崔亞東, 張旻, 陳敏
終末期腎病(end-stage renal disease,ESRD)或慢性腎臟疾病(chronic kidney disease,CKD)是所有腎臟疾病的終末期,此類患者心血管疾病的發(fā)生風(fēng)險(xiǎn)明顯增高,ESRD患者心血管疾病病死率較普通人群高10~30倍,心血管并發(fā)癥在所有ESRD患者死亡原因中約占50%[1]。盡管ESRD患者往往具有動(dòng)脈粥樣硬化的風(fēng)險(xiǎn)因素,但這些患者的死亡原因主要是左心室肥厚和充血性心力衰竭[2]。尿毒癥患者心臟異常改變也稱為尿毒癥性心肌病[3]。本文就心臟磁共振(cardiac magnetic resonance,CMR)技術(shù)在尿毒癥性心肌病中的應(yīng)用進(jìn)行綜述。
尿毒癥性心肌病是ESRD患者中壓力超負(fù)荷、容量超負(fù)荷和尿毒癥狀態(tài)等諸多因素的綜合后果,是ESRD患者的常見并發(fā)癥,也是最常見的死亡原因之一[3],病理改變特點(diǎn)主要為肌細(xì)胞增生肥大,供血相對(duì)減少,導(dǎo)致心肌細(xì)胞間質(zhì)纖維化及心室重構(gòu),最后引起心室肥厚,舒張、收縮功能下降[4];表現(xiàn)為左心室肥厚、左心室擴(kuò)張、左心室收縮及舒張功能不良,與其他類型心肌病的病理改變類似[5]。這些表現(xiàn)反映了腎功能受損對(duì)心肌的影響,實(shí)際上,這種改變?cè)诼阅I臟疾病早期就已經(jīng)出現(xiàn)[6]。在血液透析(hemodialysis,HD)過程中,由于輸血、鐵攝入或溶血等原因會(huì)引起心肌鐵沉積,從而導(dǎo)致心功能障礙[7]。ESRD患者還可發(fā)生心包炎和心包積液,具體病因不明,可能是由于尿毒癥物質(zhì)的聚集[8]。
臨床主要應(yīng)用超聲心動(dòng)圖評(píng)價(jià)ESRD患者心臟結(jié)構(gòu)和功能的異常,但經(jīng)胸超聲心動(dòng)圖(transthoracic echocardiography,TTE)對(duì)于心肌質(zhì)量的評(píng)價(jià)對(duì)透析的時(shí)相有著高度依賴性;不同操作者之間測(cè)量的差異性很大;與CMR相比,往往高估心肌質(zhì)量[2]。CMR能夠更為精準(zhǔn)地評(píng)價(jià)心臟結(jié)構(gòu)和功能,已成為評(píng)價(jià)心功能的“金標(biāo)準(zhǔn)”[9]。
CMR能夠顯示透析治療對(duì)患者心臟結(jié)構(gòu)和功能的影響。Hunold等[10]研究發(fā)現(xiàn)透析期間舒張末期容積、收縮末期容積、每搏輸出量明顯下降,射血分?jǐn)?shù)未見明顯改變,左心室心肌質(zhì)量略有升高。Kramer等[11]的研究同樣發(fā)現(xiàn)患者透析后左心室舒張末容積、收縮末容積、每搏輸出量減低,而射血分?jǐn)?shù)、心肌質(zhì)量無(wú)顯著改變。Wald等[12]通過CMR比較傳統(tǒng)透析(conventional hemodialysis,CHD)和中心夜間血液透析(In-centre nocturnal hemodialysis,INHD)兩種治療方式患者心血管事件發(fā)生率的高低;結(jié)果顯示轉(zhuǎn)為INHD患者1年隨訪后心肌質(zhì)量減低,而CHD患者平均心肌質(zhì)量增加;與CHD患者組相比,INHD患者組心肌質(zhì)量降低幅度更大,說明相對(duì)于CHD,INHD對(duì)于ESRD患者心血管更有益處。
類似于超聲心動(dòng)圖的斑點(diǎn)追蹤技術(shù)(speckle tracking echocardiography,STI),CMR還可以應(yīng)用標(biāo)記CMR技術(shù)進(jìn)行掃描,或在電影序列基礎(chǔ)上應(yīng)用特征追蹤后處理軟件進(jìn)行處理,能夠量化局部心肌內(nèi)運(yùn)動(dòng),即心肌應(yīng)變參數(shù)[13]。
Odudu等[14]首次應(yīng)用標(biāo)記CMR技術(shù)研究HD患者和健康志愿者之間心肌收縮峰值周向應(yīng)變(peak-systolic circumferential strain,PSS)、舒張峰值應(yīng)變率(peak diastolic strain rate,PDSR)、左心室不同步性等參數(shù),結(jié)果發(fā)現(xiàn)HD患者PSS較健康志愿者明顯減低。PSDR在HD患者組較對(duì)照組減低,說明HD患者心臟舒張功能受損。HD患者室間隔及側(cè)壁PSS較其他節(jié)段明顯減低,說明HD患者心肌運(yùn)動(dòng)局部不均勻。HD患者應(yīng)變達(dá)峰時(shí)間離散程度較對(duì)照組明顯增高,反映了患者左心室不同步。
右心室功能是心衰患者預(yù)后的獨(dú)立預(yù)測(cè)因素[2]。評(píng)估右心室的結(jié)構(gòu)和功能是CMR 的一個(gè)獨(dú)特優(yōu)勢(shì)。目前對(duì)于CKD患者右心室結(jié)構(gòu)和功能的研究局限于超聲心動(dòng)圖[15,16],尚未有應(yīng)用CMR的相關(guān)文獻(xiàn)報(bào)道。
CMR除了能夠?qū)π呐K結(jié)構(gòu)和功能進(jìn)行準(zhǔn)確分析外,還可以提供心肌組織特征學(xué)信息[17]。
盡管心內(nèi)膜心肌活檢術(shù)是評(píng)價(jià)心肌纖維化特異性最高的檢查手段,但為有創(chuàng)性檢查,并且由于采樣誤差,其敏感性較低[18]。隨著CMR近幾年的快速發(fā)展,新的技術(shù)日趨成熟,逐漸在臨床得到應(yīng)用。
釓對(duì)比劑延遲增強(qiáng)(late gadolinium enhancement, LGE)技術(shù)通過靜脈注射細(xì)胞外間隙對(duì)比劑Gd-DTPA,對(duì)比劑在病變部位聚集,表現(xiàn)為高信號(hào),從而使病變心肌得以顯示[19,20]。很多研究已經(jīng)證實(shí)延遲強(qiáng)化與組織病理學(xué)有著良好的一致性[21],能夠區(qū)分缺血性和非缺血性心肌病,并可對(duì)非缺血性心肌病的亞型進(jìn)行鑒別,對(duì)病變的部位和范圍進(jìn)行準(zhǔn)確評(píng)估[22]。
釓對(duì)比劑延遲增強(qiáng)技術(shù)能夠分析心肌組織特征,識(shí)別ESRD的心血管疾病亞型,對(duì)深入了解尿毒癥心肌病的發(fā)生機(jī)制提供了新的途徑[2]。Mark等[23]對(duì)ESRD患者進(jìn)行心臟增強(qiáng)磁共振檢查,發(fā)現(xiàn)兩種延遲強(qiáng)化模式,一種為心內(nèi)膜下延遲強(qiáng)化,代表心肌梗死,另一種為彌漫性心肌延遲強(qiáng)化,代表尿毒癥心肌病改變。deFilippi等[24]的研究同樣發(fā)現(xiàn)以上兩種延遲強(qiáng)化模式,并且出現(xiàn)延遲強(qiáng)化的患者肌鈣蛋白T(Troponin T,TnT)高于無(wú)延遲強(qiáng)化的透析患者,說明尿毒癥心肌病與心肌損傷有關(guān)。Schietinger等[25]將HD患者心臟增強(qiáng)磁共振檢查釓劑延遲強(qiáng)化表現(xiàn)分為三種類型,分別為心內(nèi)膜下延遲強(qiáng)化、彌漫性延遲強(qiáng)化及局灶性非梗死形式延遲強(qiáng)化,研究發(fā)現(xiàn)梗死心肌信號(hào)與正常心肌的信號(hào)差異是三種類型中最大的,而且延遲強(qiáng)化心肌質(zhì)量與透析持續(xù)時(shí)間存在一定相關(guān)性。
釓對(duì)比劑延遲增強(qiáng)雖然對(duì)顯示心肌纖維化病變優(yōu)勢(shì)明顯,但無(wú)法對(duì)病變嚴(yán)重程度進(jìn)行定量分析。延遲強(qiáng)化對(duì)病變組織的顯示依靠其與鄰近正常心肌的信號(hào)差異對(duì)比,對(duì)于彌漫性或輕微心肌纖維化,病變心肌與正常心肌缺乏這種差異,因此無(wú)法在反轉(zhuǎn)序列中得以顯示[19,26]。除了心肌纖維化,炎癥、水腫等細(xì)胞外容積增加時(shí)延遲強(qiáng)化都可以出現(xiàn)[26]。雖然近年來(lái)的研究表明通過選擇合適的對(duì)比劑以及降低劑量,腎功能不全患者發(fā)生腎源性纖維化(nephrogenic systemic fibrosis,NSF)的風(fēng)險(xiǎn)已經(jīng)很低[27],但對(duì)于ESRD患者應(yīng)用對(duì)比劑應(yīng)謹(jǐn)慎[25]。
近幾年新興的T1mapping可以測(cè)得組織縱向弛豫時(shí)間,即T1值,每個(gè)像素的信號(hào)強(qiáng)度與心肌體素的縱向弛豫時(shí)間(T1值)對(duì)應(yīng),因此可以對(duì)心肌的組織特征進(jìn)行定量分析,無(wú)需正常心肌信號(hào)作對(duì)比參照。心肌活檢證實(shí),T1mapping與心肌纖維化有著緊密的相關(guān)性[28,29],尤其對(duì)彌漫性心肌纖維化有著較高的診斷靈敏度,彌補(bǔ)了傳統(tǒng)磁共振圖像的局限性[19,30]。根據(jù)是否應(yīng)用對(duì)比劑,可將其分為初始T1mapping及對(duì)比劑注射后的T1mapping。
T1mapping能夠識(shí)別CKD患者心肌異常改變。Rutherford等[31]研究發(fā)現(xiàn)透析患者組初始T1值較對(duì)照組明顯升高,初始T1值與左心室心肌質(zhì)量指數(shù)有著良好的相關(guān)性,但與左心室射血分?jǐn)?shù)無(wú)相關(guān)性;將T1值與臨床指標(biāo)進(jìn)行相關(guān)性分析,發(fā)現(xiàn)室間隔初始T1值與高敏感肌鈣蛋白T(hs-tropT)和校正后Q-T間期(QTc)相關(guān),而后者與心源性猝死相關(guān),說明心肌組織T1值可能與患者預(yù)后存在相關(guān)性。Graham-Brown等[32]的研究同樣發(fā)現(xiàn)透析患者組初始T1值高于對(duì)照組,且以室間隔為著,而初始T1值與透析時(shí)長(zhǎng)并無(wú)明顯相關(guān)性。但Wang等[33]的研究表明ESRD患者組與對(duì)照組相比,初始T1值并無(wú)顯著差異,可能與掃描設(shè)備以及掃描參數(shù)不同有關(guān)。
總之,在很多心臟疾病的發(fā)展過程中,心肌纖維化是一種普遍的病理改變,T1mapping在疾病的診斷、預(yù)后和療效評(píng)估等方面起到類似生物標(biāo)記物的作用[19,34],在尿毒癥性心肌病中同樣有著廣闊的應(yīng)用前景,但目前研究較少,樣本量較小,對(duì)于T1mapping的病理生理學(xué)基礎(chǔ)、是否會(huì)隨著治療發(fā)生改變、是否與心血管風(fēng)險(xiǎn)相關(guān)等諸多問題,還需進(jìn)一步研究和探討[31]。同時(shí)T1mapping受掃描序列、場(chǎng)強(qiáng)、心動(dòng)周期、采樣區(qū)域、對(duì)比劑注射量、對(duì)比劑弛豫效能、注射對(duì)比劑后圖像采集時(shí)間、腎功能等諸多因素的影響[19,30,35-37]。對(duì)于T1mapping的技術(shù)規(guī)范,還需要更多大樣本的臨床研究[30]。
在T1mapping的基礎(chǔ)上,還衍生了一些后處理技術(shù),較為常用的就是細(xì)胞外容積(extracellular volume,ECV)。ECV成像是一種利用T1mapping測(cè)量對(duì)比劑注射前、后T1值和紅細(xì)胞壓積值并進(jìn)行計(jì)算后處理得到的圖像,反映了未被心肌細(xì)胞占據(jù)的組織所占的體積分?jǐn)?shù)[30]。ECV較初始T1mapping及注射對(duì)比劑后的T1mapping有著更好的可重復(fù)性和敏感性,可以發(fā)現(xiàn)不典型彌漫性纖維化以及對(duì)比劑延遲強(qiáng)化所不能發(fā)現(xiàn)的細(xì)微心肌病變[38,39]。
Edwards等[40]首次應(yīng)用CMRT1mapping和ECV對(duì)CKD患者心肌彌漫性纖維化進(jìn)行研究,納入CKD患者、腎功能正常的高血壓患者以及健康志愿者各43例,發(fā)現(xiàn)三組之間左心室容量及左心室射血分?jǐn)?shù)無(wú)明顯差異,只有5%的CKD患者和5%的高血壓患者出現(xiàn)左心室心肌肥厚。CKD患者初始T1值較對(duì)照組和高血壓患者組升高,注射對(duì)比劑后的T1值較對(duì)照組和高血壓患者組減低,ECV較對(duì)照組和高血壓患者組明顯升高。T1值和ECV都與收縮功能受損相關(guān),而與傳統(tǒng)的心血管危險(xiǎn)因素?zé)o關(guān),這說明T1mapping、ECV與尿毒癥性心肌病早期改變相關(guān),是不良心血管事件的重要預(yù)測(cè)因素。
釓對(duì)比劑并非心肌纖維化特異性對(duì)比劑,ECV增大也并非特異性地針對(duì)間質(zhì)纖維化的出現(xiàn),任何影響間質(zhì)容積改變的因素都可引起ECV的變化[30]。其次,ECV無(wú)法區(qū)分不同亞型的纖維化,并且ECV的計(jì)算需要釓對(duì)比劑的應(yīng)用,尚需考慮ESRD患者發(fā)生NSF的風(fēng)險(xiǎn)。
磁共振波譜(magnetic resonance spectroscopy,MRS)是目前測(cè)定活體內(nèi)某一組織區(qū)域化學(xué)成分的唯一無(wú)創(chuàng)性技術(shù)。目前應(yīng)用于臨床的MRS主要是1H、31P的波譜。其中31P-MRS能夠檢測(cè)心肌內(nèi)磷酸肌酸(Pcr)、三磷酸腺苷(ATP)以及細(xì)胞內(nèi)PH值,反映心肌代謝情況[41]。Ogimoto等[42]研究發(fā)現(xiàn)透析患者PCr/β-ATP減低,并且與透析時(shí)間呈負(fù)相關(guān)。Malatesta-Muncher等[43]研究發(fā)現(xiàn)透析患者PCr/β-ATP減低,而這些患者收縮功能是正常的。說明心肌細(xì)胞代謝改變?cè)缬诠δ芨淖?,MRS對(duì)于早期發(fā)現(xiàn)透析患者心肌病變有重要臨床意義。
由于心肌鐵沉積引起的心衰預(yù)后很差,因此早期識(shí)別心肌鐵過載對(duì)于早期治療非常重要[44]。鐵質(zhì)會(huì)導(dǎo)致T2*弛豫時(shí)間縮短,因此通過T2*WI能夠量化心肌內(nèi)鐵沉積[45]。然而,Tolouian等[7]和Ghoti等[46]的研究應(yīng)用T2*WI MRI并沒有發(fā)現(xiàn)透析患者心肌內(nèi)鐵質(zhì)沉積,對(duì)于此結(jié)論需進(jìn)一步探究,一種可能的原因是由于靜脈注射鐵劑量尚不足以沉積在心肌[7]。
CMR不僅能夠觀察心包厚度、心包積液,Gd增強(qiáng)檢查還能發(fā)現(xiàn)心包強(qiáng)化,提示心包炎癥[8]。在復(fù)雜的心包疾病中,CMR有助于鑒別診斷。臨床上主要應(yīng)用超聲對(duì)心包改變進(jìn)行檢查,目前尚未有應(yīng)用CMR評(píng)估ESRD患者心包改變的文獻(xiàn)報(bào)道。
相關(guān)研究表明CKD患者心外膜脂肪與心血管事件風(fēng)險(xiǎn)相關(guān)[47]。CMR不僅能夠測(cè)量心外膜脂肪厚度,還能對(duì)脂肪容量進(jìn)行定量分析[48]。但尚未有CMR對(duì)CKD患者心外膜脂肪進(jìn)行評(píng)估的文獻(xiàn)報(bào)道。
CMR是目前唯一能夠?qū)π呐K進(jìn)行“一站式”檢查的技術(shù)手段,在尿毒癥性心肌病中,除了能夠?qū)π呐K結(jié)構(gòu)和功能進(jìn)行準(zhǔn)確分析之外,對(duì)比劑延遲強(qiáng)化能夠識(shí)別心肌纖維化,T1mapping和ECV較LGE更敏感,能夠發(fā)現(xiàn)細(xì)微和彌漫性心肌纖維化,并且能夠進(jìn)行精確定量評(píng)估。其中,初始T1mapping無(wú)需使用對(duì)比劑,避免了ESRD患者中NSF的發(fā)生,有著廣闊的應(yīng)用前景。此外,MRS能夠?qū)π募∥镔|(zhì)及代謝進(jìn)行評(píng)估,T2*WI能夠檢測(cè)心肌鐵沉積。CMR還能在評(píng)估ESRD患者心包改變、測(cè)量心外膜脂肪容量等方面發(fā)揮重要作用??傊珻MR對(duì)于尿毒癥性心肌病的病理生理學(xué)研究、病情評(píng)估、判斷預(yù)后及療效評(píng)價(jià)等方面有重要臨床意義。
參考文獻(xiàn):
[1] Nolan CR.Strategies for improving long-term survival in patients with ESRD[J].J Am Soc Nephrol,2005,16 (Suppl 2):S120-127.
[2] Edwards NC,Moody WE,Chue CD,et al.Defining the natural history of uremic cardiomyopathy in chronic kidney disease:the role of cardiovascular magnetic resonance[J].JACC Cardiovasc Imaging,2014,7(7):703-714.
[3] Alhaj E,Alhaj N,Rahman I,et al.Uremic cardiomyopathy:an underdiagnosed disease[J].Congest Heart Fail,2013,19(4):E40-45.
[4] Glassock RJ,Pecoits-Filho R,Barberato SH.Left ventricular mass in chronic kidney disease and ESRD[J].Clin J Am Soc Nephrol,2009,4( Suppl 1):S79-91.
[5] Aoki J,Ikari Y,Nakajima H,et al.Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients[J].Kidney Int,2005,67(1):333-340.
[6] Chronic Kidney Disease Prognosis Consortium,Matsushita K,van der Velde M,et al.Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts:a collaborative meta-analysis[J].Lancet,2010,375(9731):2073-2081.
[7] Tolouian R,Mulla ZD,Diaz J,et al.Liver and cardiac iron deposition in patients on maintenance hemodialysis by magnetic resonance imaging T2[J].Iran J Kidney Dis,2016,10(2):68-74.
[8] Dad T,Sarnak MJ.Pericarditis and pericardial effusions in end-stage renal disease[J].Semin Dial,2016,29(5):366-373.
[9] Lima JA,Desai MY.Cardiovascular magnetic resonance imaging:current and emerging applications[J].J Am Coll Cardiol,2004,44(6):1164-1171.
[10] Hunold P,Vogt FM,Heemann UW,et al.Myocardial mass and volume measurement of hypertrophic left ventricles by MRI——study in dialysis patients examined before and after dialysis[J].J Cardiovasc Magn Reson,2003,5(4):553-561.
[11] Kramer U,Wolf S,F(xiàn)enchel M,et al.TrueFISP MR imaging to determine the influence of hemodialysis on the myocardial functional parameters in patients with terminal renal insufficiency[J].Rofo,2004,176(3):350-356.
[12] Wald R,Goldstein MB,Perl J,et al.The association between conversion to in-centre nocturnal hemodialysis and left ventricular mass regression in patients with end-stage renal disease[J].Can J Cardiol,2016,32(3):369-377.
[13] Augustine D,Lewandowski AJ,Lazdam M,et al.Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers:comparison with tagging and relevance of gender[J].J Cardiovasc Magn Reson,2013,15:8.DOI:10.1186/1532-429X-15-8.
[14] Odudu A,Eldehni MT,McCann GP,et al.Characterisation of cardiomyopathy by cardiac and aortic magnetic resonance in patients new to hemodialysis[J].Eur Radiol,2016,26(8):2749-2761.
[15] Paneni F,Gregori M,Ciavarella GM,et al.Right ventricular dysfunction in patients with end-stage renal disease[J].Am J Nephrol,2010,32(5):432-438.
[16] Said K,Hassan M,Baligh E,et al.Ventricular function in patients with end-stage renal disease starting dialysis therapy:a tissue Doppler imaging study[J].Echocardiography,2012,29(9):1054-1059.
[17] Mewton N,Liu CY,Croisille P,et al.Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J].J Am Coll Cardiol,2011,57(8):891-903.
[18] From AM,Maleszewsk JJ,Rihal CS.Current status of endomyocardial biopsy[J].Mayo Clin Proc,2011,86(11):1095-1102.
[19] Burt JR,Zimmerman SL,Kamel IR,et al.Myocardial T1mapping: techniques and potential applications[J].Radiographics,2014,34(2):377-395.
[20] Simonetti OP,Kim RJ,Fieno DS,et al.An improved MR imaging technique for the visualization of myocardial infarction[J].Radiology,2001,218(1):215-223.
[21] Friedrich MG,Sechtem U,Schulz-Menger J,et al.Cardiovascular magnetic resonance in myocarditis:A JACC White Paper[J].J Am Coll Cardiol,2009,53(17):1475-1487.
[22] Mahrholdt H,Wagner A,Judd RM,et al.Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies[J].Eur Heart J,2005,26(15):1461-1474.
[23] Mark PB,Johnston N,Groenning BA,et al.Redefinition of uremic cardiomyopathy by contrast-enhanced cardiac magnetic resonance imaging[J].Kidney Int,2006,69(10):1839-1845.
[24] deFilippi CR,Thorn EM,Aggarwal M,et al.Frequency and cause of cardiac troponin T elevation in chronic hemodialysis patients from study of cardiovascular magnetic resonance[J].Am J Cardiol,2007,100(5):885-889.
[25] Schietinger BJ,Brammer GM,Wang H,et al.Patterns of late gadolinium enhancement in chronic hemodialysis patients[J].JACC Cardiovasc Imaging,2008,1(4):450-456.
[26] Mewton N,Liu CY,Croisille P,et al.Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J].J Am Coll Cardiol,2011,57(8):891-903.
[27] Reiter T,Ritter O,Prince MR,et al.Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance[J].J Cardiovasc Magn Reson,2012,20(14):31.
[28] Bull S,White SK,Piechnik SK,et al.Human non-contrast T1values and correlation with histology in diffuse fibrosis[J].Heart,2013,99(13):932-937.
[29] Sibley CT,Noureldin RA,Gai N,et al.T1mapping in cardiomyopathy at cardiac MR:comparison with endomyocardial biopsy[J].Radiology,2012,265(3):724-732.
[30] Moon JC,Messroghli DR,Kellman P,et al.Myocardial T1mapping and extracellular volume quantification:a society for cardiovascular magnetic resonance (SCMR) and CMR working group of the European society of cardiology consensus statement[J].J Cardiovasc Magn Reson,2013,15:92.DOI:10.1186/1532-429X-15-92
[31] Rutherford E,Talle MA,Mangion K,et al.Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1mapping[J].Kidney Int,2016,90(4):845-852.
[32] Graham-Brown MP,March DS,Churchward DR,et al.Novel cardiac nuclear magnetic resonance method for noninvasive assessment of myocardial fibrosis in hemodialysis patients[J].Kidney Int,2016,90(4):835-844.
[33] Wang L,Yuan J,Zhang SJ,et al.Myocardial T1rho mapping of patients with end-stage renal disease and its comparison with T1mapping and T2mapping:a feasibility and reproducibility study[J].J Magn Reson Imaging,2016,44(3):723-731.
[34] Shah RV,Kato S,Roujol S,et al.Native myocardial T1as a biomarker of cardiac structure in non-ischemic cardiomyopathy[J].Am J Cardiol,2016,117(2):282-288.
[35] Kawel N,Nacif M,Zavodni A,et al.T1mapping of the myocardium: intra-individual assessment of the effect of field strength,cardiac cycle and variation by myocardial region[J].J Cardiovasc Magn Reson,2012,14:27.DOI:10.1186/1532-429X-14-27.
[36] Liu CY,Liu YC,Wu C,et al.Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1mapping[J].J Am Coll Cardiol,2013,62(14):1280-1287.
[37] Puntmann VO,Voigt T,Chen Z,et al.Native T1mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy[J].JACC Cardiovasc Imaging,2013,6(4):475-484.
[38] Ugander M,Oki AJ,Hsu LY,et al.Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology[J].Eur Heart J,2012,33(10):1268-1278.
[39] Chin CW,Semple S,Malley T,et al.Optimization and comparison of myocardial T1techniques at 3T in patients with aortic stenosis[J].Eur Heart J Cardiovasc Imaging,2014,15(5):556-565.
[40] Edwards NC,Moody WE,Yuan M,et al.Diffuse interstitial fibrosis and myocardial dysfunction in early chronic kidney disease[J].Am J Cardiol,2015,115(9):1311-1317.
[41] 張卓立,傅莉,郜發(fā)寶.臨床心肌31磷磁共振波譜的研究進(jìn)展[J].心臟雜志,2002,14(3):257-258.
[42] Ogimoto G,Sakurada T,Imamura K,et al.Alteration of energy production by the heart in CRF patients undergoing peritoneal dialysis[J].Mol Cell Biochem,2003,244(1-2):135-138.
[43] Malatesta-Muncher R,Wansapura J,Taylor M,et al.Early cardiac dysfunction in pediatric patients on maintenance dialysis and post kidney transplant[J].Pediatr Nephrol,2012,27(7):1157-1164.
[44] Gujja P,Rosing DR,Tripodi DJ,et al.Iron overload cardiomyopathy:better understanding of an increasing disorder[J].J Am Coll Cardiol,2010,56(13):1001-1012.
[45] Ghugre NR,Enriquez CM,Coates TD,et al.Improved R2*measurements in myocardial iron overload[J].J Magn Reson Imaging,2006,23(1):9-16.
[46] Ghoti H,Rachmilewitz EA,Simon-Lopez R,et al.Evidence for tissue iron overload in long-term hemodialysis patients and the impact of withdrawing parenteral iron[J].Eur J Haematol,2012,89(1):87-93.
[47] Zoccali C,Mallamaci F.The location of adipose tissue is important:epicardial fat in patients with chronic kidney disease[J].J Intern Med,2015,278(1):88-91.
[48] 吳磊.心外膜脂肪組織的臨床和影像學(xué)研究進(jìn)展[J].放射學(xué)實(shí)踐,2014,29(2):202-204.