• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Comparative Study on Photosynthetic Characteristics of Dryopteris fragrans and Associated Plants in Wudalianchi City, Heilongjiang Province, China

    2018-04-02 09:18:13ChenLinglingLiangYantaoWangHemengZhangTongBoZhigangZhaoZongbaoandChangYing
    關(guān)鍵詞:旅行包屋檐下屁股

    Chen Ling-ling, Liang Yan-tao, Wang He-meng, Zhang Tong, Bo Zhi-gang, Zhao Zong-bao, and Chang Ying*

    1 College of Life Sciences, Northeast Agricultural University, Harbin 150030, China

    2 Life Science Department, Daqing Normal University, Daqing 163712, Heilongjiang, China

    Introduction

    Dryopteris fragrans(L.) Schott, a deciduous perennial herb used in China for the treatment of skin diseases (Shenet al., 2006), exhibits antibacterial,antioxidant, analgesic, antitumor and immunomodulatory activities.Multiple substances, such as flavonoids,sterols and other medicinal components, have been isolated and characterized from this fern (Fanet al.,2012).Notably,D.fragranshas a very narrow geographic distribution and is limited to Asia, Europe and North America.In China, it is found exclusively in Wudalianchi City, Heilongjiang Province and thrives only in areas within volcanic geological landforms.There it grows in association with several other plant species, mainlySambucus williamsii,Artemisia sacrorum,Chelidonium majus,Sorbaria sorbifolia,Woodsia ilvensis,Potentilla asperrimaandUrtica angustifolia.The unique, but limited, geographic distribution ofD.fragranshas probably played an important role in shaping its physiological and ecological characteristics.

    Fern occupies an important place in plant phyletic evolution and uniquely exhibits independent gametophyte and sporophyte life stages.Moreover,D.fragransis a unique type of fern that grows in extreme environment.Therefore, due to its medicinal,nutritional and ornamental value, achieving optimalD.fragransgrowth is currently an important cha-llenge.Because photosynthesis is a very complex process, photosynthetic physiological ecology can systematically address this complexity through experimental indoor control methods, field sampling methods, isotopic techniques and other methods(Knight and Mitchell, 1989; Aguilaret al., 2015).Such studies can elucidate the relationships between ecological factors and multiple plant physiological phenomena.For example, on the one hand, photosynthetic efficiency of plants is influenced by external factors, such as light intensity, temperature and relative atmospheric humidity (Freeland, 1952;Arzariet al., 2005).On the other hand, internal factors, such as leaf size, leaf maturity, chlorophyll content and nitrate-reductase activity also play a role (Spoeher and Mcgee, 1924) (Osterhoutet al.,1919).In spite of this complexity, researchers have successfully employed several endangered plants.For example, researches onTrillium tschonoskiifound that this endangered plant photosynthesis(Liaoet al., 2006) and cannot adapt to humid environments (Macedoet al., 2011; Hanget al., 2008).In this study, various photosynthetic characteristics ofD.fragransand its associated plants were measured and compared, including net photosynthesis rate,chlorophyll content, nitrate reductase activity, light compensation point (LCP) and light saturation point(LSP).The results indicated that coordination exists betweenD.fragransphotosynthetic characteristics and its growth environment.Moreover, these results also served to identify factors underlying the narrow geographic distribution ofD.fragransand provided a theoretical foundation to justify protection of wild resources and facilitate artificial cultivation ofD.fragrans.

    Materials and Methods

    Natural conditions

    The experimental site was located within the mainD.fragransnatural habitat regions (Wudalianchi City,China).This area has a temperate continental monsoon climate, with average temperature of –0.5℃, average annual precipitation of 476 mm and average relative humidity of 69.2%.The frost period typically lasted from early October to early May, with an average annual frost-free period of 121 days.

    Plant materials

    Healthy representative plants ofD.fragransand its main associated plants, includingSambucus williamsii,Artemisia sacrorum,Chelidonium majus,Sorbaria sorbifolia,Woodsia ilvensis,Potentilla asperrimaandUrtica angustifoliawere chosen for sampling.Leaves, which carried out plants' major photosynthetic function, were typically sampled using two or three leaves per plant (13 cm long, 3.5 cm wide).Leaves with similar spatial orientation and angle were chosen(Caiet al., 2008) with westward posture and 30o dip angle with respect to the ground (Yanget al., 2010; Li,2005).

    Diurnal variations of photosynthetic rate (Pn)

    On sunny days in mid-July, a LCi portable photosynthesis measurement system (ADC BioScientific,Ltd., UK) was used to measure net photosynthesis rate [Pn, μmol · (m2· s-1)-1] each hour from 6: 00 a.m.to 6: 00 p.m (Jin, 2002).Each measurement was repeated 3 times.

    Measurement of light compensation point and light saturation point

    CO2concentration was set to 450 μmol · mol-1and the relative humidity to 80% as described previously(Zhanget al., 2010).The saturating light intensity was determined by varying the light intensity until it was no longer a factor limiting the photosynthesis rate.Light compensation point (LCP) was determined using photosynthetically active radiation-net photo-synthetic rate response curves.

    Measurement of chlorophyll content

    A soaking extraction method was applied to extract chlorophyll using a mixed ethanol-acetone solution.Chlorophyll content was determined using spectrophotometry (Shuet al., 2010).Three individualD.fragransplants growing at the same location were used to measurePnand were chosen to determine chlorophyll a and chlorophyll b contents using the Beer-Lambert law.

    Measurement of nitrate reductase activity

    The activity of nitrate reductase was measured as previously described (Fresneauet al., 2007; Giaimoet al., 2002).NaNO2was used to generate a standard curve and the activity of nitrate reductase was determined from the curve.

    Results

    Diurnal variations of Pn in D.fragrans and its main associated plants

    白天明又苦笑了一下,他說(shuō):“蘇石在城里沒(méi)事,沒(méi)啥大事,這是他叫我?guī)Щ貋?lái)給你的。”他指了指屋檐下的那旅行包,鼓鼓囊囊的。他又說(shuō):“我先走了,有什么事你問(wèn)爸吧,剛才我都跟爸說(shuō)了?!闭f(shuō)著,白天明就跟小偷似的,拎起自己的包,折轉(zhuǎn)屁股溜了。

    The diurnal variations in leaf net photosynthetic rate(Pn) forD.fragransand its main associated plants are shown in Fig.1, showing dramatic changes for all the plants studied.Moreover, the diurnalPnprofiles ofD.fragrans,W.ilvensisandU.angustifoliaexhibited unimodal change pro files, whileC.majusandA.gmeliniiexhibited bimodal rate change pro files.The maximal photosynthesis rate (Pmax) forS.williamsiiandP.asperrimawere the highest and were mainly observed at noon or 1: 00 p.m.OnlyC.majus andP.asperrimaexhibited an additionalPmaxpeak around 11: 00 a.m.Pmaxvalues were the lowest inD.fragransandA.gmelinii(Fig.2).

    Comparison of monthly variations of chlorophyll content in D.fragrans and its main associated plants

    The results demonstrated that leaf chlorophyll content directly correlated with photosynthetic capacity for all the plants grown under similar conditions within a certain range (Figs.3-5).During the growth period from April to October, the chlorophyll was tested content monthly for all the plants, except for a gap in some data for April (Fig.4), when the average temperature was only –11.2℃.Due to the cold temperatures,S.williamsii,S.sorbifoliaandU.angustifolialeaves were not completely grown by this time point and data were not collected.

    Fig.1 Diurnal variations of Pn

    Chlorophyll content changes followed a consistent pattern, with a gradual decrease from May to July,followed by an increase from July to September.In October,C.majus,S.sorbifoliaandU.angustifoliaplants lost their leaves.The chlorophyll a/b ratio changes were quite stable across the entire growing season, with the most values remaining between 1.5 and 3.0 and exhibiting common trends.However, early in the growing season, chlorophyll a/b values were the highest, followed by a slow decline until they reached their lowest values in July and August.Therefore,the chlorophyll content was maximal, the chlorophyll a/b value was the lowest.With leaf aging, the ratio gradually rose again, during spring and autumn, the chlorophyll a/b ratio was larger, favoring absorption of longer light wavelengths.In summer, chlorophyll a/b value was relatively lower, favoring absorption of shorter wavelengths.Therefore, chlorophyll a,chlorophyll b, chlorophyll a+b and chlorophyll a/b each varied significantly for different months.

    Fig.2 Average diurnal Pmax of D.fragrans and associated plants

    Fig.3 Chlorophyll a content of D.fragrans and main associated plants

    Fig.4 Chlorophyll b content of D.fragrans and main associated plants

    Fig.5 showed that changes in chlorophyll a,chlorophyll b and chlorophyll a+b values exhibited similar trends.However, these values were much higher forA.sacrorumandC.majus, with large variations among different months.In contrast, forP.asperrima,S.williamsii,D.fragrans,S.sorbifolia,W.ilvensisandC.majus, these values were lower,with only minimal variation.InD.fragrans, these values were only a little higher than forC.majusandW.ilvensis.It was well known that chlorophyll a mainly absorbed red light, while chlorophyll b absorbs blue light.Red light absorption forD.fragranswas initially higher than forW.ilvensisandC.majus, while blue light absorption byD.fragranswas still higher than that ofW.ilvensisbut lower than that ofC.majuslater, from August to October.To summarize, plant chlorophyll content had a direct effect on photosynthetic efficiency.Thus, in thisD.fragranscommunity,whenW.ilvensisexhibited higher photosynthetic efficiency,C.majusphotosynthetic efficiency was noticeably lower, whileD.fragransefficiency fell among values for these species.

    Fig.5 Chlorophyll a+b comparisons for D.fragrans and associated plants for each month

    Low chlorophyll a/b values for smaller plants have established that they utilize blue-purple wavelengths more efficiently.Fig.6 showed the highest maximum chlorophyll a/b value forD.fragransfollowed byA.gmelinii,W.ilvensis,C.majus,U.angustifolia,P.asperrima,S.sorbifolia,S.williamsii.These results showed thatD.fragranswas poorly adapted to its environment relative to its associated plants.

    Fig.6 Comparison of chlorophyll a/b for each plant species averaged over all the months

    Variation in activity of nitrate reductase in D.fragrans and associated plants

    As shown in Fig.8, the maximum nitrate reductase activity varied.The highest maximum nitrate reductase activity value was observed forS.williamsii, while the minimum was forA.gmelinii.Notably,the average nitrate reductase activity inD.fragranswas higher than only that ofA.gmelinii.In addition,becausePnshowed a positive correlation with enzyme activity, the relatively lowD.fragransnitrate reductase activity reflected its relatively lower photosynthesis rate and weaker photo-synthesis capacity than its associated plants.

    Fig.7 Monthly variation in nitrate reductase activity for all the studied plants

    Fig.8 Comparison of maximum nitrate reductase activity in D.fragrans and associated plants

    Variation of LCP and LSP in D.fragrans and its main associated plants

    A common pattern in LCP seasonal dynamic variation was observed overall (Figs.9 and 10).With the attainment of leaf maturity and increase in chlorophyll content, LCP appeared to decline generally, reaching a minimum in July.Subsequently, with leaf aging and reduction of chlorophyll content, LCP steadily and consistently increased, reaching a peak in September.A low LCP, small canopy density and strong light intensity in the rocky environment ofD.fragranscommunity gave rise to excessive photosynthesis,which greatly impacted growth.Therefore, in these eight species, the chlorophyll content and associated leaf growth both peaked in July, followed by a steady decrease with leaf aging.Generally, LSP could be utilized to measure plant photosynthetic capacity,as a higher LSP correlates with a largerPnvalue.Compared with its associated plants,D.fragransexhibited a relatively low LSP, suggesting a narrower ecological amplitude to light adaptation.

    Fig.9 LCP variation D.fragrans and main associated plants

    Fig.10 LSP variation in D.fragrans and associated plants

    Discussion

    The net photosynthetic rate (Pn) in different habitats was a single peak pattern.In the summer morning, leaf photosynthetic rate ofD.fragransand other associated plants increased gradually.With the increased of the height of the sun, maximum value was at 1: 00 p.m.This was due to the high temperature and light in the northeast in summer, but in the morning the temperature was low, with the increased of PAR and temperaturePnwas also rising to and peak at the same time.Then the temperature was higher,the leaf water content was reduced, and the stomata were partially closed, which resulted in the decrease of Ci concentration and the decreased ofPn.Plant net photosynthetic rate determines the level of accumulation of plant photosynthetic products, which can further affect the speed of plant growth (Zhanget al., 2014).D.fragrans niche similarity and niche overlap of this plant were higher, which showed that their niches were more similar (Huanget al.,2013).Previous findings had shown that the growth ofD.fragransresponded to specifically defined environment factors.Here, measurements of photosynthetic rate and other photosynthetic physiological indices demonstrated that these values were not higher forD.fragrans, but were lower among most of its associated plants.For example, a lowerPnvalue reflected a weak photosynthetic capacity forD.fragransrelative to other plants in this community.In addition, the lowPnchanged at noon coupled with a higher light energy utilization rate both suggested thatD.fragranshad a certain resistance to strong light.

    Strong light environment was not conducive to the synthesis of chlorophyll and chloroplast development.Chlorophyll content and chlorophyll a/b had a direct effect on the photosynthetic rate.Chlorophyll a/b were small, meant the higher the use of blue violet, the higher ability to adapt to less light environment (Liet al., 2011).When chlorophyll a and chlorophyll b decreased, photosynthetic activity of plants increased.Compared with associated plants, the total chlorophyll content and chlorophyll a to chlorophyll b content ratio inD.fragransremained consistently at a middle level, demonstrating thatD.fragransmight adapt to light, but had weak competitive ability.At the same time, the study found thatD.fragransnitrate reductase activity varied significantly in different seasons, reaching the maximum in July before declining.

    The heliophytes had high LCP and LSP; however,the shade plants had low LCP and LSP (Liet al., 2011).In our study, low LCP and LSP values forD.fragranssuggested it had a stronger ability to utilize weak light than its associated plants.Overall, the results of this study linked the narrow geographic distribution ofD.fragransto its growth disadvantage relative to its associated plants.

    Conclusions

    Photosynthesis is one of the most significant physiological processes underlying plant growth and greatly impacts subsequent plant size and development.D.fragransis mainly distributed in rocks, an inhospitable environment that is neither warm nor damp enough for most plants to thrive.Therefore, during competition within a mixed plant community, the success ofD.fragranspartly depends on its growth speed.BecausePndetermined the rate of plant growth to a certain extent, this factor should play a role.Moreover, because previous researches indicated thatD.fragransgrowth characteristics helped it to adapt to environmental factors, photosynthetic physiological indices and the photosynthetic rate ofD.fragransand its main associated plants were analyzed.The study showed thatD.fragranswere not dominant and exhibit even lower values than for the associated plants.By comparing these photosynthetic characteristics, a potential coordination betweenD.fragransand the growing environment were observed that partly explained the reason behind the narrow geographic distribution ofD.fragrans.Moreover, the information obtained from the analyses should provide a theoretical basis for further resource protection, exploitation and artificial cultivation ofD.fragrans.

    Aguilar E, Allende L, Del Toro F J,et al.2015.Effects of elevated CO2and temperature on pathogenicity determinants and virulence of potato virus X/Potyvirus-associated synergism.Molecular Plant-microbe Interactions, 28: 1364-1373.

    Arzari R, Tadmor Y, Meir A,et al.2005.Light signaling genes and their manipulation towards modulation of phy-tonutrients content in tomato fruits.Biotech aology Advances, 28: 108-118.

    Cai R G, Zhang M, Yin Y P,et al.2008.Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application during grain filling of field-grow wheat.Agricultural Sciences in China, 7(2): 157-167.

    Fan H Q, Shen Z B Chen Y F,et al.2012.Study on antifungal susceptibility of different extract ofDryopteris fragrans.Journal ofChinese Medicinal Materials, 35: 1981-1985.

    Freeland R O.1952.Effect of age of leaves upon the rate of photosynthesis in some conifers.Plant Physiology, 27: 685-690.

    Fresneau C, Ghashghaie J, Cornicet G,et al.2007.Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durumL.): role of leaf internal CO2.Journal of Experimental Botany, 67(5): 2983-2992.

    Giaimo J M, Gusev A V, Wasielewski M R,et al.2002.Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation.Journal of the American Chemical Society, 124(29): 8530-8531.

    Hang G f, Zhai S H, Wen-Hua S U,et al.2008.Effects of light intensity and air temperature on the photosynthesis of Neottopteris Nidus.Journal of Kunming University, 4: 62-63.

    Huang Q Y, Lichun H U, Fan R,et al.2013.Characteristics of plant niche on medicinal herbDryopteris fragrans(L.) Schott.Journal of Northeast Agricultural University, 44(7): 143-148.

    Jin Z X.2002.The Photosynthetic characteristics of the main species of the Hep-tacodium miconioides community in Tiantai mountain of Zhejiang Province, China.Acta Ecologica Sinica, 1645-1652.

    Macedo A F, Leal-Costa M V, Tavares E S,et al.2011.The effect of light quality nn leaf production and development of in avitro-ultured plants ofAlternanthera brasilianaKuntze.Environmental and Experimental Botany, 70: 43-50.

    Knight S L, Mitchell C A.1989.Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce.Sci Hortic(Amsterdam), 35: 37-49.

    Li F W.2005.Studies on the photosynthetic characterizations and distributions of rear earth elements in fern Dicranopteris dichotoma.Institute of Botany, the Chinese Academy of Sciences, Beijing.

    Li L, Li X Y, Lin L S,et al.2011.Comparison of chlorophyll content and fluorescence parameters of six pasture species in two habitats in China.Chinese Journal of Plant Ecology, 35(6): 672-680.

    Li Y H, Zhang K M, Hong-Fang Y U,et al.2011.Photosynthetic characteristics of ten cultivars of autumn chrysanthemum (Dendranthema morifolium) and correlation analysis between net photosynthetic rate and some physio cological factors.Journal ofPlaut Resources and Euviroumeut, 21(1): 70-76.

    Liao J X, Ge Y, Guan B H,et al.2006.Photosynthetic characteristics and growth ofMosla hangchowensisand M-dianthera under different irradiances.Biol Plantarum, 50: 737-740.

    Osterhout W J, Haas A R.1919.The temperature coefficient of photosynthesis.The Journal of General Physiology, 1: 295-298.

    Shen Z B, Luo W Y, Yan Y S,et al.2006.Study on terpene ofDryopteris fragransL.Journal of Chinese Medicinal Materials, 29:334-335.

    Shu Z Z, Zhang X S, Chen J,et al.2010.The simplification of chlorophyll content measurement.Plant Physiology Communications, 6(4): 399-402.

    Spoeher H A, Mcgee J M.1924.Absorption of carbon dioxide the first step in photosynthesis.Science, 59: 513-514.

    Yang X Y, Wang X F, Wei M,et al.2010.Changes of nitrate reductase activity in cucumber seedlings in response to nitrate stress.Agricultural Sciences in China, 9(2): 216-222.

    Zhang Z W, Zhang B Y, Tong H F,et al.2010.Photosynthetic LCP and LSP of different grapevine cultivars.Journal of Northwest Forestry University, 25(1): 24-29.

    Zhang Y Q, Li S W, Wei F U,et al.2014.Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet.Journal of Plant Nutrition and Fertilizer, 5:1119-1126.

    猜你喜歡
    旅行包屋檐下屁股
    同在一個(gè)屋檐下的困擾
    中老年保健(2022年1期)2022-08-17 06:15:32
    給麥先生的信
    出色
    智族GQ(2020年1期)2020-03-11 13:14:38
    打針要扎在屁股上
    善待屁股
    特別健康(2018年4期)2018-07-03 00:38:12
    神奇屁股在哪里
    光合之家——一個(gè)屋檐下
    輕裝出行
    關(guān)于“報(bào)屁股”(外一章)
    同一屋檐下的你
    国内精品宾馆在线| 久久久久久久久久久免费av| 18在线观看网站| 大片电影免费在线观看免费| 美女cb高潮喷水在线观看| 麻豆乱淫一区二区| 久热这里只有精品99| 国产男女超爽视频在线观看| 亚洲av.av天堂| 成人18禁高潮啪啪吃奶动态图 | 乱码一卡2卡4卡精品| 国产探花极品一区二区| 只有这里有精品99| 久久久精品94久久精品| 国产日韩欧美视频二区| 国产又色又爽无遮挡免| 亚洲激情五月婷婷啪啪| 久久影院123| a 毛片基地| 老熟女久久久| 国产高清三级在线| 国产免费又黄又爽又色| 国产高清三级在线| 一级毛片aaaaaa免费看小| 国产色婷婷99| 欧美变态另类bdsm刘玥| 国产不卡av网站在线观看| 伦理电影大哥的女人| 永久网站在线| 边亲边吃奶的免费视频| 国产精品成人在线| 国产国语露脸激情在线看| 国产欧美另类精品又又久久亚洲欧美| 欧美另类一区| 久久国产亚洲av麻豆专区| 一本一本综合久久| 亚洲av在线观看美女高潮| 欧美激情极品国产一区二区三区 | 免费av中文字幕在线| 美女国产高潮福利片在线看| 热99久久久久精品小说推荐| 欧美日韩成人在线一区二区| 久久精品久久精品一区二区三区| 国产亚洲精品久久久com| 97精品久久久久久久久久精品| 999精品在线视频| 久久久欧美国产精品| 高清黄色对白视频在线免费看| 日本vs欧美在线观看视频| 久久97久久精品| 成人二区视频| 亚洲欧美成人精品一区二区| 午夜福利网站1000一区二区三区| 99热网站在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品中文字幕在线视频| 欧美老熟妇乱子伦牲交| 中文天堂在线官网| 日本黄大片高清| 边亲边吃奶的免费视频| 日本午夜av视频| 国产片内射在线| 最近2019中文字幕mv第一页| 亚洲,欧美,日韩| 欧美精品一区二区免费开放| 免费观看无遮挡的男女| 又黄又爽又刺激的免费视频.| 99视频精品全部免费 在线| 最近最新中文字幕免费大全7| 午夜老司机福利剧场| 国产日韩欧美亚洲二区| 中文天堂在线官网| 校园人妻丝袜中文字幕| 精品亚洲成a人片在线观看| 黑丝袜美女国产一区| 精品一区二区免费观看| 亚洲欧美清纯卡通| kizo精华| 免费人妻精品一区二区三区视频| 日日摸夜夜添夜夜爱| 三上悠亚av全集在线观看| 成人亚洲精品一区在线观看| 亚洲国产欧美在线一区| 99热6这里只有精品| 国产又色又爽无遮挡免| 日韩精品有码人妻一区| 一级毛片我不卡| 久久久a久久爽久久v久久| 天堂中文最新版在线下载| 五月玫瑰六月丁香| 国产精品久久久久久精品电影小说| 日韩精品免费视频一区二区三区 | 久久人妻熟女aⅴ| 国产成人精品婷婷| 国产视频内射| 久久鲁丝午夜福利片| 日韩中字成人| 欧美 亚洲 国产 日韩一| 欧美一级a爱片免费观看看| 边亲边吃奶的免费视频| 最近中文字幕高清免费大全6| 飞空精品影院首页| 欧美日韩一区二区视频在线观看视频在线| 久久久精品94久久精品| 蜜桃久久精品国产亚洲av| 久久女婷五月综合色啪小说| 日韩三级伦理在线观看| a级毛色黄片| 99久久精品一区二区三区| 丁香六月天网| 成人18禁高潮啪啪吃奶动态图 | av不卡在线播放| 亚洲精品乱码久久久v下载方式| 国产在线视频一区二区| 欧美人与性动交α欧美精品济南到 | 欧美精品一区二区大全| av免费观看日本| 国产亚洲欧美精品永久| av卡一久久| 亚洲人与动物交配视频| 久久久久久久亚洲中文字幕| av有码第一页| 大香蕉久久成人网| 777米奇影视久久| 精品少妇内射三级| 国产乱来视频区| 又黄又爽又刺激的免费视频.| 纵有疾风起免费观看全集完整版| av国产精品久久久久影院| av线在线观看网站| 一级,二级,三级黄色视频| 色视频在线一区二区三区| 亚洲美女搞黄在线观看| 精品人妻偷拍中文字幕| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 欧美xxⅹ黑人| 在线观看美女被高潮喷水网站| 国产欧美日韩一区二区三区在线 | 51国产日韩欧美| 国产毛片在线视频| 中国三级夫妇交换| 性色av一级| 性高湖久久久久久久久免费观看| 亚洲综合色网址| 国产精品一二三区在线看| 亚洲精品美女久久av网站| www.色视频.com| 亚洲国产精品成人久久小说| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 国产高清不卡午夜福利| 精品午夜福利在线看| 久久精品国产亚洲网站| 一级毛片黄色毛片免费观看视频| 欧美少妇被猛烈插入视频| 在现免费观看毛片| 欧美日韩精品成人综合77777| 亚洲天堂av无毛| 桃花免费在线播放| 国产乱来视频区| 伦理电影大哥的女人| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| 一级二级三级毛片免费看| 亚洲精品乱码久久久v下载方式| 人妻夜夜爽99麻豆av| 搡老乐熟女国产| 午夜精品国产一区二区电影| 亚洲激情五月婷婷啪啪| 99九九在线精品视频| 久久这里有精品视频免费| 美女主播在线视频| 曰老女人黄片| 女人久久www免费人成看片| 爱豆传媒免费全集在线观看| 亚洲av不卡在线观看| 在线天堂最新版资源| 男女高潮啪啪啪动态图| 精品人妻一区二区三区麻豆| 中文欧美无线码| 一区二区三区乱码不卡18| 两个人免费观看高清视频| 日本午夜av视频| 99久国产av精品国产电影| 尾随美女入室| 精品久久蜜臀av无| 免费黄网站久久成人精品| 亚洲av日韩在线播放| 人人澡人人妻人| videos熟女内射| 日韩av在线免费看完整版不卡| 亚洲色图综合在线观看| 一级毛片aaaaaa免费看小| 最黄视频免费看| 免费观看的影片在线观看| 久久av网站| 久久久久久久久大av| 亚洲五月色婷婷综合| .国产精品久久| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 国产精品 国内视频| 亚洲,一卡二卡三卡| 男女无遮挡免费网站观看| 日本午夜av视频| 久久久久网色| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看| 国产成人精品一,二区| av播播在线观看一区| 性色avwww在线观看| kizo精华| 少妇的逼好多水| 亚洲精品国产av蜜桃| 两个人的视频大全免费| 国产av国产精品国产| 精品99又大又爽又粗少妇毛片| 久久精品国产亚洲av涩爱| 亚洲欧美精品自产自拍| 午夜av观看不卡| 嫩草影院入口| 在线精品无人区一区二区三| 欧美少妇被猛烈插入视频| 纯流量卡能插随身wifi吗| 岛国毛片在线播放| 九九在线视频观看精品| 街头女战士在线观看网站| 色婷婷av一区二区三区视频| 免费播放大片免费观看视频在线观看| 亚洲精品色激情综合| 久久ye,这里只有精品| 久久人人爽人人片av| 考比视频在线观看| 大香蕉久久成人网| 久久久久久久精品精品| 欧美成人精品欧美一级黄| 精品酒店卫生间| 日本wwww免费看| 精品国产国语对白av| 乱码一卡2卡4卡精品| 成年美女黄网站色视频大全免费 | 国产 精品1| 亚洲经典国产精华液单| 18禁在线播放成人免费| 成人午夜精彩视频在线观看| 久久久久视频综合| 亚洲av在线观看美女高潮| av在线观看视频网站免费| 婷婷色综合www| 欧美日本中文国产一区发布| 亚洲欧洲精品一区二区精品久久久 | 伊人久久精品亚洲午夜| 国产成人精品婷婷| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久小说| 下体分泌物呈黄色| 夜夜看夜夜爽夜夜摸| 亚洲,一卡二卡三卡| 久久毛片免费看一区二区三区| 十分钟在线观看高清视频www| 亚洲精品456在线播放app| av网站免费在线观看视频| 18禁在线无遮挡免费观看视频| 午夜福利,免费看| 2018国产大陆天天弄谢| 国产在线一区二区三区精| 亚洲美女黄色视频免费看| 中文乱码字字幕精品一区二区三区| 亚洲欧美成人精品一区二区| 国产亚洲午夜精品一区二区久久| 精品久久久噜噜| 欧美日韩精品成人综合77777| 欧美成人午夜精品| 视频在线观看一区二区三区| 欧美精品亚洲一区二区| 男女之事视频高清在线观看| 一区二区三区国产精品乱码| 人人妻人人爽人人添夜夜欢视频| www.熟女人妻精品国产| 巨乳人妻的诱惑在线观看| 国产一区二区在线观看av| 在线观看www视频免费| 男女下面插进去视频免费观看| 美女福利国产在线| 国产欧美亚洲国产| 丰满迷人的少妇在线观看| 久久国产精品男人的天堂亚洲| 热99re8久久精品国产| 欧美日韩黄片免| 久久久久久久久久久久大奶| 曰老女人黄片| 国产免费福利视频在线观看| 日韩免费高清中文字幕av| 日韩三级视频一区二区三区| 久久青草综合色| 亚洲成人国产一区在线观看| 欧美大码av| 国产又爽黄色视频| 色综合欧美亚洲国产小说| 99久久人妻综合| 亚洲色图 男人天堂 中文字幕| 97人妻天天添夜夜摸| 久久人妻福利社区极品人妻图片| 久久久久视频综合| 精品人妻1区二区| 亚洲人成电影免费在线| 国产成人欧美| 欧美日韩视频精品一区| 国产亚洲一区二区精品| 久久性视频一级片| 亚洲熟女毛片儿| 最近最新免费中文字幕在线| 黄色成人免费大全| 电影成人av| 色老头精品视频在线观看| 极品教师在线免费播放| 天天躁日日躁夜夜躁夜夜| 国产午夜精品久久久久久| 黄片播放在线免费| 美女高潮喷水抽搐中文字幕| 黄色a级毛片大全视频| 久久毛片免费看一区二区三区| 婷婷丁香在线五月| 搡老岳熟女国产| 久久久久久亚洲精品国产蜜桃av| 免费黄频网站在线观看国产| 中文字幕色久视频| 极品少妇高潮喷水抽搐| 成人国语在线视频| 无遮挡黄片免费观看| 菩萨蛮人人尽说江南好唐韦庄| 老熟妇仑乱视频hdxx| 日本av免费视频播放| 一区二区三区激情视频| 国产av又大| 精品国产亚洲在线| 高清毛片免费观看视频网站 | 夫妻午夜视频| 考比视频在线观看| 夜夜夜夜夜久久久久| 日韩一区二区三区影片| 久久精品国产综合久久久| 亚洲专区中文字幕在线| 国产av精品麻豆| 精品国产乱子伦一区二区三区| 欧美黑人精品巨大| 亚洲伊人久久精品综合| 动漫黄色视频在线观看| 久久免费观看电影| 丰满少妇做爰视频| 在线观看一区二区三区激情| 精品久久久久久久毛片微露脸| 亚洲国产欧美在线一区| 日本黄色视频三级网站网址 | 一区在线观看完整版| 999久久久精品免费观看国产| 欧美亚洲 丝袜 人妻 在线| 在线观看66精品国产| 中亚洲国语对白在线视频| 水蜜桃什么品种好| 亚洲人成电影观看| 国产精品1区2区在线观看. | 久久久久久久国产电影| 99国产综合亚洲精品| 国产一区二区 视频在线| 国产主播在线观看一区二区| 两人在一起打扑克的视频| 麻豆成人av在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲avbb在线观看| 女同久久另类99精品国产91| 亚洲精品粉嫩美女一区| 午夜成年电影在线免费观看| 久久毛片免费看一区二区三区| 国产片内射在线| 国产不卡av网站在线观看| 91大片在线观看| 亚洲视频免费观看视频| 丰满迷人的少妇在线观看| 亚洲av美国av| 丁香六月欧美| 90打野战视频偷拍视频| 日韩免费高清中文字幕av| 丝袜美腿诱惑在线| 国产精品熟女久久久久浪| 国产精品自产拍在线观看55亚洲 | 丝瓜视频免费看黄片| 午夜精品久久久久久毛片777| 女人被躁到高潮嗷嗷叫费观| 老司机午夜十八禁免费视频| 国产精品久久久av美女十八| 国产激情久久老熟女| 两个人免费观看高清视频| 国产高清videossex| 国产一卡二卡三卡精品| 50天的宝宝边吃奶边哭怎么回事| 女人久久www免费人成看片| 精品少妇内射三级| 天堂中文最新版在线下载| 成年人午夜在线观看视频| 久久久久久久久久久久大奶| 国产亚洲一区二区精品| 日本一区二区免费在线视频| 极品少妇高潮喷水抽搐| 久久久国产一区二区| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 国产欧美亚洲国产| 一本久久精品| 母亲3免费完整高清在线观看| 麻豆成人av在线观看| 91国产中文字幕| 成人av一区二区三区在线看| 99热网站在线观看| 成年动漫av网址| 中文字幕最新亚洲高清| 欧美日本中文国产一区发布| 在线观看舔阴道视频| 国产有黄有色有爽视频| 欧美精品亚洲一区二区| 欧美成狂野欧美在线观看| 欧美日韩亚洲高清精品| 最新在线观看一区二区三区| 在线观看免费视频网站a站| 中文字幕最新亚洲高清| 亚洲熟妇熟女久久| av电影中文网址| 久久99一区二区三区| 一级黄色大片毛片| 亚洲熟女精品中文字幕| 人人妻,人人澡人人爽秒播| 久久久久视频综合| 国产不卡av网站在线观看| 精品国产乱子伦一区二区三区| 日韩熟女老妇一区二区性免费视频| 在线观看舔阴道视频| 久久99一区二区三区| 在线观看免费视频日本深夜| 精品熟女少妇八av免费久了| 丝袜喷水一区| 正在播放国产对白刺激| 国产在线免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美色中文字幕在线| www.精华液| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美网| 最近最新中文字幕大全免费视频| 国产日韩欧美视频二区| 99久久国产精品久久久| 精品国产一区二区三区四区第35| 国产高清videossex| 国产欧美日韩精品亚洲av| 亚洲中文日韩欧美视频| 国产成人精品无人区| 麻豆成人av在线观看| 一二三四在线观看免费中文在| 国产成人影院久久av| 国产精品久久久久久精品古装| 午夜老司机福利片| 日韩视频在线欧美| 9色porny在线观看| 美女高潮到喷水免费观看| 老司机深夜福利视频在线观看| 欧美精品人与动牲交sv欧美| 国产一区二区三区视频了| 亚洲国产av影院在线观看| 精品国产一区二区三区四区第35| 多毛熟女@视频| 一二三四社区在线视频社区8| 精品国产国语对白av| 男女免费视频国产| 动漫黄色视频在线观看| 在线观看免费午夜福利视频| 无遮挡黄片免费观看| av一本久久久久| 亚洲精品国产精品久久久不卡| 香蕉久久夜色| 99国产精品一区二区蜜桃av | 女人久久www免费人成看片| 欧美乱码精品一区二区三区| 在线看a的网站| 久久久精品区二区三区| 性少妇av在线| 精品人妻在线不人妻| 脱女人内裤的视频| 国内毛片毛片毛片毛片毛片| 欧美精品亚洲一区二区| 青草久久国产| 成人av一区二区三区在线看| 极品人妻少妇av视频| 亚洲国产看品久久| 精品国产乱子伦一区二区三区| 欧美日韩亚洲综合一区二区三区_| 五月天丁香电影| 久久久久国内视频| 中文字幕制服av| 777米奇影视久久| 久久中文看片网| 亚洲av成人一区二区三| 人成视频在线观看免费观看| 成人av一区二区三区在线看| 亚洲精品乱久久久久久| 欧美激情 高清一区二区三区| 亚洲av片天天在线观看| 一级,二级,三级黄色视频| 亚洲国产成人一精品久久久| 精品欧美一区二区三区在线| av视频免费观看在线观看| 国精品久久久久久国模美| 国产免费福利视频在线观看| 亚洲精品中文字幕在线视频| 国产精品亚洲av一区麻豆| 欧美老熟妇乱子伦牲交| 欧美乱码精品一区二区三区| 1024视频免费在线观看| 乱人伦中国视频| 丰满人妻熟妇乱又伦精品不卡| 捣出白浆h1v1| 久久久久网色| 欧美日韩一级在线毛片| 国产一区有黄有色的免费视频| 日韩大片免费观看网站| 亚洲欧美色中文字幕在线| 久久午夜综合久久蜜桃| 国产精品av久久久久免费| 一本久久精品| 最近最新中文字幕大全免费视频| 一级黄色大片毛片| 免费不卡黄色视频| 欧美老熟妇乱子伦牲交| 一本久久精品| 如日韩欧美国产精品一区二区三区| 亚洲成人免费av在线播放| 两个人看的免费小视频| 一夜夜www| 午夜两性在线视频| 国产av又大| 国产欧美日韩一区二区三区在线| 国产精品秋霞免费鲁丝片| 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻熟女乱码| 久久精品国产a三级三级三级| 一进一出抽搐动态| 亚洲伊人色综图| 精品国产一区二区久久| 精品人妻1区二区| 女人精品久久久久毛片| 亚洲美女黄片视频| 桃花免费在线播放| 在线观看人妻少妇| 亚洲成国产人片在线观看| 亚洲国产毛片av蜜桃av| 高清av免费在线| 80岁老熟妇乱子伦牲交| 伦理电影免费视频| 欧美黄色片欧美黄色片| 亚洲情色 制服丝袜| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 五月开心婷婷网| 中文字幕高清在线视频| 免费高清在线观看日韩| 精品久久久精品久久久| 亚洲精品中文字幕一二三四区 | 18禁黄网站禁片午夜丰满| 日韩欧美一区视频在线观看| 国产成人精品久久二区二区免费| 久久久久国内视频| 欧美av亚洲av综合av国产av| 国精品久久久久久国模美| 亚洲国产欧美一区二区综合| 亚洲少妇的诱惑av| 50天的宝宝边吃奶边哭怎么回事| 满18在线观看网站| 老熟女久久久| 黄片播放在线免费| 国产成人精品无人区| 黑人巨大精品欧美一区二区蜜桃| 国产日韩一区二区三区精品不卡| 狠狠婷婷综合久久久久久88av| 12—13女人毛片做爰片一| 免费av中文字幕在线| 日韩视频一区二区在线观看| 国产亚洲一区二区精品| 欧美日韩亚洲国产一区二区在线观看 | 国产免费av片在线观看野外av| 99九九在线精品视频| 久久午夜亚洲精品久久| 成年动漫av网址| 精品国产国语对白av| 制服诱惑二区| 久热这里只有精品99| 在线观看舔阴道视频| 后天国语完整版免费观看| 国产又色又爽无遮挡免费看| 精品卡一卡二卡四卡免费| 青草久久国产| h视频一区二区三区| 91九色精品人成在线观看| 久久午夜亚洲精品久久| 国产高清激情床上av| 午夜福利影视在线免费观看| 欧美人与性动交α欧美精品济南到| 国产免费av片在线观看野外av| 无限看片的www在线观看| 69精品国产乱码久久久| 国产精品久久久人人做人人爽| 免费在线观看视频国产中文字幕亚洲| 国产精品美女特级片免费视频播放器 | 亚洲综合色网址| 国产成人精品在线电影| 精品一区二区三区视频在线观看免费 |