• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Propagation Characteristics of Translating-Pulsating Source Green Function in the Side-Wall Effects Discrimination

    2018-03-28 12:30:18XIAOWenbin
    船舶力學 2018年3期

    XIAO Wen-bin

    (Academy of Ocean Science and Technology,National University of Defense Technology,Changsha 410073,China)

    0 Introduction

    In the tank with finite breadth,side-wall effects may exert great influence on the ship model advancing in waves,which is mainly due to the reflection waves acting on the model.The waves produced by the model propagate toward the side wall of the tank,and then may go back to it.If there are side-wall effects,many experimental results,such as the motion response,wave excited force,unsteady wave pattern,fluctuating pressure,may be affected.Studies about these effects will contribute to the investigation of hydrodynamic performance difference in the open water and tank condition,and qualitative and quantitative analyses are expected for the side-wall effects in seakeeping model test[1].

    For the side-wall effects problem in waves,earlier researches focused on the model test of single ship[2-3].In 1978,15th ITTC proposed standards of seakeeping tests for a single floating body[4].Recently,Ghent University in Belgium and other institutes carried out the model tests of two ships in waves[5-8],but the side-wall effects were still not investigated in depth.In the model tests for two ships advancing parallel in waves,the transversal space in between needs to be adjustable in line with the different experimental conditions.However,the enlargement of transversal space may intensify the side-wall effects,which makes the test more difficult in test design and data analysis.The side-wall effects seem to be more complicated for two advancing models than a single one;the critical wavelength corresponding to each model needs to be considered,besides that,the radiation and diffraction waves generated by a model may act upon the other one.Therefore,the relative position of two models in the tank should be taken into consideration to explore the side-wall effects in regular waves.

    In the present paper,the phase function is extracted from the integral representation about 3-D translating-pulsating source Green function in frequency domain,and the stationary phase method is applied to decompose the near-field flow and wave components of the source.Constant phase curves and propagation wave patterns in the far field are then obtained.Based on the propagation characteristics of Bessho form Green function,a simple and practical method is proposed to discriminate the side-wall effects for two ship models advancing in close proximity.Under the experimental conditions,the side-wall effects are examined in a two-model test.

    1 Propagation characteristics of Bessho form Green function

    1.1 Integral representation

    A right-handed equilibrium axis system oxyz is defined in the condition of deep water with the origin o on the plane of undisturbed free surface,and the z-axis is positive upwards.Assuming that the 3-D translating-pulsating source is advancing at a uniform speed U and oscillating at a frequencyis the source point and(x,y, )z is the field point,and then the Bessho form Green function[9]can be written as follows:

    The generalized wave numbers here are represented by k1and k2,and sign is the symbolic function.In terms of the value of τ,the integral path of formula(1)can be divided into two kinds according to the Cauchy integral theorem,which is illustrated in Fig.1.

    Fig.1 Integral path of equation(1)in θ space

    By performing M=sgn c·m=sgn c·k1cosθ,the terms about k1in formula(1)can be transformed into formula(2)with a single integral form[10].

    1.2 Decomposition of near-field flow and wave components

    It is known from formula(2),can reflect some nature of exponent part of the exponential function,whose real component represents the oscillation amplitude and imaginary one the phase information.Therefore,the phase function about Bessho form Green function can be defined as

    According to the traits of phase function,the wave patterns in far field can be determined by the stationary phase analysis method[11-12].If dψ/dM=0,it is easy to obtain that

    By substituting formula(4b)into formula(3),the parametric equation of constant phase curve can then be presented as follows:

    The variation range of θ in formula(6)is linked with the integral path in Fig.1.In m plane,the integral path of the new integrand is transformed,which is illustrated in Fig.2 and Fig.3.

    Fig.2 The new integral path for terms about k1 in m space

    Fig.3 The new integral path for terms about k2 in m space

    The imaginary part of variable m is not equal to zero in the intervals identified by dashed lines in Fig.2 and Fig.3.X and Y are,by definition,real numbers,so there is no stationary phase in the corresponding intervals,which means the near-field flow component of the Bessho form Green function is described here.The solid-line intervals in Fig.2 and Fig.3 are divided into three parts including AA,D1and D2,whose contribution is dominant in far field.Therefore,the propagating waves can be determined by equation(5)in the three intervals above.

    1.3 Wave patterns in far field

    In the water with an infinite free-surface extent,the unsteady waves generated by a translating-pulsating source are closely related to the Strouhal number τ=Uωe/g and its patterns can be indicated by the constant phase curves which represent the wave crests or hollow at a specific time instant[13].Fig.4 shows the propagating wave patterns when the source is located below the origin o.Here X and Y are dimensionless parameters,which can signify the horizontal position between the field point and the source point.

    If 4τ<1,there are three distinct wave patterns including outer V wave from AA,inner V wave from D1and ring wave from D2.For the value of 4τ>1,D1and D2are corresponding to inner V wave and ring-fan wave respectively and AA to fan wave.The ring and ring-fan waves above can be considered as the modified ring waves due to the forward speed,and other wave patterns as the modified Kelvin wake due to the harmonic oscillation of the source.All the wave patterns are restricted in the wedge-shaped region which is symmetrical about the advancing course.For the pulsating source,its constant phase curves are circles with the same center and wavelength in all directions[12].By analyzing the wave patterns,the translating-pulsating source seems to be more truly to reflect the propagating waves generated by an advancing ship than the pulsating source dose,which is largely due to the fact that the former source posses special features of forward movement and harmonic oscillation simultaneously.

    Fig.4 Constant phase curves of wave patterns when the source is located below o(a)4τ<1;(b)4τ>1

    Fig.5 Cusp angle of ring-fan wave pattern

    Fig.6 Cusp angle of ring-fan wave pattern versus τ

    For the propagating region of the ring wave is the whole free surface area,it is impossible to neglect the side-wall effect when 4τ<1.It is worth noting that the propagating scope of the inner V and fan waves is always within the region of ring-fan wave pattern if 4τ>1.Consequently,the influence area of ring-fan wave can be regarded as the propagating region of the radiation and diffraction waves generated by the translating-pulsating source in the condition of 4τ>1.As shown in Fig.5,a cusp angle θris introduced,which is an angle between the boundary of ring-fan wave and the source course.Fig.6 depicts how this cusp angle changes in dependence of Strouhal number[13].As shown in this figure,the backward spreading feature of ring-fan wave is more and more significant as the advancing speed increases or oscillating frequency decreases,which is consistent with the observed result in physics.In addition,ringfan wave is still possible to emerge ahead of the source when 4τ>1.However,θris always less than 90 degrees if τ>0.272,side-wall effects in which condition is the focus of the present work.

    2 Discrimination of side-wall effect for single ship model

    In the seakeeping test for single ship,the model is generally set to the central axis of the tank.Fig.7 shows the ship waves reflect from the side walls at different cusp angle θr.Given the tank breadth BTand model length L,it can be easily concluded that there must be a geometric critical cusp angle θtto discriminate the side-wall effect.

    Fig.7 Waves generated by single model and reflected from the side walls of the tank

    If θris is larger than θt,the waves generated from the ship stem will act on the flow field at the ship stern nearby after side-wall reflection,and the tank wall interference will occur.If θr<θt,the side-wall effect is absent then.Based on the analysis above,a discrimination method of side-wall effect can be proposed for single ship model.The concrete steps are presented as follows.Firstly,the critical angle θtis solved by tank breadth BTand model length L as formula(7).In terms of the monotone function of cusp angle θrin dependence of τ,the Strouhal number is determined when θtequals to θrin the second step.Thirdly,the corresponding frequency ωeat a certain speed U can be obtained by the definition of τ=Uωe/g.And finally,the critical wavelength λtis achieved with parameters of wave frequency and wavelength.Through comparing the value of experimental wavelength with λt,the side-wall effect can then be identified.The flow diagram of the discrimination method above is illustrated in Fig.8,in which β is the wave-to-course angle with the value of zero in head waves.Input of this method is BT,L,U and propagating property of ring-fan waves.

    Fig.8 Flow diagram of discrimination about the side wall effect for single ship model

    Based on the tank breadth,model length,speed Froude number and wave circular frequency,15th ITTC recommended a standard for seakeeping experiment of single model in the form of check list[4],whose data essentially indicates the variation laws of the circular Strouhal number τ0=Uω0/g with the ratio BT/L.The relationship between τ0and τ is given in formula(8).

    Fig.9(a)and(b)illustrates the discrimination margin of side-wall effect for single model,in which the present results are shown with solid lines.Whichever to adopt to discriminate the effect,τ0or τ,the side-wall effect is not ignorable in the lower left region of the lines and vice versa.In addition,the discrimination data of 15th ITTC is listed in Fig.9(a).By comparison,present results calculated by τ0agree well with the standard data.Therefore,the discrimination method above proves to be correct and effective for single model.It is expected to apply this method to the seakeeping test of two ship models.

    Fig.9 Discrimination margin of side wall effect for single ship model

    3 Discrimination of side-wall effects for two ship models

    In the test of two models advancing in close proximity,the best layout plan is that the two models are arranged symmetrically around the central axis of tank.However,it may strengthen the reforming of towing system for there is only one towing device in universal tank.A simple solution is that one model labeled as ship a is arranged into the carriage navigation system,which is usually located in the central axis of tank.Without loss of generality,another model,labeled as ship b,is set on the starboard side of ship a.The transversal and longitudinal spaces between two models are set as Dyand Dx,respectively,as shown as in Fig.10.If Dy>0,ship b is on the starboard side of ship a.For Dx>0,ship b is ahead of ship a.

    Fig.10 Waves generated by two models and reflected from the side walls of tank

    The radiation and diffraction waves here are so complex that they need to be analyzed one by one.Taking Fig.10 as an example,the waves generated by the model may reflect back to interfere its own response in waves.In this case,the critical angle can be referenced by the single model.For ship a,this angle θtaais satisfied with formula(9a).For ship b,transversal space Dyis taken into account in the angle θtbbdue to its proximity to the right side wall,which is shown in formula(9b).

    where Laand Lbare the lengths of ship a and ship b,respectively.

    In addition,the waves from a model may act on the other one after the side-wall reflection.Because of the shadowing effect of ship hull,the interference waves between models’broad sides are restricted in a narrow area,which is an important feature of hydrodynamic interference when two ships are advancing parallel in close proximity.If the two models are not captured,this shadowing effect is not complete in waves[15].And there are radiation and diffraction waves produced by ship a on the starboard of ship b.Here the wave propagation must follow the shortest distance principle from one model to the other.For instance,the wave from ship a is quicker to reach ship b by the right side wall than the left side.So the critical angle θtbais determined by the right side wall as formula(9c).In a similar way,the angle θtabis given in formula(9d).

    Above all,the side-wall effects for two models advancing parallel in waves can be discriminated in terms of the four angles as formula(9a)~(9d).And the minimum value of them is defined as θtto determine if the side-wall effects occur.

    4 Instance analyses

    For the models test of Cheng Kung University in Ref.[16],the discrimination method above is applied to check the side-wall effects.Tab.1 shows the main particulars of the tested models.

    Tab.1 Main particulars of tested models

    In the test,two models are advancing in head regular waves with the wavelength range 1.93-6.24 m.The principal dimension of the towing tank is 180 m×8 m×3.5 m and speed Froude numbers Fnare 0,0.076 and 0.141.In the experimental condition with Dx=0,two kinds of model layout are discussed here.The first layout is that ship a is set in the central axis of tank and ship b is on the starboard side of ship a with Dy=0.72 m,0.82 m and 0.92 m.No matter how the transversal space changes,two models are arranged symmetrically around the central axis of tank in the other layout.

    When Fnequals to 0 or 0.076,side-wall effects occur in both layouts.For Fn=0.141,the critical wavelength appears near 5 m.Fig.11 depicts the wavelength range free of side-wall effect in the experimental conditions.From this figure,the critical wavelength tends to be shorter along with the increase of transversal space.For the transversal space is relative small(Dx/BT=9.0%~11.5%),the change of critical wavelength in accordance with the transversal space is not significant on the whole.

    Fig.11 Wavelength range free of side-wall effect(Fn=0.141)

    In addition,the wavelength range free of side-wall effect is boarder in the second layout than that in the first one.The symmetrical layout plan,though is more advantageous to avoid the side-wall effect,may enlarge the experimental difficulty and increase the equipment-testing workload.In order to minimize the interference of side-wall effect,the time-history data to be analyzed should be properly intercepted and deep research should focus on its quantitative analysis,which may be the future course of this problem.

    5 Conclusions

    Based on the propagation characteristics of translating-pulsating source Green function,a practical approach is proposed to discriminate the side-wall effects for single ship model and two models in waves.The main contents and conclusions in present paper are included below:

    (1)For the single integral representation about 3-D translating-pulsating source Green function of Bessho form in frequency domain,the parametric equation of constant phase curve is obtained by stationary phase method.The integral intervals of near-field flow and wave components are made clear by the real number property of constant phase curve.If 4τ>1,the propagating area of inner V and fan waves is always within the region of ring-fan wave pattern.And the influence scope of radiation-diffraction waves of the source can be considered as the propagating area of ring-fan wave.

    (2)Ring wave and ring-fan wave pattern may emerge ahead of the translating-pulsating source for τ<0.272,and then side-wall effects seem to be not ignored.If τ>0.272,the cusp angle of the source is larger than 90 degrees,therefore it is needed to discriminate the sidewall effects by corresponding method or regulation.

    (3)By comparing the ring-fan wave’s cusp angle and geometric critical cusp angle of experimental tank,a discrimination method and its implementing process are presented in the side-wall effect problem for single ship model,and the discrimination margin is obtained by the Strouhal number.Further,a discrimination method of side-wall effects is proposed for two models advancing parallel in regular waves based on the model particulars,tank breadth and relative position of two models,in which the interference of reflection waves acting on both models are taken into account by the shortest distance principle of propagating waves.

    (4)The present discrimination method of side-wall effects is not only suitable for the single model and two models test,but also can be applied to the seakeeping test of multihull vehicle and multiple ships.The future work is to further investigate the propagation velocity of the wave patterns,because there is time interval for the propagation waves from the ship to the side wall.

    [1]Tasai F,Takaki M,Ohkusu M.Ship motions in restricted waters[J].Journal of the Japan Society of Naval Architects and Ocean Engineers,1978,56:33-45.

    [2]Hosoda R.Effects of side-wall interference of towing tank on the results of experiments in waves(1)[J].Journal of the Society of Naval Architects of Japan,1976,139:23-30.

    [3]Hosoda R.Effects of side-wall interference of towing tank on the results of experiments in waves(2)[J].Journal of the Society of Naval Architects of Japan,1978,143:52-60.

    [4]The Seakeeping Committee of ITTC.Report of the seakeeping committee[C]//Proceedings of the 15th International Towing Tank Conference.Netherlands,1978:55-114.

    [5]Vantorre M,Verzhbitskaya E,Laforce E.Model test based formulations of ship-ship interaction forces[J].Ship Technology Research,2002,49(3):1-9.

    [6]Evert L,Marc V,Guilaume D.Captive model testing for ship to ship operations[C]//Proceedings of International Conference on Marine Simulation and Ship Maneuverability.Panama,2009:1-10.

    [7]Greet V K,Marc V,Guilaume D.Advanced model testing techniques for ship behavior in shallow and confined water[C]//Proceedings of the 1st International Conference on Advanced Model Measurement Technology for the EU Maritime Industry.Nantes,France,2009:158-172.

    [8]Zhao W H,Yang J M,Hu Z Q,et al.Recent developments on the hydrodynamics of floating liquid natural gas(FLNG)[J].Ocean Engineering,2011,38:1555-1567.

    [9]Bessho M.On the fundamental singularity in the theory of ship motion in a seaway[J].Memoirs of the Defense Academy of Japan,1977,17(8):95-105.

    [10]Iwashita H,Ohkusu M.Hydrodynamic forces on a ship moving with forward speed in waves[J].Journal of the Society of Naval Architects of Japan,1989,166:87-109.

    [11]Noblesse F,Hendrix D.On the theory of potential flow about a ship advancing in waves[J].Journal of Ship Research,1992,36(1):17-29.

    [12]Xu Y,Dong W C,Xiao W B.Study on far field wave patterns and their characteristics of Havelock form Green function[J].China Ocean Engineering,2013,27(3):283-298.

    [13]Chen X B,Diebold L.Analytical expressions of unsteady wave patterns[C]//Proceedings of the 14th International Workshop on Water Waves and Floating Bodies.Port Huron,USA,25-28.

    [14]Faltinsen O M.Hydrodynamics of high-speed marine vehicles[M].Cambridge University Press,UK,2005:99-140.

    [15]Xu Y.Study on the mechanism of hydrodynamic interaction between multiple ships advancing in waves at close proximity[D].Wuhan:Naval University of Engineering,2012.

    [16]Yang W H.Experimental verification of the seakeeping performance for two ships advancing parallel in waves[D].Taiwan:National Cheng Kung University,2001.

    [17]Mctaggart K,Cumming D,Hsiung C C,et al.Seakeeping of two ships in close proximity[J].Ocean Engineering,2003,30:1051-1063.

    天堂影院成人在线观看| 国产精品久久久久久亚洲av鲁大| 在线免费观看不下载黄p国产| 深爱激情五月婷婷| 久久久久久久久大av| 成人毛片a级毛片在线播放| 亚洲最大成人手机在线| 天堂√8在线中文| 国产一区二区在线观看日韩| 久久精品91蜜桃| 国产探花极品一区二区| 青春草视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 99久久精品热视频| 精品福利观看| 国产午夜精品论理片| 久久草成人影院| 日日撸夜夜添| av天堂中文字幕网| 久久久精品大字幕| 国产视频内射| 日韩亚洲欧美综合| 免费高清视频大片| 人妻制服诱惑在线中文字幕| 国产在视频线在精品| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久av不卡| a级毛片a级免费在线| 最新中文字幕久久久久| 91午夜精品亚洲一区二区三区| 亚洲av五月六月丁香网| 免费看光身美女| 精品无人区乱码1区二区| 天堂动漫精品| 午夜影院日韩av| 两个人的视频大全免费| 99久久九九国产精品国产免费| 欧美潮喷喷水| 亚洲精品乱码久久久v下载方式| 国产视频内射| 亚洲国产精品成人久久小说 | 国产av不卡久久| 国产精品一及| 99久久精品热视频| 成人三级黄色视频| 亚洲av中文av极速乱| 99久久久亚洲精品蜜臀av| 国产熟女欧美一区二区| 小说图片视频综合网站| 直男gayav资源| 美女高潮的动态| 日本欧美国产在线视频| 久久国内精品自在自线图片| 高清毛片免费观看视频网站| 亚洲aⅴ乱码一区二区在线播放| 日本免费a在线| 男女边吃奶边做爰视频| 天堂动漫精品| 婷婷六月久久综合丁香| 高清午夜精品一区二区三区 | 成人性生交大片免费视频hd| 亚洲va在线va天堂va国产| 欧美在线一区亚洲| 能在线免费观看的黄片| 国产av一区在线观看免费| 欧美高清成人免费视频www| 久久久欧美国产精品| 搡老熟女国产l中国老女人| 欧美高清成人免费视频www| 国产精品一二三区在线看| 最近在线观看免费完整版| 最近手机中文字幕大全| 欧美一区二区国产精品久久精品| 国产精品久久久久久精品电影| 色综合亚洲欧美另类图片| 午夜影院日韩av| 日韩中字成人| 久久久午夜欧美精品| 草草在线视频免费看| 国产一区二区三区av在线 | 人妻制服诱惑在线中文字幕| 日日摸夜夜添夜夜添av毛片| 免费一级毛片在线播放高清视频| 亚洲国产精品国产精品| 精品午夜福利视频在线观看一区| 非洲黑人性xxxx精品又粗又长| 久久久国产成人免费| 男插女下体视频免费在线播放| 亚洲高清免费不卡视频| 男女视频在线观看网站免费| 亚洲av熟女| 狠狠狠狠99中文字幕| 两个人视频免费观看高清| 99riav亚洲国产免费| 亚洲真实伦在线观看| 中出人妻视频一区二区| 国产白丝娇喘喷水9色精品| 国产成人a∨麻豆精品| 亚洲最大成人av| 亚洲av第一区精品v没综合| a级毛片免费高清观看在线播放| 少妇丰满av| 亚洲欧美成人综合另类久久久 | 久久久久久九九精品二区国产| 日韩av不卡免费在线播放| 又粗又爽又猛毛片免费看| 在线天堂最新版资源| 国产探花在线观看一区二区| 人妻夜夜爽99麻豆av| 久久久久久久亚洲中文字幕| 麻豆av噜噜一区二区三区| 最近视频中文字幕2019在线8| 日韩精品青青久久久久久| 成人高潮视频无遮挡免费网站| 亚洲精华国产精华液的使用体验 | 九九久久精品国产亚洲av麻豆| 国产三级中文精品| 中文字幕av成人在线电影| 成人毛片a级毛片在线播放| 美女大奶头视频| 精品熟女少妇av免费看| 国产免费男女视频| 欧美日韩一区二区视频在线观看视频在线 | 久99久视频精品免费| 久久九九热精品免费| 日本一二三区视频观看| 插阴视频在线观看视频| 熟女人妻精品中文字幕| 成年免费大片在线观看| 欧美3d第一页| 精品日产1卡2卡| 美女高潮的动态| av在线亚洲专区| 一级a爱片免费观看的视频| 国产高清有码在线观看视频| 又黄又爽又刺激的免费视频.| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 久久中文看片网| 老司机影院成人| 国产精品野战在线观看| 日本色播在线视频| 一本久久中文字幕| 97超碰精品成人国产| 欧美日本亚洲视频在线播放| 最后的刺客免费高清国语| 又黄又爽又刺激的免费视频.| 老熟妇仑乱视频hdxx| 露出奶头的视频| 国产精品一二三区在线看| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 日本欧美国产在线视频| 亚洲国产日韩欧美精品在线观看| 久久99热这里只有精品18| 性色avwww在线观看| 日本一本二区三区精品| 久久久久久九九精品二区国产| 舔av片在线| 中出人妻视频一区二区| 日本黄大片高清| 女生性感内裤真人,穿戴方法视频| 国产麻豆成人av免费视频| 亚洲欧美成人精品一区二区| 性色avwww在线观看| 日本 av在线| 美女xxoo啪啪120秒动态图| 国产一区二区在线观看日韩| 免费人成视频x8x8入口观看| 国产爱豆传媒在线观看| 干丝袜人妻中文字幕| 一级毛片久久久久久久久女| 有码 亚洲区| 在线免费观看的www视频| 日本 av在线| 日韩欧美一区二区三区在线观看| 亚洲欧美成人综合另类久久久 | 国产精品久久久久久av不卡| 18禁在线播放成人免费| 日本撒尿小便嘘嘘汇集6| 一个人看视频在线观看www免费| 欧美bdsm另类| 久久久国产成人免费| 成人精品一区二区免费| 国产白丝娇喘喷水9色精品| 中文字幕免费在线视频6| 国产精品一区二区性色av| 精品一区二区三区av网在线观看| 亚洲精品国产av成人精品 | 精品久久久久久成人av| 51国产日韩欧美| 热99re8久久精品国产| 午夜激情欧美在线| 中文字幕精品亚洲无线码一区| 可以在线观看的亚洲视频| 午夜爱爱视频在线播放| 少妇人妻精品综合一区二区 | 久久久久久久久久黄片| 夜夜夜夜夜久久久久| 看免费成人av毛片| 亚洲熟妇中文字幕五十中出| 91精品国产九色| 国产精品亚洲一级av第二区| 无遮挡黄片免费观看| 国产精品综合久久久久久久免费| 免费一级毛片在线播放高清视频| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜爱| 夜夜爽天天搞| 成人av在线播放网站| 成年女人毛片免费观看观看9| 给我免费播放毛片高清在线观看| 成人无遮挡网站| 在现免费观看毛片| 国产亚洲精品久久久com| 亚洲国产色片| 午夜激情欧美在线| 中出人妻视频一区二区| 日本撒尿小便嘘嘘汇集6| 韩国av在线不卡| 国产成人aa在线观看| 欧美成人精品欧美一级黄| 中文在线观看免费www的网站| 亚洲成av人片在线播放无| 精品福利观看| 永久网站在线| 日本黄色视频三级网站网址| 亚洲综合色惰| 一本一本综合久久| 一卡2卡三卡四卡精品乱码亚洲| 日韩,欧美,国产一区二区三区 | 男女边吃奶边做爰视频| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久久久久| 白带黄色成豆腐渣| 久久亚洲精品不卡| 日日摸夜夜添夜夜爱| 欧美另类亚洲清纯唯美| 色综合色国产| 九九久久精品国产亚洲av麻豆| 18禁在线无遮挡免费观看视频 | 在线观看一区二区三区| 久久韩国三级中文字幕| 成年av动漫网址| 波野结衣二区三区在线| 亚洲av.av天堂| 国产欧美日韩一区二区精品| 18+在线观看网站| avwww免费| 久久精品夜色国产| 亚洲成人久久性| 亚洲精品影视一区二区三区av| 麻豆一二三区av精品| 久久久久久伊人网av| 干丝袜人妻中文字幕| 国产女主播在线喷水免费视频网站 | 观看免费一级毛片| 国产午夜精品久久久久久一区二区三区 | 国产精品永久免费网站| 欧美日韩精品成人综合77777| 久99久视频精品免费| 成人亚洲欧美一区二区av| 听说在线观看完整版免费高清| 久久久a久久爽久久v久久| www日本黄色视频网| 熟女人妻精品中文字幕| 国产免费一级a男人的天堂| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 狂野欧美激情性xxxx在线观看| 蜜桃久久精品国产亚洲av| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 久久久久久久久中文| 国产私拍福利视频在线观看| 国产精品永久免费网站| 成人国产麻豆网| 国产日本99.免费观看| 亚洲电影在线观看av| 久久6这里有精品| 97超碰精品成人国产| 波多野结衣高清作品| 九九爱精品视频在线观看| 波多野结衣高清无吗| 一区二区三区免费毛片| 看免费成人av毛片| 日本爱情动作片www.在线观看 | 91久久精品国产一区二区成人| 天堂av国产一区二区熟女人妻| 菩萨蛮人人尽说江南好唐韦庄 | 丝袜美腿在线中文| 看免费成人av毛片| а√天堂www在线а√下载| 看片在线看免费视频| 91麻豆精品激情在线观看国产| 欧美成人免费av一区二区三区| 国产高潮美女av| 成人无遮挡网站| 久久鲁丝午夜福利片| 亚洲精品国产成人久久av| 男女那种视频在线观看| 国产高清激情床上av| 老司机午夜福利在线观看视频| 男人舔奶头视频| 在现免费观看毛片| 寂寞人妻少妇视频99o| 少妇猛男粗大的猛烈进出视频 | 18禁黄网站禁片免费观看直播| 亚洲人与动物交配视频| 国产高清视频在线播放一区| 在线免费十八禁| 国产亚洲精品久久久久久毛片| 一个人免费在线观看电影| 精品久久久久久久人妻蜜臀av| 五月玫瑰六月丁香| 人妻丰满熟妇av一区二区三区| 丰满的人妻完整版| 亚洲美女搞黄在线观看 | 国产在视频线在精品| 日韩中字成人| 人妻久久中文字幕网| 日本与韩国留学比较| 亚洲成人久久爱视频| 精品一区二区三区人妻视频| 亚洲最大成人手机在线| 亚洲一区二区三区色噜噜| 亚洲va在线va天堂va国产| 少妇高潮的动态图| 免费搜索国产男女视频| 国产精品1区2区在线观看.| 两个人视频免费观看高清| 国产成人一区二区在线| 美女xxoo啪啪120秒动态图| 看黄色毛片网站| 久久人人爽人人爽人人片va| 午夜久久久久精精品| 久久精品久久久久久噜噜老黄 | 国产精华一区二区三区| 国产精品99久久久久久久久| 日本精品一区二区三区蜜桃| 国产探花在线观看一区二区| 国产精品三级大全| 亚洲中文日韩欧美视频| 九九热线精品视视频播放| 看片在线看免费视频| 国产黄a三级三级三级人| 丝袜喷水一区| 亚洲av成人av| 联通29元200g的流量卡| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清在线视频| 床上黄色一级片| 免费人成在线观看视频色| 免费高清视频大片| 国产在线男女| 俄罗斯特黄特色一大片| 尾随美女入室| 狠狠狠狠99中文字幕| 亚洲最大成人中文| 天天躁日日操中文字幕| 成年版毛片免费区| videossex国产| 亚洲精品一卡2卡三卡4卡5卡| 99国产精品一区二区蜜桃av| 免费无遮挡裸体视频| 国产成人a∨麻豆精品| 亚洲色图av天堂| 欧美在线一区亚洲| 一级黄色大片毛片| 午夜免费激情av| 国产老妇女一区| 亚洲高清免费不卡视频| 成人亚洲欧美一区二区av| 欧美xxxx黑人xx丫x性爽| 网址你懂的国产日韩在线| 99国产精品一区二区蜜桃av| 国产高清不卡午夜福利| 亚洲四区av| 三级国产精品欧美在线观看| 乱系列少妇在线播放| 在线观看av片永久免费下载| 精品人妻熟女av久视频| 男女啪啪激烈高潮av片| 日本黄色片子视频| 日韩中字成人| 精品人妻一区二区三区麻豆 | 干丝袜人妻中文字幕| 久久国产乱子免费精品| 欧洲精品卡2卡3卡4卡5卡区| 一进一出好大好爽视频| 男女那种视频在线观看| 国产精品三级大全| 欧美日韩国产亚洲二区| 岛国在线免费视频观看| 免费av不卡在线播放| 一边摸一边抽搐一进一小说| 精品一区二区三区人妻视频| 午夜激情欧美在线| 国产真实伦视频高清在线观看| 99久国产av精品| 日韩精品有码人妻一区| 午夜久久久久精精品| 国产成年人精品一区二区| 人妻丰满熟妇av一区二区三区| 麻豆国产97在线/欧美| 亚洲中文日韩欧美视频| 日本a在线网址| 精品福利观看| 日本欧美国产在线视频| 97碰自拍视频| 如何舔出高潮| 久久这里只有精品中国| 精品一区二区三区av网在线观看| 九九热线精品视视频播放| av在线亚洲专区| 日日干狠狠操夜夜爽| 一个人看的www免费观看视频| 中国美女看黄片| 国产午夜福利久久久久久| 99在线视频只有这里精品首页| 又粗又爽又猛毛片免费看| 色视频www国产| av国产免费在线观看| 内地一区二区视频在线| 亚州av有码| 一级毛片aaaaaa免费看小| 欧美性猛交黑人性爽| 亚洲国产日韩欧美精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av二区三区四区| 亚洲精品国产av成人精品 | 一级av片app| 少妇被粗大猛烈的视频| 真实男女啪啪啪动态图| 久久精品影院6| 午夜视频国产福利| 观看美女的网站| 黄色配什么色好看| 最后的刺客免费高清国语| 人妻夜夜爽99麻豆av| 一级黄片播放器| av国产免费在线观看| 亚洲国产精品国产精品| 亚洲熟妇中文字幕五十中出| 日韩成人伦理影院| 欧美在线一区亚洲| 身体一侧抽搐| 麻豆av噜噜一区二区三区| 最新中文字幕久久久久| 国产在线精品亚洲第一网站| 3wmmmm亚洲av在线观看| 亚洲精品久久国产高清桃花| 国产伦在线观看视频一区| 国产精品三级大全| 国内精品久久久久精免费| av免费在线看不卡| 蜜桃久久精品国产亚洲av| 91av网一区二区| aaaaa片日本免费| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| av天堂中文字幕网| 日日干狠狠操夜夜爽| 91狼人影院| 久久久精品欧美日韩精品| 国产av麻豆久久久久久久| 久久人人爽人人爽人人片va| 十八禁国产超污无遮挡网站| 亚洲欧美成人综合另类久久久 | 日韩强制内射视频| 日韩一区二区视频免费看| 国产欧美日韩精品亚洲av| 精品久久久久久久久久免费视频| 丰满的人妻完整版| 国产成人a区在线观看| 欧美一区二区国产精品久久精品| 黄色配什么色好看| 亚洲av免费高清在线观看| 91午夜精品亚洲一区二区三区| 国产v大片淫在线免费观看| 国产私拍福利视频在线观看| 18+在线观看网站| 亚洲国产精品成人综合色| 日本黄色视频三级网站网址| 国产视频内射| 久久精品国产亚洲av香蕉五月| 中文字幕久久专区| 日本a在线网址| 久久精品91蜜桃| 99热6这里只有精品| 日韩精品有码人妻一区| 可以在线观看毛片的网站| 午夜亚洲福利在线播放| 高清午夜精品一区二区三区 | 97超碰精品成人国产| 久久韩国三级中文字幕| ponron亚洲| 欧美中文日本在线观看视频| 99热网站在线观看| 国产亚洲精品综合一区在线观看| 免费人成视频x8x8入口观看| 国产高清视频在线播放一区| 亚洲av不卡在线观看| 国产私拍福利视频在线观看| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| 男人狂女人下面高潮的视频| 成人欧美大片| 久久精品国产自在天天线| 一级av片app| 精品国产三级普通话版| 性欧美人与动物交配| 2021天堂中文幕一二区在线观| 亚洲人与动物交配视频| 国产精品久久久久久亚洲av鲁大| 久久人人爽人人片av| 99国产极品粉嫩在线观看| 在线看三级毛片| 午夜福利18| a级毛色黄片| 国内精品美女久久久久久| 精品人妻熟女av久视频| 人人妻人人澡欧美一区二区| 久久精品国产99精品国产亚洲性色| 欧美又色又爽又黄视频| 最近的中文字幕免费完整| 亚洲精品一区av在线观看| 在线免费观看不下载黄p国产| 欧美+亚洲+日韩+国产| 国产真实乱freesex| 久久久久久九九精品二区国产| 最近在线观看免费完整版| 日本黄色视频三级网站网址| 毛片女人毛片| 国产成人精品久久久久久| 午夜福利视频1000在线观看| 亚洲专区国产一区二区| 成人无遮挡网站| 九九在线视频观看精品| 国产成人影院久久av| 99视频精品全部免费 在线| 亚洲av熟女| 国产白丝娇喘喷水9色精品| 亚洲五月天丁香| 免费av不卡在线播放| 美女内射精品一级片tv| 国产黄片美女视频| 97热精品久久久久久| 国产亚洲精品久久久久久毛片| 国产精华一区二区三区| 国内精品美女久久久久久| 国产片特级美女逼逼视频| 全区人妻精品视频| 日日摸夜夜添夜夜爱| 国产黄片美女视频| 亚洲精品久久国产高清桃花| 久久精品91蜜桃| 麻豆国产av国片精品| 久久精品人妻少妇| 国产亚洲欧美98| av国产免费在线观看| av黄色大香蕉| 少妇裸体淫交视频免费看高清| 不卡一级毛片| 一卡2卡三卡四卡精品乱码亚洲| 国产精品日韩av在线免费观看| 一个人看的www免费观看视频| 秋霞在线观看毛片| 免费不卡的大黄色大毛片视频在线观看 | 婷婷精品国产亚洲av在线| 国产乱人偷精品视频| 中国国产av一级| 高清午夜精品一区二区三区 | 欧美不卡视频在线免费观看| 日韩 亚洲 欧美在线| www.色视频.com| 可以在线观看毛片的网站| 亚洲高清免费不卡视频| 午夜影院日韩av| 久久久精品大字幕| 免费搜索国产男女视频| av天堂在线播放| 天堂网av新在线| 亚洲av熟女| 神马国产精品三级电影在线观看| 国产色爽女视频免费观看| 亚洲av熟女| 神马国产精品三级电影在线观看| 亚洲人成网站高清观看| 亚洲国产精品成人综合色| 婷婷精品国产亚洲av在线| 亚洲在线观看片| 欧美zozozo另类| 婷婷精品国产亚洲av在线| 亚洲欧美日韩高清在线视频| 卡戴珊不雅视频在线播放| av在线观看视频网站免费| 中文字幕久久专区| 一区二区三区免费毛片| 亚洲国产精品sss在线观看| 天堂av国产一区二区熟女人妻| 高清毛片免费观看视频网站| 美女免费视频网站| 久久久久久久久中文| 午夜精品在线福利| 久久精品久久久久久噜噜老黄 | a级一级毛片免费在线观看| 国产成人影院久久av| 国产不卡一卡二| 国产亚洲精品av在线| 在线免费十八禁| 国产私拍福利视频在线观看| 欧美激情国产日韩精品一区|