| 国产成人精品福利久久| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 美女国产视频在线观看| 天堂俺去俺来也www色官网| 制服丝袜香蕉在线| 午夜91福利影院| 久久久国产精品麻豆| 日本av手机在线免费观看| 午夜免费男女啪啪视频观看| 国产亚洲91精品色在线| 国产亚洲av片在线观看秒播厂| 黄片无遮挡物在线观看| 国产在视频线精品| 成人亚洲精品一区在线观看| 天堂8中文在线网| a级一级毛片免费在线观看| av又黄又爽大尺度在线免费看| 日日啪夜夜爽| 久久精品国产自在天天线| 在线观看www视频免费| 日韩一本色道免费dvd| 丝袜脚勾引网站| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| h日本视频在线播放| 色视频在线一区二区三区| a级片在线免费高清观看视频| 又粗又硬又长又爽又黄的视频| 国产91av在线免费观看| 男人舔奶头视频| 老司机影院成人| 久久久久久久久久人人人人人人| 噜噜噜噜噜久久久久久91| 国产色爽女视频免费观看| 婷婷色综合大香蕉| 最近2019中文字幕mv第一页| 全区人妻精品视频| 国产免费视频播放在线视频| 伦精品一区二区三区| √禁漫天堂资源中文www| 少妇精品久久久久久久| 亚洲av成人精品一二三区| 欧美丝袜亚洲另类| 国产黄色免费在线视频| 99久国产av精品国产电影| 色94色欧美一区二区| 人人妻人人添人人爽欧美一区卜| 大又大粗又爽又黄少妇毛片口| 九九久久精品国产亚洲av麻豆| 亚洲精品中文字幕在线视频 | 久久99精品国语久久久| 日韩亚洲欧美综合| 人人妻人人爽人人添夜夜欢视频 | 777米奇影视久久| 丁香六月天网| av免费在线看不卡| 精品99又大又爽又粗少妇毛片| av播播在线观看一区| 亚洲精品成人av观看孕妇| 国产永久视频网站| 一本久久精品| 欧美xxⅹ黑人| 老司机亚洲免费影院| 伦精品一区二区三区| 伦理电影免费视频| 精品亚洲乱码少妇综合久久| 你懂的网址亚洲精品在线观看| 午夜免费鲁丝| 赤兔流量卡办理| 亚洲国产精品一区三区| 午夜福利,免费看| 一级片'在线观看视频| 在线观看一区二区三区激情| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂| 国产欧美日韩综合在线一区二区 | 成人午夜精彩视频在线观看| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| 精品久久久久久久久av| h视频一区二区三区| 国产精品人妻久久久影院| 97在线人人人人妻| 美女国产视频在线观看| 亚洲av在线观看美女高潮| 国产欧美日韩综合在线一区二区 | 美女中出高潮动态图| 亚洲av欧美aⅴ国产| 我要看日韩黄色一级片| 黄色欧美视频在线观看| 日韩大片免费观看网站| 国产色爽女视频免费观看| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成国产av| 七月丁香在线播放| 新久久久久国产一级毛片| 桃花免费在线播放| 国产色爽女视频免费观看| 高清av免费在线| 国产午夜精品一二区理论片| 日韩强制内射视频| 亚洲无线观看免费| 一级毛片久久久久久久久女| 人妻制服诱惑在线中文字幕| 午夜福利视频精品| 欧美日韩综合久久久久久| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 熟女人妻精品中文字幕| 亚洲av国产av综合av卡| 欧美丝袜亚洲另类| 少妇丰满av| av黄色大香蕉| 99久久中文字幕三级久久日本| 精品亚洲成国产av| 五月玫瑰六月丁香| 精品一品国产午夜福利视频| 777米奇影视久久| 精品视频人人做人人爽| 成人特级av手机在线观看| 蜜桃在线观看..| 天美传媒精品一区二区| 国产在线视频一区二区| 久久 成人 亚洲| 最近中文字幕2019免费版| 国产精品熟女久久久久浪| 国内少妇人妻偷人精品xxx网站| 乱系列少妇在线播放| 免费人妻精品一区二区三区视频| 一级av片app| 久久精品久久久久久噜噜老黄| 国产深夜福利视频在线观看| 97超视频在线观看视频| 国产伦精品一区二区三区四那| 搡老乐熟女国产| 日本黄色日本黄色录像| 一区二区三区免费毛片| 两个人的视频大全免费| 秋霞在线观看毛片| 日本午夜av视频|