• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Comparative Study on Photosynthetic Characteristics of Dryopteris fragrans and Associated Plants in Wudalianchi City, Heilongjiang Province, China

    2018-04-02 09:18:13ChenLinglingLiangYantaoWangHemengZhangTongBoZhigangZhaoZongbaoandChangYing
    關(guān)鍵詞:旅行包屋檐下屁股

    Chen Ling-ling, Liang Yan-tao, Wang He-meng, Zhang Tong, Bo Zhi-gang, Zhao Zong-bao, and Chang Ying*

    1 College of Life Sciences, Northeast Agricultural University, Harbin 150030, China

    2 Life Science Department, Daqing Normal University, Daqing 163712, Heilongjiang, China

    Introduction

    Dryopteris fragrans(L.) Schott, a deciduous perennial herb used in China for the treatment of skin diseases (Shenet al., 2006), exhibits antibacterial,antioxidant, analgesic, antitumor and immunomodulatory activities.Multiple substances, such as flavonoids,sterols and other medicinal components, have been isolated and characterized from this fern (Fanet al.,2012).Notably,D.fragranshas a very narrow geographic distribution and is limited to Asia, Europe and North America.In China, it is found exclusively in Wudalianchi City, Heilongjiang Province and thrives only in areas within volcanic geological landforms.There it grows in association with several other plant species, mainlySambucus williamsii,Artemisia sacrorum,Chelidonium majus,Sorbaria sorbifolia,Woodsia ilvensis,Potentilla asperrimaandUrtica angustifolia.The unique, but limited, geographic distribution ofD.fragranshas probably played an important role in shaping its physiological and ecological characteristics.

    Fern occupies an important place in plant phyletic evolution and uniquely exhibits independent gametophyte and sporophyte life stages.Moreover,D.fragransis a unique type of fern that grows in extreme environment.Therefore, due to its medicinal,nutritional and ornamental value, achieving optimalD.fragransgrowth is currently an important cha-llenge.Because photosynthesis is a very complex process, photosynthetic physiological ecology can systematically address this complexity through experimental indoor control methods, field sampling methods, isotopic techniques and other methods(Knight and Mitchell, 1989; Aguilaret al., 2015).Such studies can elucidate the relationships between ecological factors and multiple plant physiological phenomena.For example, on the one hand, photosynthetic efficiency of plants is influenced by external factors, such as light intensity, temperature and relative atmospheric humidity (Freeland, 1952;Arzariet al., 2005).On the other hand, internal factors, such as leaf size, leaf maturity, chlorophyll content and nitrate-reductase activity also play a role (Spoeher and Mcgee, 1924) (Osterhoutet al.,1919).In spite of this complexity, researchers have successfully employed several endangered plants.For example, researches onTrillium tschonoskiifound that this endangered plant photosynthesis(Liaoet al., 2006) and cannot adapt to humid environments (Macedoet al., 2011; Hanget al., 2008).In this study, various photosynthetic characteristics ofD.fragransand its associated plants were measured and compared, including net photosynthesis rate,chlorophyll content, nitrate reductase activity, light compensation point (LCP) and light saturation point(LSP).The results indicated that coordination exists betweenD.fragransphotosynthetic characteristics and its growth environment.Moreover, these results also served to identify factors underlying the narrow geographic distribution ofD.fragransand provided a theoretical foundation to justify protection of wild resources and facilitate artificial cultivation ofD.fragrans.

    Materials and Methods

    Natural conditions

    The experimental site was located within the mainD.fragransnatural habitat regions (Wudalianchi City,China).This area has a temperate continental monsoon climate, with average temperature of –0.5℃, average annual precipitation of 476 mm and average relative humidity of 69.2%.The frost period typically lasted from early October to early May, with an average annual frost-free period of 121 days.

    Plant materials

    Healthy representative plants ofD.fragransand its main associated plants, includingSambucus williamsii,Artemisia sacrorum,Chelidonium majus,Sorbaria sorbifolia,Woodsia ilvensis,Potentilla asperrimaandUrtica angustifoliawere chosen for sampling.Leaves, which carried out plants' major photosynthetic function, were typically sampled using two or three leaves per plant (13 cm long, 3.5 cm wide).Leaves with similar spatial orientation and angle were chosen(Caiet al., 2008) with westward posture and 30o dip angle with respect to the ground (Yanget al., 2010; Li,2005).

    Diurnal variations of photosynthetic rate (Pn)

    On sunny days in mid-July, a LCi portable photosynthesis measurement system (ADC BioScientific,Ltd., UK) was used to measure net photosynthesis rate [Pn, μmol · (m2· s-1)-1] each hour from 6: 00 a.m.to 6: 00 p.m (Jin, 2002).Each measurement was repeated 3 times.

    Measurement of light compensation point and light saturation point

    CO2concentration was set to 450 μmol · mol-1and the relative humidity to 80% as described previously(Zhanget al., 2010).The saturating light intensity was determined by varying the light intensity until it was no longer a factor limiting the photosynthesis rate.Light compensation point (LCP) was determined using photosynthetically active radiation-net photo-synthetic rate response curves.

    Measurement of chlorophyll content

    A soaking extraction method was applied to extract chlorophyll using a mixed ethanol-acetone solution.Chlorophyll content was determined using spectrophotometry (Shuet al., 2010).Three individualD.fragransplants growing at the same location were used to measurePnand were chosen to determine chlorophyll a and chlorophyll b contents using the Beer-Lambert law.

    Measurement of nitrate reductase activity

    The activity of nitrate reductase was measured as previously described (Fresneauet al., 2007; Giaimoet al., 2002).NaNO2was used to generate a standard curve and the activity of nitrate reductase was determined from the curve.

    Results

    Diurnal variations of Pn in D.fragrans and its main associated plants

    白天明又苦笑了一下,他說(shuō):“蘇石在城里沒(méi)事,沒(méi)啥大事,這是他叫我?guī)Щ貋?lái)給你的。”他指了指屋檐下的那旅行包,鼓鼓囊囊的。他又說(shuō):“我先走了,有什么事你問(wèn)爸吧,剛才我都跟爸說(shuō)了?!闭f(shuō)著,白天明就跟小偷似的,拎起自己的包,折轉(zhuǎn)屁股溜了。

    The diurnal variations in leaf net photosynthetic rate(Pn) forD.fragransand its main associated plants are shown in Fig.1, showing dramatic changes for all the plants studied.Moreover, the diurnalPnprofiles ofD.fragrans,W.ilvensisandU.angustifoliaexhibited unimodal change pro files, whileC.majusandA.gmeliniiexhibited bimodal rate change pro files.The maximal photosynthesis rate (Pmax) forS.williamsiiandP.asperrimawere the highest and were mainly observed at noon or 1: 00 p.m.OnlyC.majus andP.asperrimaexhibited an additionalPmaxpeak around 11: 00 a.m.Pmaxvalues were the lowest inD.fragransandA.gmelinii(Fig.2).

    Comparison of monthly variations of chlorophyll content in D.fragrans and its main associated plants

    The results demonstrated that leaf chlorophyll content directly correlated with photosynthetic capacity for all the plants grown under similar conditions within a certain range (Figs.3-5).During the growth period from April to October, the chlorophyll was tested content monthly for all the plants, except for a gap in some data for April (Fig.4), when the average temperature was only –11.2℃.Due to the cold temperatures,S.williamsii,S.sorbifoliaandU.angustifolialeaves were not completely grown by this time point and data were not collected.

    Fig.1 Diurnal variations of Pn

    Chlorophyll content changes followed a consistent pattern, with a gradual decrease from May to July,followed by an increase from July to September.In October,C.majus,S.sorbifoliaandU.angustifoliaplants lost their leaves.The chlorophyll a/b ratio changes were quite stable across the entire growing season, with the most values remaining between 1.5 and 3.0 and exhibiting common trends.However, early in the growing season, chlorophyll a/b values were the highest, followed by a slow decline until they reached their lowest values in July and August.Therefore,the chlorophyll content was maximal, the chlorophyll a/b value was the lowest.With leaf aging, the ratio gradually rose again, during spring and autumn, the chlorophyll a/b ratio was larger, favoring absorption of longer light wavelengths.In summer, chlorophyll a/b value was relatively lower, favoring absorption of shorter wavelengths.Therefore, chlorophyll a,chlorophyll b, chlorophyll a+b and chlorophyll a/b each varied significantly for different months.

    Fig.2 Average diurnal Pmax of D.fragrans and associated plants

    Fig.3 Chlorophyll a content of D.fragrans and main associated plants

    Fig.4 Chlorophyll b content of D.fragrans and main associated plants

    Fig.5 showed that changes in chlorophyll a,chlorophyll b and chlorophyll a+b values exhibited similar trends.However, these values were much higher forA.sacrorumandC.majus, with large variations among different months.In contrast, forP.asperrima,S.williamsii,D.fragrans,S.sorbifolia,W.ilvensisandC.majus, these values were lower,with only minimal variation.InD.fragrans, these values were only a little higher than forC.majusandW.ilvensis.It was well known that chlorophyll a mainly absorbed red light, while chlorophyll b absorbs blue light.Red light absorption forD.fragranswas initially higher than forW.ilvensisandC.majus, while blue light absorption byD.fragranswas still higher than that ofW.ilvensisbut lower than that ofC.majuslater, from August to October.To summarize, plant chlorophyll content had a direct effect on photosynthetic efficiency.Thus, in thisD.fragranscommunity,whenW.ilvensisexhibited higher photosynthetic efficiency,C.majusphotosynthetic efficiency was noticeably lower, whileD.fragransefficiency fell among values for these species.

    Fig.5 Chlorophyll a+b comparisons for D.fragrans and associated plants for each month

    Low chlorophyll a/b values for smaller plants have established that they utilize blue-purple wavelengths more efficiently.Fig.6 showed the highest maximum chlorophyll a/b value forD.fragransfollowed byA.gmelinii,W.ilvensis,C.majus,U.angustifolia,P.asperrima,S.sorbifolia,S.williamsii.These results showed thatD.fragranswas poorly adapted to its environment relative to its associated plants.

    Fig.6 Comparison of chlorophyll a/b for each plant species averaged over all the months

    Variation in activity of nitrate reductase in D.fragrans and associated plants

    As shown in Fig.8, the maximum nitrate reductase activity varied.The highest maximum nitrate reductase activity value was observed forS.williamsii, while the minimum was forA.gmelinii.Notably,the average nitrate reductase activity inD.fragranswas higher than only that ofA.gmelinii.In addition,becausePnshowed a positive correlation with enzyme activity, the relatively lowD.fragransnitrate reductase activity reflected its relatively lower photosynthesis rate and weaker photo-synthesis capacity than its associated plants.

    Fig.7 Monthly variation in nitrate reductase activity for all the studied plants

    Fig.8 Comparison of maximum nitrate reductase activity in D.fragrans and associated plants

    Variation of LCP and LSP in D.fragrans and its main associated plants

    A common pattern in LCP seasonal dynamic variation was observed overall (Figs.9 and 10).With the attainment of leaf maturity and increase in chlorophyll content, LCP appeared to decline generally, reaching a minimum in July.Subsequently, with leaf aging and reduction of chlorophyll content, LCP steadily and consistently increased, reaching a peak in September.A low LCP, small canopy density and strong light intensity in the rocky environment ofD.fragranscommunity gave rise to excessive photosynthesis,which greatly impacted growth.Therefore, in these eight species, the chlorophyll content and associated leaf growth both peaked in July, followed by a steady decrease with leaf aging.Generally, LSP could be utilized to measure plant photosynthetic capacity,as a higher LSP correlates with a largerPnvalue.Compared with its associated plants,D.fragransexhibited a relatively low LSP, suggesting a narrower ecological amplitude to light adaptation.

    Fig.9 LCP variation D.fragrans and main associated plants

    Fig.10 LSP variation in D.fragrans and associated plants

    Discussion

    The net photosynthetic rate (Pn) in different habitats was a single peak pattern.In the summer morning, leaf photosynthetic rate ofD.fragransand other associated plants increased gradually.With the increased of the height of the sun, maximum value was at 1: 00 p.m.This was due to the high temperature and light in the northeast in summer, but in the morning the temperature was low, with the increased of PAR and temperaturePnwas also rising to and peak at the same time.Then the temperature was higher,the leaf water content was reduced, and the stomata were partially closed, which resulted in the decrease of Ci concentration and the decreased ofPn.Plant net photosynthetic rate determines the level of accumulation of plant photosynthetic products, which can further affect the speed of plant growth (Zhanget al., 2014).D.fragrans niche similarity and niche overlap of this plant were higher, which showed that their niches were more similar (Huanget al.,2013).Previous findings had shown that the growth ofD.fragransresponded to specifically defined environment factors.Here, measurements of photosynthetic rate and other photosynthetic physiological indices demonstrated that these values were not higher forD.fragrans, but were lower among most of its associated plants.For example, a lowerPnvalue reflected a weak photosynthetic capacity forD.fragransrelative to other plants in this community.In addition, the lowPnchanged at noon coupled with a higher light energy utilization rate both suggested thatD.fragranshad a certain resistance to strong light.

    Strong light environment was not conducive to the synthesis of chlorophyll and chloroplast development.Chlorophyll content and chlorophyll a/b had a direct effect on the photosynthetic rate.Chlorophyll a/b were small, meant the higher the use of blue violet, the higher ability to adapt to less light environment (Liet al., 2011).When chlorophyll a and chlorophyll b decreased, photosynthetic activity of plants increased.Compared with associated plants, the total chlorophyll content and chlorophyll a to chlorophyll b content ratio inD.fragransremained consistently at a middle level, demonstrating thatD.fragransmight adapt to light, but had weak competitive ability.At the same time, the study found thatD.fragransnitrate reductase activity varied significantly in different seasons, reaching the maximum in July before declining.

    The heliophytes had high LCP and LSP; however,the shade plants had low LCP and LSP (Liet al., 2011).In our study, low LCP and LSP values forD.fragranssuggested it had a stronger ability to utilize weak light than its associated plants.Overall, the results of this study linked the narrow geographic distribution ofD.fragransto its growth disadvantage relative to its associated plants.

    Conclusions

    Photosynthesis is one of the most significant physiological processes underlying plant growth and greatly impacts subsequent plant size and development.D.fragransis mainly distributed in rocks, an inhospitable environment that is neither warm nor damp enough for most plants to thrive.Therefore, during competition within a mixed plant community, the success ofD.fragranspartly depends on its growth speed.BecausePndetermined the rate of plant growth to a certain extent, this factor should play a role.Moreover, because previous researches indicated thatD.fragransgrowth characteristics helped it to adapt to environmental factors, photosynthetic physiological indices and the photosynthetic rate ofD.fragransand its main associated plants were analyzed.The study showed thatD.fragranswere not dominant and exhibit even lower values than for the associated plants.By comparing these photosynthetic characteristics, a potential coordination betweenD.fragransand the growing environment were observed that partly explained the reason behind the narrow geographic distribution ofD.fragrans.Moreover, the information obtained from the analyses should provide a theoretical basis for further resource protection, exploitation and artificial cultivation ofD.fragrans.

    Aguilar E, Allende L, Del Toro F J,et al.2015.Effects of elevated CO2and temperature on pathogenicity determinants and virulence of potato virus X/Potyvirus-associated synergism.Molecular Plant-microbe Interactions, 28: 1364-1373.

    Arzari R, Tadmor Y, Meir A,et al.2005.Light signaling genes and their manipulation towards modulation of phy-tonutrients content in tomato fruits.Biotech aology Advances, 28: 108-118.

    Cai R G, Zhang M, Yin Y P,et al.2008.Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application during grain filling of field-grow wheat.Agricultural Sciences in China, 7(2): 157-167.

    Fan H Q, Shen Z B Chen Y F,et al.2012.Study on antifungal susceptibility of different extract ofDryopteris fragrans.Journal ofChinese Medicinal Materials, 35: 1981-1985.

    Freeland R O.1952.Effect of age of leaves upon the rate of photosynthesis in some conifers.Plant Physiology, 27: 685-690.

    Fresneau C, Ghashghaie J, Cornicet G,et al.2007.Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durumL.): role of leaf internal CO2.Journal of Experimental Botany, 67(5): 2983-2992.

    Giaimo J M, Gusev A V, Wasielewski M R,et al.2002.Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation.Journal of the American Chemical Society, 124(29): 8530-8531.

    Hang G f, Zhai S H, Wen-Hua S U,et al.2008.Effects of light intensity and air temperature on the photosynthesis of Neottopteris Nidus.Journal of Kunming University, 4: 62-63.

    Huang Q Y, Lichun H U, Fan R,et al.2013.Characteristics of plant niche on medicinal herbDryopteris fragrans(L.) Schott.Journal of Northeast Agricultural University, 44(7): 143-148.

    Jin Z X.2002.The Photosynthetic characteristics of the main species of the Hep-tacodium miconioides community in Tiantai mountain of Zhejiang Province, China.Acta Ecologica Sinica, 1645-1652.

    Macedo A F, Leal-Costa M V, Tavares E S,et al.2011.The effect of light quality nn leaf production and development of in avitro-ultured plants ofAlternanthera brasilianaKuntze.Environmental and Experimental Botany, 70: 43-50.

    Knight S L, Mitchell C A.1989.Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce.Sci Hortic(Amsterdam), 35: 37-49.

    Li F W.2005.Studies on the photosynthetic characterizations and distributions of rear earth elements in fern Dicranopteris dichotoma.Institute of Botany, the Chinese Academy of Sciences, Beijing.

    Li L, Li X Y, Lin L S,et al.2011.Comparison of chlorophyll content and fluorescence parameters of six pasture species in two habitats in China.Chinese Journal of Plant Ecology, 35(6): 672-680.

    Li Y H, Zhang K M, Hong-Fang Y U,et al.2011.Photosynthetic characteristics of ten cultivars of autumn chrysanthemum (Dendranthema morifolium) and correlation analysis between net photosynthetic rate and some physio cological factors.Journal ofPlaut Resources and Euviroumeut, 21(1): 70-76.

    Liao J X, Ge Y, Guan B H,et al.2006.Photosynthetic characteristics and growth ofMosla hangchowensisand M-dianthera under different irradiances.Biol Plantarum, 50: 737-740.

    Osterhout W J, Haas A R.1919.The temperature coefficient of photosynthesis.The Journal of General Physiology, 1: 295-298.

    Shen Z B, Luo W Y, Yan Y S,et al.2006.Study on terpene ofDryopteris fragransL.Journal of Chinese Medicinal Materials, 29:334-335.

    Shu Z Z, Zhang X S, Chen J,et al.2010.The simplification of chlorophyll content measurement.Plant Physiology Communications, 6(4): 399-402.

    Spoeher H A, Mcgee J M.1924.Absorption of carbon dioxide the first step in photosynthesis.Science, 59: 513-514.

    Yang X Y, Wang X F, Wei M,et al.2010.Changes of nitrate reductase activity in cucumber seedlings in response to nitrate stress.Agricultural Sciences in China, 9(2): 216-222.

    Zhang Z W, Zhang B Y, Tong H F,et al.2010.Photosynthetic LCP and LSP of different grapevine cultivars.Journal of Northwest Forestry University, 25(1): 24-29.

    Zhang Y Q, Li S W, Wei F U,et al.2014.Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet.Journal of Plant Nutrition and Fertilizer, 5:1119-1126.

    猜你喜歡
    旅行包屋檐下屁股
    同在一個(gè)屋檐下的困擾
    中老年保健(2022年1期)2022-08-17 06:15:32
    給麥先生的信
    出色
    智族GQ(2020年1期)2020-03-11 13:14:38
    打針要扎在屁股上
    善待屁股
    特別健康(2018年4期)2018-07-03 00:38:12
    神奇屁股在哪里
    光合之家——一個(gè)屋檐下
    輕裝出行
    關(guān)于“報(bào)屁股”(外一章)
    同一屋檐下的你
    成熟少妇高潮喷水视频| 看片在线看免费视频| 亚洲av免费高清在线观看| 欧美激情在线99| 成人特级av手机在线观看| 精品国产三级普通话版| 亚洲片人在线观看| 五月伊人婷婷丁香| 亚洲自拍偷在线| 1000部很黄的大片| 成年女人看的毛片在线观看| 九九在线视频观看精品| 在线观看66精品国产| 婷婷亚洲欧美| 免费看光身美女| 又黄又粗又硬又大视频| 欧美高清成人免费视频www| 成人欧美大片| 午夜视频国产福利| 精品国内亚洲2022精品成人| 亚洲人成网站高清观看| 国产综合懂色| 最新美女视频免费是黄的| 亚洲天堂国产精品一区在线| 尤物成人国产欧美一区二区三区| 99久久精品国产亚洲精品| 亚洲欧美激情综合另类| 在线看三级毛片| 又爽又黄无遮挡网站| 免费看日本二区| 97超级碰碰碰精品色视频在线观看| 精品熟女少妇八av免费久了| 麻豆国产av国片精品| 最近在线观看免费完整版| 成人性生交大片免费视频hd| 亚洲av免费高清在线观看| 黄片大片在线免费观看| 男人的好看免费观看在线视频| a在线观看视频网站| 久久九九热精品免费| 一区二区三区免费毛片| 国产一区二区三区在线臀色熟女| 九色成人免费人妻av| 国产成年人精品一区二区| 男女床上黄色一级片免费看| 久久精品影院6| 可以在线观看毛片的网站| 精品久久久久久成人av| 97碰自拍视频| 久久草成人影院| 国产精品久久久久久久久免 | 午夜福利在线观看免费完整高清在 | 观看美女的网站| 精品久久久久久久毛片微露脸| 亚洲av日韩精品久久久久久密| 国产精品日韩av在线免费观看| 精品久久久久久久毛片微露脸| 香蕉丝袜av| 国产黄色小视频在线观看| 欧美成人性av电影在线观看| 国产高清有码在线观看视频| 国产高清有码在线观看视频| 午夜福利在线观看吧| 久久性视频一级片| 操出白浆在线播放| 国产成人aa在线观看| 美女 人体艺术 gogo| 中文字幕精品亚洲无线码一区| 老司机午夜十八禁免费视频| 午夜福利成人在线免费观看| 欧美另类亚洲清纯唯美| svipshipincom国产片| 淫妇啪啪啪对白视频| 中文字幕久久专区| 在线播放无遮挡| 亚洲欧美日韩东京热| 亚洲色图av天堂| 欧美区成人在线视频| 午夜福利在线观看免费完整高清在 | 乱人视频在线观看| 我要搜黄色片| 在线观看美女被高潮喷水网站 | 国产主播在线观看一区二区| 国产蜜桃级精品一区二区三区| 亚洲精品色激情综合| 国产三级黄色录像| 最近视频中文字幕2019在线8| 日韩欧美免费精品| 天天躁日日操中文字幕| 亚洲成av人片免费观看| 别揉我奶头~嗯~啊~动态视频| 精品无人区乱码1区二区| 久久久国产成人精品二区| 亚洲男人的天堂狠狠| 精品一区二区三区av网在线观看| 搡老熟女国产l中国老女人| 亚洲最大成人中文| 一级黄色大片毛片| 人妻夜夜爽99麻豆av| 欧美av亚洲av综合av国产av| 他把我摸到了高潮在线观看| АⅤ资源中文在线天堂| 日本免费a在线| 日韩欧美精品免费久久 | 久99久视频精品免费| 国产成人欧美在线观看| 99久久成人亚洲精品观看| 中文字幕高清在线视频| 亚洲国产精品合色在线| 不卡一级毛片| 久久欧美精品欧美久久欧美| 亚洲成人精品中文字幕电影| 免费看a级黄色片| 久久精品国产清高在天天线| 亚洲精品粉嫩美女一区| 18禁美女被吸乳视频| 国产亚洲av嫩草精品影院| 亚洲一区高清亚洲精品| 成人18禁在线播放| 国产色婷婷99| 欧美乱色亚洲激情| 国产视频一区二区在线看| 国产精品综合久久久久久久免费| 国产av在哪里看| 久久精品国产亚洲av香蕉五月| 国产不卡一卡二| 国产精品久久久人人做人人爽| 免费高清视频大片| 一夜夜www| 成人性生交大片免费视频hd| 免费看日本二区| 久久久精品大字幕| 99久久精品国产亚洲精品| 午夜免费激情av| 国产淫片久久久久久久久 | 亚洲av熟女| 欧美日韩福利视频一区二区| 法律面前人人平等表现在哪些方面| 啦啦啦观看免费观看视频高清| 看片在线看免费视频| 日韩精品中文字幕看吧| 我的老师免费观看完整版| 亚洲自拍偷在线| 丰满人妻一区二区三区视频av | 午夜激情福利司机影院| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦韩国在线观看视频| 日韩国内少妇激情av| 精品一区二区三区人妻视频| 国产午夜精品久久久久久一区二区三区 | 欧美色欧美亚洲另类二区| 欧美乱妇无乱码| 精品欧美国产一区二区三| 精品无人区乱码1区二区| 久99久视频精品免费| 午夜福利视频1000在线观看| 欧美zozozo另类| 色播亚洲综合网| 麻豆成人午夜福利视频| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区四那| 亚洲最大成人中文| 亚洲成人久久性| 国产午夜精品久久久久久一区二区三区 | 亚洲男人的天堂狠狠| 窝窝影院91人妻| 757午夜福利合集在线观看| 麻豆久久精品国产亚洲av| 男女做爰动态图高潮gif福利片| 综合色av麻豆| 欧美成人一区二区免费高清观看| 国产精品美女特级片免费视频播放器| 精品久久久久久成人av| 天堂网av新在线| 又黄又爽又免费观看的视频| 日韩免费av在线播放| 少妇丰满av| 变态另类丝袜制服| 免费人成视频x8x8入口观看| 国产淫片久久久久久久久 | 叶爱在线成人免费视频播放| 久久久久九九精品影院| 精品午夜福利视频在线观看一区| 啦啦啦观看免费观看视频高清| 国内精品一区二区在线观看| 久久久久久人人人人人| 久久精品国产亚洲av香蕉五月| 亚洲狠狠婷婷综合久久图片| a在线观看视频网站| 又爽又黄无遮挡网站| 久久久精品大字幕| 国产精品1区2区在线观看.| 日韩免费av在线播放| 他把我摸到了高潮在线观看| 少妇裸体淫交视频免费看高清| 亚洲成av人片免费观看| 精品久久久久久成人av| 亚洲无线观看免费| 久久久久久九九精品二区国产| 国内揄拍国产精品人妻在线| 国产精品爽爽va在线观看网站| 禁无遮挡网站| 亚洲av电影不卡..在线观看| 国产欧美日韩精品一区二区| 国产毛片a区久久久久| 国产午夜精品久久久久久一区二区三区 | 日韩欧美国产在线观看| 又黄又粗又硬又大视频| 欧美一区二区精品小视频在线| 黄色女人牲交| 性色av乱码一区二区三区2| 99热6这里只有精品| 国产又黄又爽又无遮挡在线| 国产精品国产高清国产av| av中文乱码字幕在线| 老汉色av国产亚洲站长工具| 欧美xxxx黑人xx丫x性爽| 成年女人毛片免费观看观看9| 精品人妻一区二区三区麻豆 | 丰满人妻熟妇乱又伦精品不卡| 亚洲中文日韩欧美视频| 亚洲av五月六月丁香网| 美女免费视频网站| 俄罗斯特黄特色一大片| 国产精品嫩草影院av在线观看 | 白带黄色成豆腐渣| 国产三级中文精品| 国产亚洲精品久久久com| 狂野欧美白嫩少妇大欣赏| 夜夜躁狠狠躁天天躁| av天堂中文字幕网| 色噜噜av男人的天堂激情| 一个人免费在线观看的高清视频| 麻豆成人午夜福利视频| 久久久精品大字幕| 一级黄色大片毛片| 中文字幕人成人乱码亚洲影| 制服丝袜大香蕉在线| x7x7x7水蜜桃| 一级毛片女人18水好多| 亚洲国产精品合色在线| 女人高潮潮喷娇喘18禁视频| 国产三级黄色录像| a在线观看视频网站| 亚洲久久久久久中文字幕| 欧美绝顶高潮抽搐喷水| 伊人久久大香线蕉亚洲五| 久久精品影院6| 亚洲五月婷婷丁香| 精品久久久久久久久久久久久| 少妇高潮的动态图| 午夜福利18| 久久久久久国产a免费观看| 十八禁人妻一区二区| 久久伊人香网站| a级一级毛片免费在线观看| 欧美日韩综合久久久久久 | 少妇熟女aⅴ在线视频| 亚洲自拍偷在线| 久久久国产精品麻豆| 99精品久久久久人妻精品| 最近最新中文字幕大全电影3| 欧美日韩精品网址| eeuss影院久久| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 久久精品国产综合久久久| 国内少妇人妻偷人精品xxx网站| 99精品欧美一区二区三区四区| 中亚洲国语对白在线视频| 国产精品久久电影中文字幕| 国产探花极品一区二区| 一级a爱片免费观看的视频| 制服丝袜大香蕉在线| 国产69精品久久久久777片| 国产亚洲精品一区二区www| 在线观看av片永久免费下载| 亚洲熟妇熟女久久| 日韩亚洲欧美综合| 黑人欧美特级aaaaaa片| 精品国产超薄肉色丝袜足j| 久久久久久久久大av| 免费搜索国产男女视频| 免费在线观看亚洲国产| 波多野结衣巨乳人妻| 此物有八面人人有两片| 天天添夜夜摸| 日本撒尿小便嘘嘘汇集6| 免费av观看视频| 97碰自拍视频| 亚洲狠狠婷婷综合久久图片| 亚洲人成伊人成综合网2020| 麻豆一二三区av精品| 精品一区二区三区人妻视频| 久久久久久久久久黄片| 99在线视频只有这里精品首页| 夜夜躁狠狠躁天天躁| 免费在线观看影片大全网站| 精品国产三级普通话版| 最后的刺客免费高清国语| 国产高清videossex| 久久精品91蜜桃| 亚洲av成人av| 操出白浆在线播放| 欧美高清成人免费视频www| 91av网一区二区| 欧美成人a在线观看| 日本在线视频免费播放| 一级黄色大片毛片| 丰满人妻一区二区三区视频av | svipshipincom国产片| 日本成人三级电影网站| 五月玫瑰六月丁香| 在线观看日韩欧美| 在线国产一区二区在线| 亚洲美女黄片视频| 成人午夜高清在线视频| 久久久久精品国产欧美久久久| 中文亚洲av片在线观看爽| 亚洲av免费在线观看| 女警被强在线播放| 一本综合久久免费| 男人舔女人下体高潮全视频| 亚洲精品久久国产高清桃花| 午夜精品一区二区三区免费看| 日韩免费av在线播放| 亚洲性夜色夜夜综合| 亚洲久久久久久中文字幕| 一级毛片女人18水好多| 又黄又爽又免费观看的视频| 久久99热这里只有精品18| 禁无遮挡网站| 精品久久久久久久人妻蜜臀av| 久久国产乱子伦精品免费另类| 欧美zozozo另类| 日本一本二区三区精品| 精品人妻偷拍中文字幕| 国产伦人伦偷精品视频| 亚洲国产中文字幕在线视频| 国产午夜福利久久久久久| 久久久久久大精品| 99久国产av精品| 国产精品久久久久久久电影 | 亚洲av成人精品一区久久| 欧美+亚洲+日韩+国产| 免费搜索国产男女视频| 欧美中文综合在线视频| 亚洲国产欧美网| 欧美在线黄色| 国产精品 国内视频| 精品久久久久久久久久免费视频| 此物有八面人人有两片| 免费看美女性在线毛片视频| 日本三级黄在线观看| 国产亚洲精品久久久久久毛片| 免费电影在线观看免费观看| 日韩有码中文字幕| 一本综合久久免费| 久久久久久久久大av| 成人性生交大片免费视频hd| 又黄又粗又硬又大视频| 草草在线视频免费看| 操出白浆在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 免费看十八禁软件| 免费一级毛片在线播放高清视频| 午夜免费成人在线视频| 亚洲黑人精品在线| 日日夜夜操网爽| 国产野战对白在线观看| 色精品久久人妻99蜜桃| 欧美一级a爱片免费观看看| 久久欧美精品欧美久久欧美| 51午夜福利影视在线观看| 国产高清videossex| 欧美乱色亚洲激情| 久久久久免费精品人妻一区二区| 最近在线观看免费完整版| 亚洲中文字幕日韩| 日本撒尿小便嘘嘘汇集6| 日韩欧美一区二区三区在线观看| 99热这里只有是精品50| 久久久久久久久中文| 国产真人三级小视频在线观看| 最后的刺客免费高清国语| 亚洲国产日韩欧美精品在线观看 | 婷婷丁香在线五月| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女| 高清在线国产一区| 又粗又爽又猛毛片免费看| 啪啪无遮挡十八禁网站| 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 亚洲欧美日韩高清专用| 国产精品99久久久久久久久| 色吧在线观看| 亚洲成a人片在线一区二区| 身体一侧抽搐| 日本 欧美在线| 中文资源天堂在线| 国产欧美日韩一区二区三| 成人鲁丝片一二三区免费| 国产黄片美女视频| 90打野战视频偷拍视频| 丰满人妻熟妇乱又伦精品不卡| 日本免费一区二区三区高清不卡| 国产黄色小视频在线观看| 一级毛片女人18水好多| 在线观看一区二区三区| 亚洲成人久久爱视频| 三级男女做爰猛烈吃奶摸视频| 琪琪午夜伦伦电影理论片6080| 色av中文字幕| 12—13女人毛片做爰片一| 国内毛片毛片毛片毛片毛片| 国产高清三级在线| 国产三级在线视频| 中国美女看黄片| 在线播放无遮挡| 国产精品,欧美在线| 少妇的丰满在线观看| 国产高清视频在线播放一区| 一区二区三区免费毛片| 在线播放无遮挡| 亚洲精品色激情综合| 成人亚洲精品av一区二区| 每晚都被弄得嗷嗷叫到高潮| 免费观看人在逋| 脱女人内裤的视频| 国产伦精品一区二区三区视频9 | 亚洲av成人精品一区久久| 无遮挡黄片免费观看| 男人和女人高潮做爰伦理| 国产免费男女视频| 欧美黑人欧美精品刺激| 色av中文字幕| 又粗又爽又猛毛片免费看| 国产成人影院久久av| 国产熟女xx| 精品乱码久久久久久99久播| 一进一出抽搐gif免费好疼| 精品国产超薄肉色丝袜足j| 69人妻影院| 成人欧美大片| 精品国产美女av久久久久小说| 桃色一区二区三区在线观看| 日本黄色视频三级网站网址| 69人妻影院| 亚洲国产欧美网| 99热只有精品国产| 校园春色视频在线观看| 在线观看av片永久免费下载| 免费搜索国产男女视频| 国产亚洲精品一区二区www| 波多野结衣高清作品| 一卡2卡三卡四卡精品乱码亚洲| 日韩免费av在线播放| 久久久久国内视频| 熟妇人妻久久中文字幕3abv| 国产精品日韩av在线免费观看| 天堂影院成人在线观看| 日韩成人在线观看一区二区三区| 99在线视频只有这里精品首页| 国产精品99久久99久久久不卡| 香蕉丝袜av| 国产精品电影一区二区三区| 亚洲激情在线av| 婷婷丁香在线五月| 伊人久久大香线蕉亚洲五| 亚洲五月婷婷丁香| 欧美日韩瑟瑟在线播放| 免费大片18禁| 中文字幕久久专区| 搡老岳熟女国产| 一进一出抽搐动态| 少妇高潮的动态图| 欧美日韩乱码在线| 啦啦啦韩国在线观看视频| 国产精品,欧美在线| 校园春色视频在线观看| 精品人妻1区二区| 久久久国产成人免费| a级毛片a级免费在线| 欧美国产日韩亚洲一区| 97人妻精品一区二区三区麻豆| 免费在线观看成人毛片| 国产高清视频在线播放一区| 亚洲精品久久国产高清桃花| 国产成+人综合+亚洲专区| 久久精品综合一区二区三区| 国产成人av激情在线播放| 欧美bdsm另类| 国产69精品久久久久777片| 人人妻人人澡欧美一区二区| 欧美日韩福利视频一区二区| 精品一区二区三区视频在线观看免费| 嫩草影院入口| 亚洲无线观看免费| 丰满乱子伦码专区| 看片在线看免费视频| 99在线人妻在线中文字幕| 亚洲av成人精品一区久久| www.色视频.com| 日本在线视频免费播放| 在线观看一区二区三区| 99久久综合精品五月天人人| 日本五十路高清| 国产成人aa在线观看| 12—13女人毛片做爰片一| 男人和女人高潮做爰伦理| 日本黄色视频三级网站网址| 一边摸一边抽搐一进一小说| 婷婷精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 欧美+日韩+精品| 少妇裸体淫交视频免费看高清| 欧美高清成人免费视频www| 国产亚洲欧美在线一区二区| 99热精品在线国产| 亚洲内射少妇av| 精品国内亚洲2022精品成人| 五月玫瑰六月丁香| 久久久久久久亚洲中文字幕 | 黄色女人牲交| tocl精华| 久久精品亚洲精品国产色婷小说| 亚洲熟妇熟女久久| 国产色婷婷99| 哪里可以看免费的av片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老鸭窝网址在线观看| 人妻丰满熟妇av一区二区三区| 日韩欧美一区二区三区在线观看| 精品久久久久久成人av| av欧美777| 日本在线视频免费播放| 国产伦精品一区二区三区视频9 | 国产探花极品一区二区| 欧美日韩乱码在线| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 免费av观看视频| 国产精品爽爽va在线观看网站| 一级毛片高清免费大全| 国产三级黄色录像| 午夜免费男女啪啪视频观看 | 免费人成视频x8x8入口观看| 欧美精品啪啪一区二区三区| 日日干狠狠操夜夜爽| 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 少妇熟女aⅴ在线视频| 51午夜福利影视在线观看| 内射极品少妇av片p| 搡老妇女老女人老熟妇| 亚洲欧美日韩东京热| 欧美日韩乱码在线| 亚洲最大成人中文| 欧美一区二区亚洲| 欧美+日韩+精品| а√天堂www在线а√下载| 又黄又爽又免费观看的视频| 岛国在线免费视频观看| 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 少妇熟女aⅴ在线视频| 一个人观看的视频www高清免费观看| 成年版毛片免费区| 精品久久久久久久末码| 日本成人三级电影网站| 久久性视频一级片| 两个人的视频大全免费| 51国产日韩欧美| 久久久久亚洲av毛片大全| 久久久久性生活片| 美女免费视频网站| 精品99又大又爽又粗少妇毛片 | 成人鲁丝片一二三区免费| 在线视频色国产色| 亚洲欧美精品综合久久99| 国产不卡一卡二| 精品人妻一区二区三区麻豆 | av国产免费在线观看| 校园春色视频在线观看| 国产精品久久久人人做人人爽| 制服人妻中文乱码| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 午夜福利免费观看在线| 中文资源天堂在线| 狠狠狠狠99中文字幕| av福利片在线观看| 久久久久九九精品影院| 免费在线观看影片大全网站| 热99re8久久精品国产| 亚洲乱码一区二区免费版| 午夜福利成人在线免费观看| 搡女人真爽免费视频火全软件 | 三级毛片av免费| 免费看a级黄色片| 欧美中文日本在线观看视频| av欧美777| 国产高清三级在线| 国产一区二区激情短视频| 久久久久免费精品人妻一区二区| 岛国在线免费视频观看| 在线观看66精品国产| 久久性视频一级片| 亚洲av成人不卡在线观看播放网| 欧美丝袜亚洲另类 | 免费在线观看成人毛片| 久久精品国产自在天天线| 国产在视频线在精品|