• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Propagation Characteristics of Translating-Pulsating Source Green Function in the Side-Wall Effects Discrimination

    2018-03-28 12:30:18XIAOWenbin
    船舶力學 2018年3期

    XIAO Wen-bin

    (Academy of Ocean Science and Technology,National University of Defense Technology,Changsha 410073,China)

    0 Introduction

    In the tank with finite breadth,side-wall effects may exert great influence on the ship model advancing in waves,which is mainly due to the reflection waves acting on the model.The waves produced by the model propagate toward the side wall of the tank,and then may go back to it.If there are side-wall effects,many experimental results,such as the motion response,wave excited force,unsteady wave pattern,fluctuating pressure,may be affected.Studies about these effects will contribute to the investigation of hydrodynamic performance difference in the open water and tank condition,and qualitative and quantitative analyses are expected for the side-wall effects in seakeeping model test[1].

    For the side-wall effects problem in waves,earlier researches focused on the model test of single ship[2-3].In 1978,15th ITTC proposed standards of seakeeping tests for a single floating body[4].Recently,Ghent University in Belgium and other institutes carried out the model tests of two ships in waves[5-8],but the side-wall effects were still not investigated in depth.In the model tests for two ships advancing parallel in waves,the transversal space in between needs to be adjustable in line with the different experimental conditions.However,the enlargement of transversal space may intensify the side-wall effects,which makes the test more difficult in test design and data analysis.The side-wall effects seem to be more complicated for two advancing models than a single one;the critical wavelength corresponding to each model needs to be considered,besides that,the radiation and diffraction waves generated by a model may act upon the other one.Therefore,the relative position of two models in the tank should be taken into consideration to explore the side-wall effects in regular waves.

    In the present paper,the phase function is extracted from the integral representation about 3-D translating-pulsating source Green function in frequency domain,and the stationary phase method is applied to decompose the near-field flow and wave components of the source.Constant phase curves and propagation wave patterns in the far field are then obtained.Based on the propagation characteristics of Bessho form Green function,a simple and practical method is proposed to discriminate the side-wall effects for two ship models advancing in close proximity.Under the experimental conditions,the side-wall effects are examined in a two-model test.

    1 Propagation characteristics of Bessho form Green function

    1.1 Integral representation

    A right-handed equilibrium axis system oxyz is defined in the condition of deep water with the origin o on the plane of undisturbed free surface,and the z-axis is positive upwards.Assuming that the 3-D translating-pulsating source is advancing at a uniform speed U and oscillating at a frequencyis the source point and(x,y, )z is the field point,and then the Bessho form Green function[9]can be written as follows:

    The generalized wave numbers here are represented by k1and k2,and sign is the symbolic function.In terms of the value of τ,the integral path of formula(1)can be divided into two kinds according to the Cauchy integral theorem,which is illustrated in Fig.1.

    Fig.1 Integral path of equation(1)in θ space

    By performing M=sgn c·m=sgn c·k1cosθ,the terms about k1in formula(1)can be transformed into formula(2)with a single integral form[10].

    1.2 Decomposition of near-field flow and wave components

    It is known from formula(2),can reflect some nature of exponent part of the exponential function,whose real component represents the oscillation amplitude and imaginary one the phase information.Therefore,the phase function about Bessho form Green function can be defined as

    According to the traits of phase function,the wave patterns in far field can be determined by the stationary phase analysis method[11-12].If dψ/dM=0,it is easy to obtain that

    By substituting formula(4b)into formula(3),the parametric equation of constant phase curve can then be presented as follows:

    The variation range of θ in formula(6)is linked with the integral path in Fig.1.In m plane,the integral path of the new integrand is transformed,which is illustrated in Fig.2 and Fig.3.

    Fig.2 The new integral path for terms about k1 in m space

    Fig.3 The new integral path for terms about k2 in m space

    The imaginary part of variable m is not equal to zero in the intervals identified by dashed lines in Fig.2 and Fig.3.X and Y are,by definition,real numbers,so there is no stationary phase in the corresponding intervals,which means the near-field flow component of the Bessho form Green function is described here.The solid-line intervals in Fig.2 and Fig.3 are divided into three parts including AA,D1and D2,whose contribution is dominant in far field.Therefore,the propagating waves can be determined by equation(5)in the three intervals above.

    1.3 Wave patterns in far field

    In the water with an infinite free-surface extent,the unsteady waves generated by a translating-pulsating source are closely related to the Strouhal number τ=Uωe/g and its patterns can be indicated by the constant phase curves which represent the wave crests or hollow at a specific time instant[13].Fig.4 shows the propagating wave patterns when the source is located below the origin o.Here X and Y are dimensionless parameters,which can signify the horizontal position between the field point and the source point.

    If 4τ<1,there are three distinct wave patterns including outer V wave from AA,inner V wave from D1and ring wave from D2.For the value of 4τ>1,D1and D2are corresponding to inner V wave and ring-fan wave respectively and AA to fan wave.The ring and ring-fan waves above can be considered as the modified ring waves due to the forward speed,and other wave patterns as the modified Kelvin wake due to the harmonic oscillation of the source.All the wave patterns are restricted in the wedge-shaped region which is symmetrical about the advancing course.For the pulsating source,its constant phase curves are circles with the same center and wavelength in all directions[12].By analyzing the wave patterns,the translating-pulsating source seems to be more truly to reflect the propagating waves generated by an advancing ship than the pulsating source dose,which is largely due to the fact that the former source posses special features of forward movement and harmonic oscillation simultaneously.

    Fig.4 Constant phase curves of wave patterns when the source is located below o(a)4τ<1;(b)4τ>1

    Fig.5 Cusp angle of ring-fan wave pattern

    Fig.6 Cusp angle of ring-fan wave pattern versus τ

    For the propagating region of the ring wave is the whole free surface area,it is impossible to neglect the side-wall effect when 4τ<1.It is worth noting that the propagating scope of the inner V and fan waves is always within the region of ring-fan wave pattern if 4τ>1.Consequently,the influence area of ring-fan wave can be regarded as the propagating region of the radiation and diffraction waves generated by the translating-pulsating source in the condition of 4τ>1.As shown in Fig.5,a cusp angle θris introduced,which is an angle between the boundary of ring-fan wave and the source course.Fig.6 depicts how this cusp angle changes in dependence of Strouhal number[13].As shown in this figure,the backward spreading feature of ring-fan wave is more and more significant as the advancing speed increases or oscillating frequency decreases,which is consistent with the observed result in physics.In addition,ringfan wave is still possible to emerge ahead of the source when 4τ>1.However,θris always less than 90 degrees if τ>0.272,side-wall effects in which condition is the focus of the present work.

    2 Discrimination of side-wall effect for single ship model

    In the seakeeping test for single ship,the model is generally set to the central axis of the tank.Fig.7 shows the ship waves reflect from the side walls at different cusp angle θr.Given the tank breadth BTand model length L,it can be easily concluded that there must be a geometric critical cusp angle θtto discriminate the side-wall effect.

    Fig.7 Waves generated by single model and reflected from the side walls of the tank

    If θris is larger than θt,the waves generated from the ship stem will act on the flow field at the ship stern nearby after side-wall reflection,and the tank wall interference will occur.If θr<θt,the side-wall effect is absent then.Based on the analysis above,a discrimination method of side-wall effect can be proposed for single ship model.The concrete steps are presented as follows.Firstly,the critical angle θtis solved by tank breadth BTand model length L as formula(7).In terms of the monotone function of cusp angle θrin dependence of τ,the Strouhal number is determined when θtequals to θrin the second step.Thirdly,the corresponding frequency ωeat a certain speed U can be obtained by the definition of τ=Uωe/g.And finally,the critical wavelength λtis achieved with parameters of wave frequency and wavelength.Through comparing the value of experimental wavelength with λt,the side-wall effect can then be identified.The flow diagram of the discrimination method above is illustrated in Fig.8,in which β is the wave-to-course angle with the value of zero in head waves.Input of this method is BT,L,U and propagating property of ring-fan waves.

    Fig.8 Flow diagram of discrimination about the side wall effect for single ship model

    Based on the tank breadth,model length,speed Froude number and wave circular frequency,15th ITTC recommended a standard for seakeeping experiment of single model in the form of check list[4],whose data essentially indicates the variation laws of the circular Strouhal number τ0=Uω0/g with the ratio BT/L.The relationship between τ0and τ is given in formula(8).

    Fig.9(a)and(b)illustrates the discrimination margin of side-wall effect for single model,in which the present results are shown with solid lines.Whichever to adopt to discriminate the effect,τ0or τ,the side-wall effect is not ignorable in the lower left region of the lines and vice versa.In addition,the discrimination data of 15th ITTC is listed in Fig.9(a).By comparison,present results calculated by τ0agree well with the standard data.Therefore,the discrimination method above proves to be correct and effective for single model.It is expected to apply this method to the seakeeping test of two ship models.

    Fig.9 Discrimination margin of side wall effect for single ship model

    3 Discrimination of side-wall effects for two ship models

    In the test of two models advancing in close proximity,the best layout plan is that the two models are arranged symmetrically around the central axis of tank.However,it may strengthen the reforming of towing system for there is only one towing device in universal tank.A simple solution is that one model labeled as ship a is arranged into the carriage navigation system,which is usually located in the central axis of tank.Without loss of generality,another model,labeled as ship b,is set on the starboard side of ship a.The transversal and longitudinal spaces between two models are set as Dyand Dx,respectively,as shown as in Fig.10.If Dy>0,ship b is on the starboard side of ship a.For Dx>0,ship b is ahead of ship a.

    Fig.10 Waves generated by two models and reflected from the side walls of tank

    The radiation and diffraction waves here are so complex that they need to be analyzed one by one.Taking Fig.10 as an example,the waves generated by the model may reflect back to interfere its own response in waves.In this case,the critical angle can be referenced by the single model.For ship a,this angle θtaais satisfied with formula(9a).For ship b,transversal space Dyis taken into account in the angle θtbbdue to its proximity to the right side wall,which is shown in formula(9b).

    where Laand Lbare the lengths of ship a and ship b,respectively.

    In addition,the waves from a model may act on the other one after the side-wall reflection.Because of the shadowing effect of ship hull,the interference waves between models’broad sides are restricted in a narrow area,which is an important feature of hydrodynamic interference when two ships are advancing parallel in close proximity.If the two models are not captured,this shadowing effect is not complete in waves[15].And there are radiation and diffraction waves produced by ship a on the starboard of ship b.Here the wave propagation must follow the shortest distance principle from one model to the other.For instance,the wave from ship a is quicker to reach ship b by the right side wall than the left side.So the critical angle θtbais determined by the right side wall as formula(9c).In a similar way,the angle θtabis given in formula(9d).

    Above all,the side-wall effects for two models advancing parallel in waves can be discriminated in terms of the four angles as formula(9a)~(9d).And the minimum value of them is defined as θtto determine if the side-wall effects occur.

    4 Instance analyses

    For the models test of Cheng Kung University in Ref.[16],the discrimination method above is applied to check the side-wall effects.Tab.1 shows the main particulars of the tested models.

    Tab.1 Main particulars of tested models

    In the test,two models are advancing in head regular waves with the wavelength range 1.93-6.24 m.The principal dimension of the towing tank is 180 m×8 m×3.5 m and speed Froude numbers Fnare 0,0.076 and 0.141.In the experimental condition with Dx=0,two kinds of model layout are discussed here.The first layout is that ship a is set in the central axis of tank and ship b is on the starboard side of ship a with Dy=0.72 m,0.82 m and 0.92 m.No matter how the transversal space changes,two models are arranged symmetrically around the central axis of tank in the other layout.

    When Fnequals to 0 or 0.076,side-wall effects occur in both layouts.For Fn=0.141,the critical wavelength appears near 5 m.Fig.11 depicts the wavelength range free of side-wall effect in the experimental conditions.From this figure,the critical wavelength tends to be shorter along with the increase of transversal space.For the transversal space is relative small(Dx/BT=9.0%~11.5%),the change of critical wavelength in accordance with the transversal space is not significant on the whole.

    Fig.11 Wavelength range free of side-wall effect(Fn=0.141)

    In addition,the wavelength range free of side-wall effect is boarder in the second layout than that in the first one.The symmetrical layout plan,though is more advantageous to avoid the side-wall effect,may enlarge the experimental difficulty and increase the equipment-testing workload.In order to minimize the interference of side-wall effect,the time-history data to be analyzed should be properly intercepted and deep research should focus on its quantitative analysis,which may be the future course of this problem.

    5 Conclusions

    Based on the propagation characteristics of translating-pulsating source Green function,a practical approach is proposed to discriminate the side-wall effects for single ship model and two models in waves.The main contents and conclusions in present paper are included below:

    (1)For the single integral representation about 3-D translating-pulsating source Green function of Bessho form in frequency domain,the parametric equation of constant phase curve is obtained by stationary phase method.The integral intervals of near-field flow and wave components are made clear by the real number property of constant phase curve.If 4τ>1,the propagating area of inner V and fan waves is always within the region of ring-fan wave pattern.And the influence scope of radiation-diffraction waves of the source can be considered as the propagating area of ring-fan wave.

    (2)Ring wave and ring-fan wave pattern may emerge ahead of the translating-pulsating source for τ<0.272,and then side-wall effects seem to be not ignored.If τ>0.272,the cusp angle of the source is larger than 90 degrees,therefore it is needed to discriminate the sidewall effects by corresponding method or regulation.

    (3)By comparing the ring-fan wave’s cusp angle and geometric critical cusp angle of experimental tank,a discrimination method and its implementing process are presented in the side-wall effect problem for single ship model,and the discrimination margin is obtained by the Strouhal number.Further,a discrimination method of side-wall effects is proposed for two models advancing parallel in regular waves based on the model particulars,tank breadth and relative position of two models,in which the interference of reflection waves acting on both models are taken into account by the shortest distance principle of propagating waves.

    (4)The present discrimination method of side-wall effects is not only suitable for the single model and two models test,but also can be applied to the seakeeping test of multihull vehicle and multiple ships.The future work is to further investigate the propagation velocity of the wave patterns,because there is time interval for the propagation waves from the ship to the side wall.

    [1]Tasai F,Takaki M,Ohkusu M.Ship motions in restricted waters[J].Journal of the Japan Society of Naval Architects and Ocean Engineers,1978,56:33-45.

    [2]Hosoda R.Effects of side-wall interference of towing tank on the results of experiments in waves(1)[J].Journal of the Society of Naval Architects of Japan,1976,139:23-30.

    [3]Hosoda R.Effects of side-wall interference of towing tank on the results of experiments in waves(2)[J].Journal of the Society of Naval Architects of Japan,1978,143:52-60.

    [4]The Seakeeping Committee of ITTC.Report of the seakeeping committee[C]//Proceedings of the 15th International Towing Tank Conference.Netherlands,1978:55-114.

    [5]Vantorre M,Verzhbitskaya E,Laforce E.Model test based formulations of ship-ship interaction forces[J].Ship Technology Research,2002,49(3):1-9.

    [6]Evert L,Marc V,Guilaume D.Captive model testing for ship to ship operations[C]//Proceedings of International Conference on Marine Simulation and Ship Maneuverability.Panama,2009:1-10.

    [7]Greet V K,Marc V,Guilaume D.Advanced model testing techniques for ship behavior in shallow and confined water[C]//Proceedings of the 1st International Conference on Advanced Model Measurement Technology for the EU Maritime Industry.Nantes,France,2009:158-172.

    [8]Zhao W H,Yang J M,Hu Z Q,et al.Recent developments on the hydrodynamics of floating liquid natural gas(FLNG)[J].Ocean Engineering,2011,38:1555-1567.

    [9]Bessho M.On the fundamental singularity in the theory of ship motion in a seaway[J].Memoirs of the Defense Academy of Japan,1977,17(8):95-105.

    [10]Iwashita H,Ohkusu M.Hydrodynamic forces on a ship moving with forward speed in waves[J].Journal of the Society of Naval Architects of Japan,1989,166:87-109.

    [11]Noblesse F,Hendrix D.On the theory of potential flow about a ship advancing in waves[J].Journal of Ship Research,1992,36(1):17-29.

    [12]Xu Y,Dong W C,Xiao W B.Study on far field wave patterns and their characteristics of Havelock form Green function[J].China Ocean Engineering,2013,27(3):283-298.

    [13]Chen X B,Diebold L.Analytical expressions of unsteady wave patterns[C]//Proceedings of the 14th International Workshop on Water Waves and Floating Bodies.Port Huron,USA,25-28.

    [14]Faltinsen O M.Hydrodynamics of high-speed marine vehicles[M].Cambridge University Press,UK,2005:99-140.

    [15]Xu Y.Study on the mechanism of hydrodynamic interaction between multiple ships advancing in waves at close proximity[D].Wuhan:Naval University of Engineering,2012.

    [16]Yang W H.Experimental verification of the seakeeping performance for two ships advancing parallel in waves[D].Taiwan:National Cheng Kung University,2001.

    [17]Mctaggart K,Cumming D,Hsiung C C,et al.Seakeeping of two ships in close proximity[J].Ocean Engineering,2003,30:1051-1063.

    欧美国产精品一级二级三级| 亚洲精华国产精华液的使用体验| 看免费av毛片| 高清av免费在线| 777米奇影视久久| 桃花免费在线播放| 一本色道久久久久久精品综合| 国产男女内射视频| 又粗又硬又长又爽又黄的视频| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片 在线播放| 母亲3免费完整高清在线观看 | 啦啦啦在线免费观看视频4| av.在线天堂| 国产在线一区二区三区精| 久久久久视频综合| 精品视频人人做人人爽| 大片免费播放器 马上看| 亚洲国产av影院在线观看| 久久久国产精品麻豆| 国产野战对白在线观看| 美女国产高潮福利片在线看| 国产精品三级大全| 亚洲色图 男人天堂 中文字幕| 国产一区二区激情短视频 | 2021少妇久久久久久久久久久| 亚洲国产欧美网| 欧美日韩国产mv在线观看视频| 2021少妇久久久久久久久久久| 十八禁高潮呻吟视频| 老汉色av国产亚洲站长工具| 日本av免费视频播放| 亚洲精品国产色婷婷电影| 色婷婷久久久亚洲欧美| 男女午夜视频在线观看| 精品国产一区二区三区久久久樱花| 久久精品国产自在天天线| 久久99热这里只频精品6学生| 国产乱来视频区| 久久这里有精品视频免费| 亚洲欧美一区二区三区黑人 | 考比视频在线观看| 1024视频免费在线观看| 国产精品 欧美亚洲| 亚洲四区av| 自线自在国产av| 亚洲国产日韩一区二区| 日韩精品有码人妻一区| 丰满少妇做爰视频| 亚洲第一av免费看| 满18在线观看网站| 爱豆传媒免费全集在线观看| 又黄又粗又硬又大视频| 欧美av亚洲av综合av国产av | 久久久久久伊人网av| 一区二区三区四区激情视频| 成人二区视频| 亚洲中文av在线| 国产精品一国产av| av在线播放精品| 亚洲精品在线美女| 色94色欧美一区二区| 中文字幕人妻熟女乱码| 国产免费一区二区三区四区乱码| 国产野战对白在线观看| 国产高清不卡午夜福利| 亚洲综合色惰| 国产免费一区二区三区四区乱码| 波多野结衣av一区二区av| 国产熟女欧美一区二区| 一本色道久久久久久精品综合| 久久午夜福利片| 伊人久久国产一区二区| 国产高清不卡午夜福利| 色婷婷av一区二区三区视频| 国产精品久久久久成人av| 国产野战对白在线观看| 精品一区二区三卡| 一个人免费看片子| 久久久久久伊人网av| 街头女战士在线观看网站| 日本午夜av视频| 亚洲激情五月婷婷啪啪| 日本黄色日本黄色录像| av在线app专区| 少妇人妻精品综合一区二区| 久久韩国三级中文字幕| 亚洲综合色惰| 黑丝袜美女国产一区| 欧美老熟妇乱子伦牲交| 精品亚洲成国产av| 国产乱来视频区| 国产精品嫩草影院av在线观看| 久久青草综合色| 精品午夜福利在线看| 男人操女人黄网站| 亚洲精品日韩在线中文字幕| 久久精品人人爽人人爽视色| 宅男免费午夜| 黄色配什么色好看| 日韩电影二区| 乱人伦中国视频| 妹子高潮喷水视频| 五月天丁香电影| 99久久综合免费| 欧美精品av麻豆av| av免费观看日本| videosex国产| 1024香蕉在线观看| 欧美在线黄色| 久久久久久人人人人人| 欧美日韩av久久| 欧美日韩国产mv在线观看视频| 青青草视频在线视频观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产自在天天线| 久久99精品国语久久久| 欧美日韩一区二区视频在线观看视频在线| 欧美老熟妇乱子伦牲交| 交换朋友夫妻互换小说| 搡女人真爽免费视频火全软件| 18在线观看网站| 久久这里只有精品19| 青春草亚洲视频在线观看| 欧美人与性动交α欧美软件| 欧美 日韩 精品 国产| 巨乳人妻的诱惑在线观看| 日韩,欧美,国产一区二区三区| 中文天堂在线官网| 看非洲黑人一级黄片| 中国国产av一级| 在线 av 中文字幕| 亚洲图色成人| 亚洲成av片中文字幕在线观看 | 午夜福利在线观看免费完整高清在| 免费人妻精品一区二区三区视频| 久久久久国产一级毛片高清牌| 毛片一级片免费看久久久久| 欧美国产精品va在线观看不卡| av在线播放精品| 精品国产一区二区久久| 最新中文字幕久久久久| 啦啦啦在线免费观看视频4| 最近的中文字幕免费完整| 欧美日韩亚洲高清精品| av线在线观看网站| 婷婷色综合www| 在现免费观看毛片| 午夜福利乱码中文字幕| a级毛片在线看网站| 国产精品三级大全| 欧美日韩av久久| 日韩视频在线欧美| 黄片小视频在线播放| 亚洲人成77777在线视频| 成人毛片60女人毛片免费| 哪个播放器可以免费观看大片| 最新中文字幕久久久久| 菩萨蛮人人尽说江南好唐韦庄| 日韩精品有码人妻一区| 国产成人精品婷婷| 美女福利国产在线| 侵犯人妻中文字幕一二三四区| 久久久国产欧美日韩av| 黄色一级大片看看| 麻豆av在线久日| 国产一区亚洲一区在线观看| 国产av国产精品国产| 青春草国产在线视频| 欧美97在线视频| 香蕉丝袜av| 视频区图区小说| 亚洲情色 制服丝袜| 国产精品免费视频内射| 久久国产精品男人的天堂亚洲| 老汉色av国产亚洲站长工具| 日韩中文字幕视频在线看片| 亚洲精品中文字幕在线视频| 久久精品人人爽人人爽视色| 青春草亚洲视频在线观看| 纯流量卡能插随身wifi吗| 国产av码专区亚洲av| 国产精品三级大全| 三上悠亚av全集在线观看| 欧美日韩一区二区视频在线观看视频在线| 综合色丁香网| 国产色婷婷99| 大香蕉久久成人网| 在现免费观看毛片| 亚洲在久久综合| 日日撸夜夜添| 精品少妇一区二区三区视频日本电影 | 男女高潮啪啪啪动态图| 高清在线视频一区二区三区| 国产精品偷伦视频观看了| 久久国产亚洲av麻豆专区| 国产精品麻豆人妻色哟哟久久| 麻豆av在线久日| 91精品伊人久久大香线蕉| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 国产日韩欧美视频二区| 肉色欧美久久久久久久蜜桃| 91在线精品国自产拍蜜月| 午夜福利视频在线观看免费| 国产一区二区三区av在线| 一级毛片我不卡| 成年女人在线观看亚洲视频| 日本av免费视频播放| 又黄又粗又硬又大视频| 亚洲精品美女久久久久99蜜臀 | 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| 成人国产av品久久久| 男女边摸边吃奶| 三级国产精品片| 涩涩av久久男人的天堂| 岛国毛片在线播放| 国产精品一国产av| 久久人人爽av亚洲精品天堂| 少妇人妻精品综合一区二区| 巨乳人妻的诱惑在线观看| 中文字幕人妻丝袜制服| 亚洲伊人久久精品综合| 9191精品国产免费久久| 中文字幕制服av| 免费大片黄手机在线观看| 99香蕉大伊视频| 午夜免费鲁丝| 丰满饥渴人妻一区二区三| 热99久久久久精品小说推荐| 国产极品天堂在线| 免费久久久久久久精品成人欧美视频| 99久久精品国产国产毛片| av在线app专区| 国产白丝娇喘喷水9色精品| 熟女少妇亚洲综合色aaa.| 中文字幕制服av| 精品人妻偷拍中文字幕| 国产在视频线精品| 国产一区二区三区综合在线观看| 高清av免费在线| 妹子高潮喷水视频| 国产精品 国内视频| 王馨瑶露胸无遮挡在线观看| 亚洲欧美成人精品一区二区| 日韩三级伦理在线观看| www.自偷自拍.com| 日韩av在线免费看完整版不卡| 精品国产国语对白av| 少妇的逼水好多| 亚洲伊人久久精品综合| 欧美 日韩 精品 国产| 成人毛片a级毛片在线播放| 美女福利国产在线| 99国产精品免费福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 女人被躁到高潮嗷嗷叫费观| 免费人妻精品一区二区三区视频| 亚洲国产色片| 女人久久www免费人成看片| 高清av免费在线| 九九爱精品视频在线观看| 一级片免费观看大全| 色播在线永久视频| 在线天堂中文资源库| 中文精品一卡2卡3卡4更新| 中文字幕亚洲精品专区| 午夜日本视频在线| 热99国产精品久久久久久7| 伦理电影大哥的女人| 制服人妻中文乱码| 精品一品国产午夜福利视频| 中文字幕色久视频| 女人被躁到高潮嗷嗷叫费观| 日本av免费视频播放| 国产成人aa在线观看| 日韩熟女老妇一区二区性免费视频| 搡老乐熟女国产| 丁香六月天网| 哪个播放器可以免费观看大片| 美女福利国产在线| 国产片特级美女逼逼视频| av又黄又爽大尺度在线免费看| 国产综合精华液| 五月天丁香电影| 一二三四在线观看免费中文在| 亚洲av在线观看美女高潮| 看免费成人av毛片| 亚洲中文av在线| 1024视频免费在线观看| 极品人妻少妇av视频| 色视频在线一区二区三区| 如何舔出高潮| 精品人妻熟女毛片av久久网站| 国产极品天堂在线| 日韩av免费高清视频| 777久久人妻少妇嫩草av网站| 久久久久久久久久久免费av| 国精品久久久久久国模美| 亚洲视频免费观看视频| 丰满乱子伦码专区| 午夜福利乱码中文字幕| 各种免费的搞黄视频| 国产一级毛片在线| 国产精品一国产av| 超碰97精品在线观看| 电影成人av| 美女福利国产在线| 国产精品久久久av美女十八| 国产成人精品久久二区二区91 | 亚洲人成77777在线视频| 亚洲一级一片aⅴ在线观看| 亚洲精品日本国产第一区| 香蕉精品网在线| 久久精品国产亚洲av涩爱| 国产精品成人在线| 国产精品三级大全| 一区二区三区激情视频| 久久久久精品人妻al黑| 亚洲美女视频黄频| 热99国产精品久久久久久7| 深夜精品福利| 亚洲av男天堂| 亚洲五月色婷婷综合| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品亚洲av一区麻豆 | 18禁动态无遮挡网站| 国产av码专区亚洲av| 中文字幕最新亚洲高清| 乱人伦中国视频| 日韩av在线免费看完整版不卡| 久久国产亚洲av麻豆专区| 国产又爽黄色视频| 免费观看在线日韩| 激情五月婷婷亚洲| 91成人精品电影| 观看av在线不卡| 亚洲欧美日韩另类电影网站| 国产有黄有色有爽视频| 久久影院123| 欧美在线黄色| 免费在线观看黄色视频的| 亚洲欧美一区二区三区久久| 激情视频va一区二区三区| 色94色欧美一区二区| 国产成人精品婷婷| 婷婷色av中文字幕| 捣出白浆h1v1| 十分钟在线观看高清视频www| 在线免费观看不下载黄p国产| 岛国毛片在线播放| 亚洲经典国产精华液单| 在线观看三级黄色| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 欧美另类一区| 黑人巨大精品欧美一区二区蜜桃| 大话2 男鬼变身卡| 久久热在线av| 极品少妇高潮喷水抽搐| 久久99精品国语久久久| 又黄又粗又硬又大视频| 99国产精品免费福利视频| 欧美日韩亚洲国产一区二区在线观看 | 国产成人aa在线观看| 亚洲精品一二三| 亚洲国产av新网站| 欧美精品一区二区免费开放| 日本av免费视频播放| 一级毛片我不卡| 熟女av电影| 国产欧美日韩综合在线一区二区| 精品久久久精品久久久| 亚洲精华国产精华液的使用体验| 久久ye,这里只有精品| 午夜福利一区二区在线看| 欧美国产精品一级二级三级| 一级爰片在线观看| 在线观看三级黄色| 日韩一区二区视频免费看| 久久久国产一区二区| 日韩精品免费视频一区二区三区| 丰满乱子伦码专区| 亚洲国产精品999| 丰满迷人的少妇在线观看| 少妇被粗大的猛进出69影院| av天堂久久9| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 欧美人与善性xxx| 综合色丁香网| 亚洲中文av在线| 91精品伊人久久大香线蕉| 亚洲经典国产精华液单| 亚洲精品国产av成人精品| 免费观看在线日韩| 黄色视频在线播放观看不卡| av网站免费在线观看视频| 黄色视频在线播放观看不卡| 日韩一本色道免费dvd| 亚洲精品成人av观看孕妇| 丝袜人妻中文字幕| 亚洲三区欧美一区| 成人黄色视频免费在线看| 18禁动态无遮挡网站| 99热国产这里只有精品6| 18禁动态无遮挡网站| 免费播放大片免费观看视频在线观看| 日日啪夜夜爽| 久久久久视频综合| 国产av一区二区精品久久| 国产亚洲最大av| 另类亚洲欧美激情| 午夜免费鲁丝| 久久女婷五月综合色啪小说| 亚洲欧美清纯卡通| 欧美精品一区二区大全| 秋霞在线观看毛片| 美女主播在线视频| 精品亚洲成a人片在线观看| 成年女人毛片免费观看观看9 | 亚洲成人手机| 免费观看av网站的网址| 成年人午夜在线观看视频| 久久99一区二区三区| 下体分泌物呈黄色| 亚洲av国产av综合av卡| 精品国产超薄肉色丝袜足j| 欧美人与性动交α欧美精品济南到 | 久久亚洲国产成人精品v| 9色porny在线观看| 成人免费观看视频高清| 一本大道久久a久久精品| 欧美精品人与动牲交sv欧美| 国产乱来视频区| 成人黄色视频免费在线看| 熟妇人妻不卡中文字幕| 国产97色在线日韩免费| 日韩欧美一区视频在线观看| 午夜免费鲁丝| 黑丝袜美女国产一区| 中文字幕精品免费在线观看视频| 午夜福利网站1000一区二区三区| 国产精品一二三区在线看| 哪个播放器可以免费观看大片| 狠狠精品人妻久久久久久综合| 国产麻豆69| 国产一区有黄有色的免费视频| 午夜激情久久久久久久| 日韩在线高清观看一区二区三区| 久久久久久久精品精品| 久久女婷五月综合色啪小说| 国产在视频线精品| 伊人亚洲综合成人网| 国产精品国产三级国产专区5o| 午夜av观看不卡| 秋霞伦理黄片| 国产精品欧美亚洲77777| 亚洲欧美成人精品一区二区| 免费观看无遮挡的男女| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩av久久| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美日韩在线播放| 日本wwww免费看| 免费黄频网站在线观看国产| 色哟哟·www| 国产毛片在线视频| 一二三四中文在线观看免费高清| 国产av码专区亚洲av| 美女国产高潮福利片在线看| 久久99蜜桃精品久久| 18禁观看日本| 777米奇影视久久| 日韩在线高清观看一区二区三区| 久久 成人 亚洲| 日本免费在线观看一区| 少妇熟女欧美另类| 日韩不卡一区二区三区视频在线| 天天影视国产精品| 亚洲av电影在线观看一区二区三区| 日韩,欧美,国产一区二区三区| 咕卡用的链子| 视频在线观看一区二区三区| 欧美 日韩 精品 国产| 色吧在线观看| 一区福利在线观看| 亚洲情色 制服丝袜| 成人免费观看视频高清| www日本在线高清视频| 这个男人来自地球电影免费观看 | 日本黄色日本黄色录像| 一本久久精品| 一级片免费观看大全| 亚洲精品中文字幕在线视频| 亚洲av.av天堂| 成年女人在线观看亚洲视频| 男女国产视频网站| 男女无遮挡免费网站观看| 满18在线观看网站| 最新中文字幕久久久久| 性色av一级| 久久人妻熟女aⅴ| 久久综合国产亚洲精品| 一区二区日韩欧美中文字幕| 亚洲国产av新网站| 国产亚洲一区二区精品| 久久久久久久久久久久大奶| av不卡在线播放| 亚洲av电影在线进入| 欧美国产精品一级二级三级| 在线观看一区二区三区激情| 街头女战士在线观看网站| 婷婷色综合www| 国产成人精品在线电影| av国产精品久久久久影院| 欧美变态另类bdsm刘玥| 欧美精品国产亚洲| 丁香六月天网| 成人国产麻豆网| 熟妇人妻不卡中文字幕| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品古装| 超色免费av| 黄网站色视频无遮挡免费观看| 母亲3免费完整高清在线观看 | 精品一区在线观看国产| 亚洲,一卡二卡三卡| 亚洲欧美色中文字幕在线| 亚洲伊人久久精品综合| 男人舔女人的私密视频| 这个男人来自地球电影免费观看 | 丰满少妇做爰视频| 日韩熟女老妇一区二区性免费视频| 久久青草综合色| 国产伦理片在线播放av一区| 亚洲情色 制服丝袜| 久久久久久久久久人人人人人人| 午夜老司机福利剧场| 亚洲成人av在线免费| 久久久久视频综合| 国产高清国产精品国产三级| 日韩精品免费视频一区二区三区| 十分钟在线观看高清视频www| 自线自在国产av| 精品国产乱码久久久久久小说| 亚洲精品国产av蜜桃| 日韩不卡一区二区三区视频在线| 久久精品国产鲁丝片午夜精品| 日韩一卡2卡3卡4卡2021年| 97在线人人人人妻| 亚洲一级一片aⅴ在线观看| 亚洲少妇的诱惑av| 少妇被粗大猛烈的视频| 麻豆精品久久久久久蜜桃| 91午夜精品亚洲一区二区三区| a 毛片基地| 男女免费视频国产| 在现免费观看毛片| 亚洲一码二码三码区别大吗| 美国免费a级毛片| 欧美激情高清一区二区三区 | 亚洲国产精品一区三区| 赤兔流量卡办理| 欧美精品国产亚洲| 精品一区二区三卡| 在线观看三级黄色| 亚洲国产毛片av蜜桃av| 亚洲精品国产一区二区精华液| 日韩电影二区| 热re99久久国产66热| 免费高清在线观看视频在线观看| 国产一区有黄有色的免费视频| 亚洲 欧美一区二区三区| 日本-黄色视频高清免费观看| 国产黄色视频一区二区在线观看| 国产精品一国产av| 99久久人妻综合| 这个男人来自地球电影免费观看 | 最新的欧美精品一区二区| 999久久久国产精品视频| 成年女人毛片免费观看观看9 | 免费播放大片免费观看视频在线观看| 男女午夜视频在线观看| 夫妻午夜视频| 国产av一区二区精品久久| 丰满迷人的少妇在线观看| 黄色一级大片看看| 99久国产av精品国产电影| 2022亚洲国产成人精品| 纯流量卡能插随身wifi吗| 国产一区亚洲一区在线观看| 欧美老熟妇乱子伦牲交| 一二三四中文在线观看免费高清| 国产av精品麻豆| 男人爽女人下面视频在线观看| 只有这里有精品99| 亚洲精品一区蜜桃| 一级毛片 在线播放| 美女午夜性视频免费| 欧美精品av麻豆av| 久久毛片免费看一区二区三区| 观看美女的网站| 黄频高清免费视频| 日韩中文字幕欧美一区二区 | 成人午夜精彩视频在线观看| 天堂8中文在线网| 色94色欧美一区二区| 9191精品国产免费久久| 电影成人av| 免费黄色在线免费观看| 欧美精品一区二区免费开放| 欧美精品亚洲一区二区| 国产日韩欧美在线精品|